
kRPC
Release 0.3.5

June 25, 2016

CONTENTS

1 Getting Started 3
1.1 The Server Plugin . 3
1.2 The Python Client . 4
1.3 ‘Hello World’ Script . 5
1.4 Going further... 6

2 Tutorials and Examples 7
2.1 Sub-Orbital Flight . 7
2.2 Reference Frames . 10
2.3 Launch into Orbit . 18
2.4 Pitch, Heading and Roll . 21
2.5 Interacting with Parts . 22
2.6 Docking Guidance . 23
2.7 User Interface . 25
2.8 AutoPilot . 26

3 C# 33
3.1 C# Client . 33
3.2 KRPC API . 35
3.3 SpaceCenter API . 36
3.4 Drawing API . 100
3.5 InfernalRobotics API . 103
3.6 Kerbal Alarm Clock API . 106
3.7 RemoteTech API . 110
3.8 User Interface API . 112

4 C++ 119
4.1 C++ Client . 119
4.2 KRPC API . 123
4.3 SpaceCenter API . 124
4.4 Drawing API . 191
4.5 InfernalRobotics API . 195
4.6 Kerbal Alarm Clock API . 200
4.7 RemoteTech API . 204
4.8 User Interface API . 206

5 Java 215
5.1 Java Client . 215
5.2 KRPC API . 218
5.3 SpaceCenter API . 219
5.4 Drawing API . 287

i

5.5 InfernalRobotics API . 292
5.6 Kerbal Alarm Clock API . 297
5.7 RemoteTech API . 301
5.8 User Interface API . 303

6 Lua 311
6.1 Lua Client . 311
6.2 KRPC API . 313
6.3 SpaceCenter API . 314
6.4 Drawing API . 402
6.5 InfernalRobotics API . 407
6.6 Kerbal Alarm Clock API . 412
6.7 RemoteTech API . 417
6.8 User Interface API . 419

7 Python 429
7.1 Python Client . 429
7.2 KRPC API . 432
7.3 SpaceCenter API . 433
7.4 Drawing API . 522
7.5 InfernalRobotics API . 526
7.6 Kerbal Alarm Clock API . 531
7.7 RemoteTech API . 536
7.8 User Interface API . 539

8 Other Clients, Services and Scripts 549
8.1 Clients . 549
8.2 Services . 549
8.3 Scripts/Tools/Libraries etc. 549

9 Compiling kRPC 551
9.1 Install Dependencies . 551
9.2 Setup your Environment . 551
9.3 Building using Bazel . 551
9.4 Building the C# projects using an IDE . 552

10 Extending kRPC 555
10.1 The kRPC Architecture . 555
10.2 Service API . 555
10.3 Documentation . 561
10.4 Further Examples . 561
10.5 Generating Service Code for Static Clients . 562

11 Communication Protocol 565
11.1 Establishing a Connection . 565
11.2 Remote Procedures . 566
11.3 Protocol Buffer Encoding . 569
11.4 Streams . 569
11.5 KRPC Service . 570
11.6 Service Description Message . 571

12 Internals of kRPC 575
12.1 Server Performance Settings . 575

Python Module Index 577

ii

Lua Module Index 579

Index 581

iii

iv

kRPC, Release 0.3.5

kRPC allows you to control Kerbal Space Program from scripts running outside of the game. It comes with client
libraries for many popular languages including C#, C++, Java, Lua and Python. Clients, made by others, are also
available for Ruby and Haskell.

• Getting Started Guide

• Tutorials and Examples

• Clients, services and tools made by others

The mod exposes most of KSPs API and includes support for Kerbal Alarm Clock and Infernal Robotics. This
functionality is provided to client programs via a Remote Procedure Call server, using protocol buffers for serialization.
The server component sets up a TCP/IP server that remote scripts can connect to. This communication could be on
the local machine only, over a local network, or even over the wider internet if configured correctly. The server is
also extensible. Additional remote procedures (grouped into “services”) can be added to the server using the “Service
API”.

CONTENTS 1

https://github.com/TeWu/krpc-rb
https://github.com/Cahu/krpc-hs

kRPC, Release 0.3.5

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

This short guide explains the basics for getting the kRPC server set up and running, and writing a basic Python script
to interact with the game.

1.1 The Server Plugin

1.1.1 Installation

1. Download and install the kRPC server plugin from one of these locations:

• Github

• SpaceDock

• Curse

• Or the install it using CKAN

2. Start up KSP and load a save game.

3. You should be greeted by the server window:

4. Click “Start server” to, erm... start the server! If all goes well, the light should turn a happy green color:

3

https://github.com/krpc/krpc/releases/download/v0.3.5/krpc-0.3.5.zip
http://spacedock.info/mod/69/kRPC
http://www.curse.com/project/220219
http://forum.kerbalspaceprogram.com/threads/100067

kRPC, Release 0.3.5

5. You can hide the window by clicking the close button in the top right. The window can also be shown/hidden
by clicking on the icon in the top right:

This icon will also turn green when the server is online.

1.1.2 Configuration

The server is configured using the window displayed in-game:

1. Address: this is the IP address that the server will listen on. To only allow connections from the local machine,
select ‘localhost’ (the default). To allow connections over a network, either select the local IP address of your
machine, or choose ‘Manual’ and enter the local IP address manually.

2. RPC and Stream port numbers: These need to be set to port numbers that are available on your machine. In
most cases, they can just be left as the default.

There are also several advanced settings, which are hidden by default, but can be revealed by checking the ‘Advanced
settings’ box:

1. Auto-start server: When enabled, the server will start automatically when the game loads.

2. Auto-accept new clients: When enabled, new client connections are automatically allowed. When disabled, a
pop-up is displayed asking whether the new client connection should be allowed.

The other advanced settings control the performance of the server.

1.2 The Python Client

Note: kRPC supports both Python 2.7 and Python 3.x.

4 Chapter 1. Getting Started

kRPC, Release 0.3.5

1.2.1 On Windows

1. If you don’t already have python installed, download the python installer and run it:
https://www.python.org/downloads/windows When running the installer, make sure that pip is installed
as well.

2. Install the kRPC python module, by opening command prompt and running the following command:
C:\Python27\Scripts\pip.exe install krpc You might need to replace C:\Python27 with
the location of your python installation.

3. Run Python IDLE (or your favorite editor) and start coding!

1.2.2 On Linux

1. Your linux distribution likely already comes with python installed. If not, install python using your favorite
package manager, or get it from here: https://www.python.org/downloads

2. You also need to install pip, either using your package manager, or from here: https://pypi.python.org/pypi/pip

3. Install the kRPC python module by running the following from a terminal: sudo pip install krpc

4. Start coding!

1.3 ‘Hello World’ Script

Run KSP and start the server with the default settings. Then run the following python script:

1 import krpc
2 conn = krpc.connect(name='Hello World')
3 vessel = conn.space_center.active_vessel
4 print(vessel.name)

This does the following: line 1 loads the kRPC python module, line 2 opens a new connection to the server, line 3 gets
the active vessel and line 4 prints out the name of the vessel. You should see something like the following:

1.3. ‘Hello World’ Script 5

https://www.python.org/downloads/windows
https://www.python.org/downloads
https://pypi.python.org/pypi/pip

kRPC, Release 0.3.5

Congratulations! You’ve written your first script that communicates with KSP.

1.4 Going further...

• For some more interesting examples of what you can do with kRPC, check out the tutorials.

• Client libraries are available for other languages too, including C#, C++, Java and Lua.

• It is also possible to communicate with the server manually from any language you like – as long as it can do
network I/O.

6 Chapter 1. Getting Started

CHAPTER

TWO

TUTORIALS AND EXAMPLES

This collection of tutorials and example scripts explain how to use the features of kRPC. They are written for the
Python client, although the concepts apply to all of the client languages.

2.1 Sub-Orbital Flight

This introductory tutorial uses kRPC to send some Kerbals on a sub-orbital flight, and (hopefully) returns them safely
back to Kerbin. It covers the following topics:

• Controlling a rocket (activating stages, setting the throttle)

• Using the auto pilot to point the vessel in a specific direction

• Tracking the amount of resources in the vessel

• Tracking flight and orbital data (such as altitude and apoapsis altitude)

Note: For details on how to write scripts and connect to kRPC, see the Getting Started guide.

2.1.1 Part One: Preparing for Launch

This tutorial uses the two stage rocket pictured below. The craft file for this rocket can be downloaded here and
the entire python script for this tutorial from here

7

kRPC, Release 0.3.5

The first thing we need to do is load the python client module and open a connection to the server. We can also pass a
descriptive name for our script that will appear in the server window in game:

import krpc
conn = krpc.connect(name='Sub-orbital flight script')

Next we need to get an object representing the active vessel. It’s via this object that we will send instructions to the
rocket:

vessel = conn.space_center.active_vessel

We then need to prepare the rocket for launch. The following code sets the throttle to maximum and instructs the
auto-pilot to hold a pitch and heading of 90° (vertically upwards). It then waits for 1 second for these settings to take
effect.

vessel.auto_pilot.target_pitch_and_heading(90,90)
vessel.auto_pilot.engage()
vessel.control.throttle = 1
import time
time.sleep(1)

8 Chapter 2. Tutorials and Examples

kRPC, Release 0.3.5

2.1.2 Part Two: Lift-off!

We’re now ready to launch by activating the first stage (equivalent to pressing the space bar):

print('Launch!')
vessel.control.activate_next_stage()

The rocket has a solid fuel stage that will quickly run out, and will need to be jettisoned. We can monitor the amount
of solid fuel in the rocket using a while loop that repeatedly checks how much solid fuel there is left in the rocket.
When the loop exits, we will activate the next stage to jettison the boosters:

while vessel.resources.amount('SolidFuel') > 0.1:
time.sleep(1)

print('Booster separation')
vessel.control.activate_next_stage()

In this bit of code, vessel.resources returns a Resources object that is used to get information about the
resources in the rocket.

2.1.3 Part Three: Reaching Apoapsis

Next we will execute a gravity turn when the rocket reaches a sufficiently high altitude. The following loop repeatedly
checks the altitude and exits when the rocket reaches 10km:

while vessel.flight().mean_altitude < 10000:
time.sleep(1)

In this bit of code, calling vessel.flight() returns a Flight object that is used to get all sorts of information
about the rocket, such as the direction it is pointing in and its velocity.

Now we need to angle the rocket over to a pitch of 60° and maintain a heading of 90° (west). To do this, we simply
reconfigure the auto-pilot:

print('Gravity turn')
vessel.auto_pilot.target_pitch_and_heading(60,90)

Now we wait until the apoapsis reaches 100km, then reduce the throttle to zero, jettison the launch stage and turn off
the auto-pilot:

while vessel.orbit.apoapsis_altitude < 100000:
time.sleep(1)

print('Launch stage separation')
vessel.control.throttle = 0
time.sleep(1)
vessel.control.activate_next_stage()
vessel.auto_pilot.disengage()

In this bit of code, vessel.orbit returns an Orbit object that contains all the information about the orbit of the
rocket.

2.1.4 Part Four: Returning Safely to Kerbin

Our Kerbals are now heading on a sub-orbital trajectory and are on a collision course with the surface. All that remains
to do is wait until they fall to 1km altitude above the surface, and then deploy the parachutes. If you like, you can use
time acceleration to skip ahead to just before this happens - the script will continue to work.

2.1. Sub-Orbital Flight 9

kRPC, Release 0.3.5

while vessel.flight().surface_altitude > 1000:
time.sleep(1)

vessel.control.activate_next_stage()

The parachutes should have now been deployed. The next bit of code will repeatedly print out the altitude of the
capsule until its speed reaches zero – which will happen when it lands:

while vessel.flight(vessel.orbit.body.reference_frame).vertical_speed < -0.1:
print('Altitude = %.1f meters' % vessel.flight().surface_altitude)
time.sleep(1)

print('Landed!')

This bit of code uses the vessel.flight() function, as before, but this time it is passed a ReferenceFrame
parameter. We want to get the vertical speed of the capsule relative to the surface of Kerbin, so the
values returned by the flight object need to be relative to the surface of Kerbin. We therefore pass
vessel.orbit.body.reference_frame to vessel.flight() as this reference frame has its origin at
the center of Kerbin and it rotates with the planet. For more information, check out the tutorial on Reference Frames.

Your Kerbals should now have safely landed back on the surface.

2.2 Reference Frames

• Introduction
– Origin Position and Axis Orientation

* Celestial Body Reference Frame
* Vessel Orbital Reference Frame
* Vessel Surface Reference Frame

– Linear Velocity and Angular Velocity
• Available Reference Frames
• Converting Between Reference Frames
• Visual Debugging
• Examples

– Navball directions
– Orbital directions
– Surface ‘prograde’
– Orbital speed
– Surface speed
– Angle of attack

2.2.1 Introduction

All of the positions, directions, velocities and rotations in kRPC are relative to something, and reference frames define
what that something is.

A reference frame specifies:

• The position of the origin at (0,0,0),

• the direction of the coordinate axes x, y, and z,

• the linear velocity of the origin (if the reference frame moves)

• and the angular velocity of the coordinate axes (the speed and direction of rotation of the axes).

10 Chapter 2. Tutorials and Examples

kRPC, Release 0.3.5

Note: KSP and kRPC use a left handed coordinate system.

Origin Position and Axis Orientation

The following gives some examples of the position of the origin and the orientation of the coordinate axes for various
reference frames.

Celestial Body Reference Frame

Fig. 2.1: The reference frame for a celestial body, such as
Kerbin. The equator is shown in blue, and the prime meridian
in red. The black arrows show the coordinate axes, and the
origin is at the center of the planet.

The reference frame obtained by calling
CelestialBody.reference_frame for
Kerbin has the following properties:

• The origin is at the center of Kerbin,

• the y-axis points from the center of Kerbin to
the north pole,

• the x-axis points from the center of Kerbin
to the intersection of the prime meridian and
equator (the surface position at 0° longitude,
0° latitude),

• the z-axis points from the center of Kerbin to
the equator at 90°E longitude,

• and the axes rotate with the planet, i.e. the ref-
erence frame has the same rotational/angular
velocity as Kerbin.

This means that the reference frame is fixed relative
to Kerbin – it moves with the center of the planet,
and also rotates with the planet. Therefore, positions
in this reference frame are relative to the center of the
planet. The following code prints out the position of
the active vessel in Kerbin’s reference frame:

1 import krpc
2 conn = krpc.connect()
3 vessel = conn.space_center.active_vessel
4 print(vessel.position(vessel.orbit.body.reference_frame))

For a vessel sat on the launchpad, the magnitude of
this position vector will be roughly 600,000 meters
(equal to the radius of Kerbin). The position vector
will also not change over time, because the vessel is
sat on the surface of Kerbin and the reference frame
also rotates with Kerbin.

Vessel Orbital Reference Frame

2.2. Reference Frames 11

kRPC, Release 0.3.5

Fig. 2.2: The orbital reference frame for a vessel.

Another
ex-
am-
ple is
the or-
bital
ref-
er-
ence
frame
for a
ves-
sel,
ob-
tained
by
call-
ing
Vessel.orbital_reference_frame. This is fixed to the vessel (the origin moves with the vessel) and
is orientated so that the axes point in the orbital prograde/normal/radial directions.

• The origin is at the center of mass of the vessel,

• the y-axis points in the prograde direction of the vessels orbit,

• the x-axis points in the anti-radial direction of the vessels orbit,

• the z-axis points in the normal direction of the vessels orbit,

• and the axes rotate to match any changes to the prograde/normal/radial directions, for example when the pro-
grade direction changes as the vessel continues on its orbit.

Vessel Surface Reference Frame

Fig. 2.3: The reference frame for an aircraft.

Another
ex-
am-
ple
is
Vessel.reference_frame.
As with the previous ex-
ample, it is fixed to the
vessel (the origin moves
with the vessel), however
the orientation of the co-
ordinate axes is different.
They track the orientation
of the vessel:

• The origin is at the
center of mass of the
vessel,

• the y-axis points in
the same direction
that the vessel is pointing,

12 Chapter 2. Tutorials and Examples

kRPC, Release 0.3.5

• the x-axis points out
of the right side of
the vessel,

• the z-axis points
downwards out of
the bottom of the
vessel,

• and the axes rotate
with any changes to
the direction of the
vessel.

Linear Velocity and Angular Velocity

Reference frames move and rotate relative to one another. For example, the reference frames discussed previously all
have their origin position fixed to some object (such as a vessel or a planet). This means that they move and rotate to
track the object, and so have a linear and angular velocity associated with them.

For example, the reference frame obtained by calling CelestialBody.reference_frame for Kerbin is fixed
relative to Kerbin. This means the angular velocity of the reference frame is identical to Kerbin’s angular velocity, and
the linear velocity of the reference frame matches the current orbital velocity of Kerbin.

2.2.2 Available Reference Frames

kRPC provides the following reference frames:

• Vessel.reference_frame

• Vessel.orbital_reference_frame

• Vessel.surface_reference_frame

• Vessel.surface_velocity_reference_frame

• CelestialBody.reference_frame

• CelestialBody.non_rotating_reference_frame

• CelestialBody.orbital_reference_frame

• Node.reference_frame

• Node.orbital_reference_frame

• Part.reference_frame

• Part.center_of_mass_reference_frame

• DockingPort.reference_frame

• Thruster.thrust_reference_frame

2.2.3 Converting Between Reference Frames

kRPC provides utility methods to convert positions, directions, rotations and velocities between the different reference
frames:

• SpaceCenter.transform_position()

2.2. Reference Frames 13

kRPC, Release 0.3.5

• SpaceCenter.transform_direction()

• SpaceCenter.transform_rotation()

• SpaceCenter.transform_velocity()

2.2.4 Visual Debugging

References frames can be confusing, and choosing the correct one is a challenge in itself. To aid debugging, kRPCs
drawing functionality can be used to visualize direction vectors in-game.

Drawing.add_direction() will draw a direction vector, starting from the center of mass of the active vessel.
For example, the following code draws the direction of the current vessels velocity relative to the surface:

1 import krpc
2 conn = krpc.connect(name='Visual Debugging')
3 vessel = conn.space_center.active_vessel
4

5 ref_frame = vessel.orbit.body.reference_frame
6 velocity = vessel.flight(ref_frame).velocity
7 conn.drawing.add_direction(velocity, ref_frame, (1,0,0))
8

9 while True:
10 pass

Note: The client must remain connected, otherwise kRPC will stop drawing the directions, hence the while loop at
the end of this example.

2.2.5 Examples

The following examples demonstrate various uses of reference frames.

Navball directions

This example demonstrates how to make the vessel point in various directions on the navball:

1 import krpc
2 conn = krpc.connect(name='Navball directions')
3 vessel = conn.space_center.active_vessel
4 ap = vessel.auto_pilot
5 ap.reference_frame = vessel.surface_reference_frame
6 ap.engage()
7

8 # Point the vessel north on the navball, with a pitch of 0 degrees
9 ap.target_direction = (0,1,0)

10 ap.wait()
11

12 # Point the vessel vertically upwards on the navball
13 ap.target_direction = (1,0,0)
14 ap.wait()
15

16 # Point the vessel west (heading of 270 degrees), with a pitch of 0 degrees
17 ap.target_direction = (0,0,-1)
18 ap.wait()

14 Chapter 2. Tutorials and Examples

kRPC, Release 0.3.5

19

20 ap.disengage()

The code uses the vessel’s surface reference frame (Vessel.surface_reference_frame), pictured below:

Line 9 instructs the auto-pilot to point in direction (0,1,0) (i.e. along the y-axis) in the vessel’s surface reference
frame. The y-axis of the reference frame points in the north direction, as required.

Line 13 instructs the auto-pilot to point in direction (1,0,0) (along the x-axis) in the vessel’s surface reference
frame. This x-axis of the reference frame points upwards (away from the planet) as required.

Line 17 instructs the auto-pilot to point in direction (0,0,-1) (along the negative z axis). The z-axis of the reference
frame points east, so the requested direction points west – as required.

Orbital directions

This example demonstrates how to make the vessel point in the various orbital directions, as seen on the navball when
it is in ‘orbit’ mode. It uses Vessel.orbital_reference_frame.

1 import krpc
2 conn = krpc.connect(name='Orbital directions')
3 vessel = conn.space_center.active_vessel
4 ap = vessel.auto_pilot
5 ap.reference_frame = vessel.orbital_reference_frame
6 ap.engage()

2.2. Reference Frames 15

kRPC, Release 0.3.5

7

8 # Point the vessel in the prograde direction
9 ap.target_direction = (0,1,0)

10 ap.wait()
11

12 # Point the vessel in the orbit normal direction
13 ap.target_direction = (0,0,1)
14 ap.wait()
15

16 # Point the vessel in the orbit radial direction
17 ap.target_direction = (-1,0,0)
18 ap.wait()
19

20 ap.disengage()

This code uses the vessel’s orbital reference frame, pictured below:

Surface ‘prograde’

This example demonstrates how to point the vessel in the ‘prograde’ direction on the navball, when in ‘surface’ mode.
This is the direction of the vessels velocity relative to the surface:

1 import krpc
2 conn = krpc.connect(name='Surface prograde')
3 vessel = conn.space_center.active_vessel
4 ap = vessel.auto_pilot
5

6 ap.reference_frame = vessel.surface_velocity_reference_frame
7 ap.target_direction = (0,1,0)
8 ap.engage()
9 ap.wait()

10 ap.disengage()

This code uses the Vessel.surface_velocity_reference_frame, pictured below:

16 Chapter 2. Tutorials and Examples

kRPC, Release 0.3.5

Orbital speed

To compute the orbital speed of a vessel, you need to get the velocity relative to the planet’s non-rotating reference
frame (CelestialBody.non_rotating_reference_frame). This reference frame is fixed relative to the
body, but does not rotate:

1 import krpc, time
2 conn = krpc.connect(name='Orbital speed')
3 vessel = conn.space_center.active_vessel
4

5 while True:
6

7 velocity = vessel.flight(vessel.orbit.body.non_rotating_reference_frame).velocity
8 print('Orbital velocity = (%.1f, %.1f, %.1f)' % velocity)
9

10 speed = vessel.flight(vessel.orbit.body.non_rotating_reference_frame).speed
11 print('Orbital speed = %.1f m/s' % speed)
12

13 time.sleep(1)

Surface speed

To compute the speed of a vessel relative to the surface of a planet/moon, you need to get the velocity relative to
the planets reference frame (CelestialBody.reference_frame). This reference frame rotates with the body,
therefore the rotational velocity of the body is taken into account when computing the velocity of the vessel:

1 import krpc, time
2 conn = krpc.connect(name='Surface speed')
3 vessel = conn.space_center.active_vessel
4

5 while True:
6

7 velocity = vessel.flight(vessel.orbit.body.reference_frame).velocity
8 print('Surface velocity = (%.1f, %.1f, %.1f)' % velocity)
9

10 speed = vessel.flight(vessel.orbit.body.reference_frame).speed

2.2. Reference Frames 17

kRPC, Release 0.3.5

11 print('Surface speed = %.1f m/s' % speed)
12

13 time.sleep(1)

Angle of attack

This example computes the angle between the direction the vessel is pointing in, and the direction that the vessel is
moving in (relative to the surface):

1 import krpc, math, time
2 conn = krpc.connect(name='Angle of attack')
3 vessel = conn.space_center.active_vessel
4

5 while True:
6

7 d = vessel.direction(vessel.orbit.body.reference_frame)
8 v = vessel.velocity(vessel.orbit.body.reference_frame)
9

10 # Compute the dot product of d and v
11 dotprod = d[0]*v[0] + d[1]*v[1] + d[2]*v[2]
12

13 # Compute the magnitude of v
14 vmag = math.sqrt(v[0]**2 + v[1]**2 + v[2]**2)
15 # Note: don't need to magnitude of d as it is a unit vector
16

17 # Compute the angle between the vectors
18 if dotprod == 0:
19 angle = 0
20 else:
21 angle = abs(math.acos (dotprod / vmag) * (180. / math.pi))
22

23 print('Angle of attack = %.1f' % angle)
24

25 time.sleep(1)

Note that the orientation of the reference frame used to get the direction and velocity vectors (on lines 7 and 8) does
not matter, as the angle between two vectors is the same regardless of the orientation of the axes. However, if we were
to use a reference frame that moves with the vessel, line 8 would return (0,0,0). We therefore need a reference
frame that is not fixed relative to the vessel. CelestialBody.reference_frame fits these requirements.

2.3 Launch into Orbit

This tutorial launches a two-stage rocket into a 150km circular orbit. The craft file for the rocket can be downloaded
here and the entire python script from here.

The following code connects to the server, gets the active vessel, sets up a bunch of streams to get flight telemetry then
prepares the rocket for launch.

import krpc, time, math

turn_start_altitude = 250
turn_end_altitude = 45000
target_altitude = 150000

conn = krpc.connect(name='Launch into orbit')

18 Chapter 2. Tutorials and Examples

kRPC, Release 0.3.5

vessel = conn.space_center.active_vessel

Set up streams for telemetry
ut = conn.add_stream(getattr, conn.space_center, 'ut')
altitude = conn.add_stream(getattr, vessel.flight(), 'mean_altitude')
apoapsis = conn.add_stream(getattr, vessel.orbit, 'apoapsis_altitude')
periapsis = conn.add_stream(getattr, vessel.orbit, 'periapsis_altitude')
eccentricity = conn.add_stream(getattr, vessel.orbit, 'eccentricity')
stage_2_resources = vessel.resources_in_decouple_stage(stage=2, cumulative=False)
stage_3_resources = vessel.resources_in_decouple_stage(stage=3, cumulative=False)
srb_fuel = conn.add_stream(stage_3_resources.amount, 'SolidFuel')
launcher_fuel = conn.add_stream(stage_2_resources.amount, 'LiquidFuel')

Pre-launch setup
vessel.control.sas = False
vessel.control.rcs = False
vessel.control.throttle = 1

Countdown...
print('3...'); time.sleep(1)
print('2...'); time.sleep(1)
print('1...'); time.sleep(1)
print('Launch!')

The next part of the program launches the rocket. The main loop continuously updates the auto-pilot heading to
gradually pitch the rocket towards the horizon. It also monitors the amount of solid fuel remaining in the boosters,
separating them when they run dry. The loop exits when the rockets apoapsis is close to the target apoapsis.

Activate the first stage
vessel.control.activate_next_stage()
vessel.auto_pilot.engage()
vessel.auto_pilot.target_pitch_and_heading(90, 90)

Main ascent loop
srbs_separated = False
turn_angle = 0
while True:

Gravity turn
if altitude() > turn_start_altitude and altitude() < turn_end_altitude:

frac = (altitude() - turn_start_altitude) / (turn_end_altitude - turn_start_altitude)
new_turn_angle = frac * 90
if abs(new_turn_angle - turn_angle) > 0.5:

turn_angle = new_turn_angle
vessel.auto_pilot.target_pitch_and_heading(90-turn_angle, 90)

Separate SRBs when finished
if not srbs_separated:

if srb_fuel() < 0.1:
vessel.control.activate_next_stage()
srbs_separated = True
print('SRBs separated')

Decrease throttle when approaching target apoapsis
if apoapsis() > target_altitude*0.9:

print('Approaching target apoapsis')
break

Next, the program fine tunes the apoapsis, using 10% thrust, then waits until the rocket has left Kerbin’s atmosphere.

2.3. Launch into Orbit 19

kRPC, Release 0.3.5

Disable engines when target apoapsis is reached
vessel.control.throttle = 0.25
while apoapsis() < target_altitude:

pass
print('Target apoapsis reached')
vessel.control.throttle = 0

Wait until out of atmosphere
print('Coasting out of atmosphere')
while altitude() < 70500:

pass

It is now time to plan the circularization burn. First, we calculate the delta-v required to circularize the orbit using
the vis-viva equation. We then calculate the burn time needed to achieve this delta-v, using the Tsiolkovsky rocket
equation.

Plan circularization burn (using vis-viva equation)
print('Planning circularization burn')
mu = vessel.orbit.body.gravitational_parameter
r = vessel.orbit.apoapsis
a1 = vessel.orbit.semi_major_axis
a2 = r
v1 = math.sqrt(mu*((2./r)-(1./a1)))
v2 = math.sqrt(mu*((2./r)-(1./a2)))
delta_v = v2 - v1
node = vessel.control.add_node(ut() + vessel.orbit.time_to_apoapsis, prograde=delta_v)

Calculate burn time (using rocket equation)
F = vessel.available_thrust
Isp = vessel.specific_impulse * 9.82
m0 = vessel.mass
m1 = m0 / math.exp(delta_v/Isp)
flow_rate = F / Isp
burn_time = (m0 - m1) / flow_rate

Next, we need to rotate the craft and wait until the circularization burn. We orientate the ship along the y-axis of the
maneuver node’s reference frame (i.e. in the direction of the burn) then time warp to 5 seconds before the burn.

Orientate ship
print('Orientating ship for circularization burn')
vessel.auto_pilot.reference_frame = node.reference_frame
vessel.auto_pilot.target_direction = (0,1,0)
vessel.auto_pilot.wait()

Wait until burn
print('Waiting until circularization burn')
burn_ut = ut() + vessel.orbit.time_to_apoapsis - (burn_time/2.)
lead_time = 5
conn.space_center.warp_to(burn_ut - lead_time)

This next part executes the burn. It sets maximum throttle, then throttles down to 5% approximately a tenth of a second
before the predicted end of the burn. It then monitors the remaining delta-v until it flips around to point retrograde (at
which point the node has been executed).

Execute burn
print('Ready to execute burn')
time_to_apoapsis = conn.add_stream(getattr, vessel.orbit, 'time_to_apoapsis')
while time_to_apoapsis() - (burn_time/2.) > 0:

pass

20 Chapter 2. Tutorials and Examples

https://en.wikipedia.org/wiki/Vis-viva_equation
https://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation
https://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

kRPC, Release 0.3.5

print('Executing burn')
vessel.control.throttle = 1
time.sleep(burn_time - 0.1)
print('Fine tuning')
vessel.control.throttle = 0.05
remaining_burn = conn.add_stream(node.remaining_burn_vector, node.reference_frame)
while remaining_burn()[1] > 0:

pass
vessel.control.throttle = 0
node.remove()

print('Launch complete')

The rocket should now be in a circular 150km orbit above Kerbin.

2.4 Pitch, Heading and Roll

The following example calculates the pitch, heading and rolls angles of the active vessel once per second:

import krpc, math, time
conn = krpc.connect(name='Pitch/Heading/Roll')
vessel = conn.space_center.active_vessel

def cross_product(x, y):
return (x[1]*y[2] - x[2]*y[1], x[2]*y[0] - x[0]*y[2], x[0]*y[1] - x[1]*y[0])

def dot_product(x, y):
return x[0]*y[0] + x[1]*y[1] + x[2]*y[2]

def magnitude(x):
return math.sqrt(x[0]**2 + x[1]**2 + x[2]**2)

def angle_between_vectors(x, y):
""" Compute the angle between vector x and y """
dp = dot_product(x, y)
if dp == 0:

return 0
xm = magnitude(x)
ym = magnitude(y)
return math.acos(dp / (xm*ym)) * (180. / math.pi)

def angle_between_vector_and_plane(x, n):
""" Compute the angle between a vector x and plane with normal vector n """
dp = dot_product(x,n)
if dp == 0:

return 0
xm = magnitude(x)
nm = magnitude(n)
return math.asin(dp / (xm*nm)) * (180. / math.pi)

while True:

vessel_direction = vessel.direction(vessel.surface_reference_frame)

Get the direction of the vessel in the horizon plane
horizon_direction = (0, vessel_direction[1], vessel_direction[2])

2.4. Pitch, Heading and Roll 21

kRPC, Release 0.3.5

Compute the pitch - the angle between the vessels direction and the direction in the horizon plane
pitch = angle_between_vectors(vessel_direction, horizon_direction)
if vessel_direction[0] < 0:

pitch = -pitch

Compute the heading - the angle between north and the direction in the horizon plane
north = (0,1,0)
heading = angle_between_vectors(north, horizon_direction)
if horizon_direction[2] < 0:

heading = 360 - heading

Compute the roll
Compute the plane running through the vessels direction and the upwards direction
up = (1,0,0)
plane_normal = cross_product(vessel_direction, up)
Compute the upwards direction of the vessel
vessel_up = conn.space_center.transform_direction(

(0,0,-1), vessel.reference_frame, vessel.surface_reference_frame)
Compute the angle between the upwards direction of the vessel and the plane
roll = angle_between_vector_and_plane(vessel_up, plane_normal)
Adjust so that the angle is between -180 and 180 and
rolling right is +ve and left is -ve
if vessel_up[0] > 0:

roll *= -1
elif roll < 0:

roll += 180
else:

roll -= 180

print('pitch = % 5.1f, heading = % 5.1f, roll = % 5.1f' % (pitch, heading, roll))

time.sleep(1)

2.5 Interacting with Parts

The following examples demonstrate use of the Parts functionality to achieve various tasks. More details on specific
topics can also be found in the API documentation:

• Trees of Parts

• Attachment Modes

• Fuel Lines

• Staging

2.5.1 Deploying all Parachutes

Sometimes things go horribly wrong. The following script does its best to save your Kerbals by deploying all the
parachutes:

import krpc
conn = krpc.connect()
vessel = conn.space_center.active_vessel

22 Chapter 2. Tutorials and Examples

kRPC, Release 0.3.5

for parachute in vessel.parts.parachutes:
parachute.deploy()

2.5.2 ‘Control From Here’ for Docking Ports

The following example will find a standard sized Clamp-O-Tron docking port, and control the vessel from it:

import krpc
conn = krpc.connect()
vessel = conn.space_center.active_vessel

ports = vessel.parts.docking_ports
port = list(filter(lambda p: p.part.title == 'Clamp-O-Tron Docking Port', ports))[0]
part = port.part
vessel.parts.controlling = part

2.5.3 Combined Specific Impulse

The following script calculates the combined specific impulse of all currently active and fueled engines on a rocket.
See here for a description of the maths: http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

import krpc
conn = krpc.connect()
vessel = conn.space_center.active_vessel

active_engines = filter(lambda e: e.active and e.has_fuel, vessel.parts.engines)

print('Active engines:')
for engine in active_engines:

print(' %s in stage %d' % (engine.part.title, engine.part.stage))

thrust = sum(engine.thrust for engine in active_engines)
fuel_consumption = sum(engine.thrust / engine.specific_impulse for engine in active_engines)
isp = thrust / fuel_consumption

print('Combined vaccuum Isp = %d seconds' % isp)

2.6 Docking Guidance

The following script outputs docking guidance information. It waits until the vessel is being controlled from a docking
port, and a docking port is set as the current target. It then prints out information about speeds and distances relative
to the docking axis.

It uses numpy to do linear algebra on the vectors returned by kRPC – for example computing the dot product or length
of a vector – and uses curses for terminal output.

import krpc, curses, time, sys
import numpy as np
import numpy.linalg as la

Set up curses
stdscr = curses.initscr()
curses.nocbreak()

2.6. Docking Guidance 23

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://www.numpy.org
https://docs.python.org/2/howto/curses.html

kRPC, Release 0.3.5

stdscr.keypad(1)
curses.noecho()

try:

Connect to kRPC
conn = krpc.connect(name='Docking Guidance')
vessel = conn.space_center.active_vessel
current = None
target = None

while True:

stdscr.clear()
stdscr.addstr(0,0,'-- Docking Guidance --')

current = conn.space_center.active_vessel.parts.controlling.docking_port
target = conn.space_center.target_docking_port

if current is None:
stdscr.addstr(2,0,'Awaiting control from docking port...')

elif target is None:
stdscr.addstr(2,0,'Awaiting target docking port...')

else:
Get positions, distances, velocities and speeds relative to the target docking port
current_position = current.position(target.reference_frame)
velocity = current.part.velocity(target.reference_frame)
displacement = np.array(current_position)
distance = la.norm(displacement)
speed = la.norm(np.array(velocity))

Get speeds and distances relative to the docking axis
(the direction the target docking port is facing in)

Axial = along the docking axis
axial_displacement = np.copy(displacement)
axial_displacement[0] = 0
axial_displacement[2] = 0
axial_distance = axial_displacement[1]
axial_velocity = np.copy(velocity)
axial_velocity[0] = 0
axial_velocity[2] = 0
axial_speed = axial_velocity[1]
if axial_distance > 0:

axial_speed *= -1

Radial = perpendicular to the docking axis
radial_displacement = np.copy(displacement)
radial_displacement[1] = 0
radial_distance = la.norm(radial_displacement)
radial_velocity = np.copy(velocity)
radial_velocity[1] = 0
radial_speed = la.norm(radial_velocity)
if np.dot(radial_velocity, radial_displacement) > 0:

radial_speed *= -1

24 Chapter 2. Tutorials and Examples

kRPC, Release 0.3.5

Get the docking port state
if current.state == conn.space_center.DockingPortState.ready:

state = 'Ready to dock'
elif current.state == conn.space_center.DockingPortState.docked:

state = 'Docked'
elif current.state == conn.space_center.DockingPortState.docking:

state = 'Docking...'
else:

state = 'Unknown'

Output information
stdscr.addstr(2,0,'Current ship: {:30}'.format(current.part.vessel.name[:30]))
stdscr.addstr(3,0,'Current port: {:30}'.format(current.part.title[:30]))
stdscr.addstr(5,0,'Target ship: {:30}'.format(target.part.vessel.name[:30]))
stdscr.addstr(6,0,'Target port: {:30}'.format(target.part.title[:30]))
stdscr.addstr(8,0,'Status: {:10}'.format(state))
stdscr.addstr(10, 0, ' +---------------------------+')
stdscr.addstr(11, 0, ' | Distance | Speed |')
stdscr.addstr(12, 0, '+---------+------------+--------------+')
stdscr.addstr(13, 0, '| | {:>+6.2f} m | {:>+6.2f} m/s |'.format(distance, speed))
stdscr.addstr(14, 0, '| Axial | {:>+6.2f} m | {:>+6.2f} m/s |'.format(axial_distance, axial_speed))
stdscr.addstr(15, 0, '| Radial | {:>+6.2f} m | {:>+6.2f} m/s |'.format(radial_distance, radial_speed))
stdscr.addstr(16, 0, '+---------+------------+--------------+')

stdscr.refresh()
time.sleep(0.25)

finally:
Shutdown curses
curses.nocbreak()
stdscr.keypad(0)
curses.echo()
curses.endwin()

2.7 User Interface

The following script demonstrates how to use the UI service to display text and handle basic user input. It adds a panel
to the left side of the screen, displaying the current thrust produced by the vessel and a button to set the throttle to
maximum.

1 import krpc, time
2 conn = krpc.connect(name='User Interface Example')
3 canvas = conn.ui.stock_canvas
4

5 # Get the size of the game window in pixels
6 screen_size = canvas.rect_transform.size
7

8 # Add a panel to contain the UI elements
9 panel = canvas.add_panel()

10

11 # Position the panel on the left of the screen
12 rect = panel.rect_transform
13 rect.size = (200,100)
14 rect.position = (110-(screen_size[0]/2),0)
15

16 # Add a button to set the throttle to maximum

2.7. User Interface 25

kRPC, Release 0.3.5

17 button = panel.add_button("Full Throttle")
18 button.rect_transform.position = (0,20)
19

20 # Add some text displaying the total engine thrust
21 text = panel.add_text("Thrust: 0 kN")
22 text.rect_transform.position = (0,-20)
23 text.color = (1,1,1)
24 text.size = 18
25

26 # Set up a stream to monitor the throttle button
27 button_clicked = conn.add_stream(getattr, button, 'clicked')
28

29 vessel = conn.space_center.active_vessel
30 while True:
31 # Handle the throttle button being clicked
32 if button_clicked():
33 vessel.control.throttle = 1
34 button.clicked = False
35

36 # Update the thrust text
37 text.content = 'Thrust: %d kN' % (vessel.thrust/1000)
38

39 time.sleep(0.1)
40

2.8 AutoPilot

kRPC provides an autopilot that can be used to hold a vessel in a chosen orientation. It automatically tunes itself
to cope with vessels of differing size and control authority. This tutorial explains how the autopilot works, how to
configure it and mathematics behind it.

2.8.1 Overview

The inputs to the autopilot are:

• A reference frame defining where zero rotation is,

• target pitch and heading angles,

• and an (optional) target roll angle.

When a roll angle is not specified, the autopilot will try to zero out any rotation around the roll axis but will not try to
hold a specific roll angle.

The diagram below shows a high level overview of the autopilot. First, the current rotation and target rotation are used
to compute the target angular velocity that is needed to rotate the vessel to face the target. Next, the components of
this angular velocity in the pitch, yaw and roll axes of the vessel are passed to three PID controllers. The outputs of
these controllers are used as the control inputs for the vessel.

There are several parameters affecting the operation of the autopilot, shown the the left of the diagram. They are
covered in the next section.

26 Chapter 2. Tutorials and Examples

kRPC, Release 0.3.5

2.8.2 Configuring the AutoPilot

There are several parameters that affect the behavior of the autopilot. The default values for these should suffice in
most cases, but they can be adjusted to fit your needs.

• The stopping time is the maximum amount of time that the vessel should need to come to a complete stop. This
limits the maximum angular velocity of the vessel. It is a vector of three stopping times, one for each of the
pitch, roll and yaw axes. The default value is 0.5 seconds for each axis.

• The deceleration time is the minimum time the autopilot should take to decelerate the vessel to a stop, as it
approaches the target direction. This is a minimum value, as the time required may be higher if the vessel does
not have sufficient angular acceleration. It is a vector of three deceleration times, in seconds, for each of the
pitch, roll and yaw axes. The default value is 5 seconds for each axis. A smaller value will make the autopilot
decelerate more aggressively, turning the vessel towards the target more quickly. However, decreasing the value
too much could result in overshoot.

• In order to avoid overshoot, the stopping time should be smaller than the deceleration time. This gives the
autopilot some ‘spare’ acceleration, to adjust for errors in the vessels rotation, for example due to changing
aerodynamic forces.

• The attenuation angle sets the region in which the autopilot considers the vessel to be ‘close’ to the target
direction. In this region, the target velocity is attenuated based on how close the vessel is to the target. It is
an angle, in degrees, for each of the pitch, roll and yaw axes. The default value is 1 degree in each axis. This
attenuation prevents the controls from oscillating when the vessel is pointing in the correct direction. If you find
that the vessel still oscillates, try increasing this value.

• The time to peak, in seconds, that the PID controllers take to adjust the angular velocity of the vessel to the
target angular velocity. Decreasing this value will make the controllers try to match the target velocity more
aggressively. It is a vector of three times, one for each of the pitch, roll and yaw axes. The default is 3 seconds
in each axis.

• The overshoot is the percentage by which the PID controllers are allowed to overshoot the target angular veloc-
ity. Increasing this value will make the controllers try to match the target velocity more aggressively, but will

2.8. AutoPilot 27

kRPC, Release 0.3.5

cause more overshoot. It is a vector of three values, between 0 and 1, for each of the pitch, roll and yaw axes.
The default is 0.01 in each axis.

2.8.3 Computing the Target Angular Velocity

The target angular velocity is the angular velocity needed to the vessel to rotate it towards the target direction. It is
computed by summing a target angular speed for each of pitch, yaw and roll axes. If no roll angle is set, then the target
angular velocity in the roll axis is simply set to 0.

The target angular speed 𝜔 in a given axis is computed from the angular error 𝜃 using the following function:

The equation for this function is:

𝜔 = − 𝜃

|𝜃|
min

(︀
𝜔𝑚𝑎𝑥,

√︀
2𝛼|𝜃| · 𝑓𝑎(𝜃)

)︀
where

𝛼 =
𝜔𝑚𝑎𝑥

𝑡𝑑𝑒𝑐𝑒𝑙

𝜔𝑚𝑎𝑥 =
𝜏𝑚𝑎𝑥𝑡𝑠𝑡𝑜𝑝

𝐼

𝑓𝑎(𝜃) =
1

1 + 𝑒−6/𝜃𝑎(|𝜃|−𝜃𝑎)

The reasoning and derivation for this is as follows:

• The vessel needs to rotate towards 𝜃 = 0. This means that the target angular speed 𝜔 needs to be positive when
𝜃 is negative, and negative when 𝜃 is positive. This is done by multiplying by the term − 𝜃

|𝜃| , which is 1 when
𝜃 < 0 and -1 when 𝜃 >= 0

28 Chapter 2. Tutorials and Examples

kRPC, Release 0.3.5

• We want the vessel to rotate at a maximum angular speed 𝜔𝑚𝑎𝑥, which is determined by the stopping time 𝑡𝑠𝑡𝑜𝑝.
Using the equations of motion under constant acceleration we can derive it as follows:

𝜔 = 𝛼𝑡

⇒ 𝜔𝑚𝑎𝑥 = 𝛼𝑚𝑎𝑥𝑡𝑠𝑡𝑜𝑝

=
𝜏𝑚𝑎𝑥𝑡𝑠𝑡𝑜𝑝

𝐼

where 𝜏𝑚𝑎𝑥 is the maximum torque the vessel can generate, and 𝐼 is its moment of inertia.

• We want the vessel to take time 𝑡𝑑𝑒𝑐𝑒𝑙 (the deceleration time) to go from moving at speed 𝜔𝑚𝑎𝑥 to rest, when
facing the target. And we want it to do this using a constant acceleration 𝛼. Using the equations of motion under
constant acceleration we can derive the target velocity 𝜔 in terms of the current angular error 𝜃:

𝜔 = 𝛼𝑡

⇒ 𝛼 =
𝜔

𝑡
=

𝜔𝑚𝑎𝑥

𝑡𝑑𝑒𝑐𝑒𝑙

𝜃 =
1

2
𝛼𝑡2 ⇒ 𝑡 =

√︂
2𝜃

𝛼

⇒ 𝜔 = 𝛼

√︂
2𝜃

𝛼
=

√
2𝛼𝜃

• To prevent the vessel from oscillating when it is pointing in the target direction, the gradient of the target angular
speed curve at 𝜃 = 0 needs to be 0, and increase/decrease smoothly with increasing/decreasing 𝜃.

This is not the case for the target angular speed calculated above. To correct this, we multiply by an attenuation
function which has the required shape. The following diagram shows the shape of the attenuation function (line
in red), the target velocity as calculated previously (line in blue) and the result of multiplying these together
(dashed line in black):

The formula for the attenuation function is a logistic function, with the following formula:

𝑓𝑎(𝜃) =
1

1 + 𝑒−6/𝜃𝑎(|𝜃|−𝜃𝑎)

2.8. AutoPilot 29

kRPC, Release 0.3.5

Note that the original function, derived from the equations of motion under constant acceleration, is only af-
fected by the attenuation function close to the attenuation angle. This means that autopilot will use a constant
acceleration to slow the vessel, until it gets close to the target direction.

2.8.4 Tuning the Controllers

Three PID controllers, one for each of the pitch, roll and yaw control axes, are used to control the vessel. Each
controller takes the relevant component of the target angular velocity as input. The following describes how the gains
for these controllers are automatically tuned based on the vessels available torque and moment of inertia.

The schematic for the entire system, in a single control axis, is as follows:

The input to the system is the angular speed around the control axis, denoted 𝜔. The error in the angular speed 𝜔𝜖

is calculated from this and passed to controller 𝐶. This is a PID controller that we need to tune. The output of the
controller is the control input, 𝑥, that is passed to the vessel. The plant 𝐻 describes the physical system, i.e. how the
control input affects the angular acceleration of the vessel. The derivative of this is computed to get the new angular
speed of the vessel, which is then fed back to compute the new error.

For the controller, 𝐶, we use a proportional-integral controller. Note that the controller does not have a derivative
term, so that the system behaves like a second order system and is therefore easy to tune.

The transfer function for the controller in the 𝑠 domain is:

𝐶(𝑠) = 𝐾𝑃 + 𝐾𝐼𝑠
−1

From the schematic, the transfer function for the plant 𝐻 is:

𝐻(𝑠) =
𝜔𝜖(𝑠)

𝑋(𝑠)

𝑥 is the control input to the vessel, which is the percentage of the available torque 𝜏𝑚𝑎𝑥 that is being applied to the
vessel. Call this the current torque, denoted 𝜏 . This can be written mathematically as:

𝜏 = 𝑥𝜏𝑚𝑎𝑥

Combining this with the angular equation of motion gives the angular acceleration in terms of the control input:

𝐼 = moment of inertia of the vessel
𝜏 = 𝐼𝜔𝜖

⇒ 𝜔𝜖 =
𝑥𝜏𝑚𝑎𝑥

𝐼

Taking the laplace transform of this gives us:

ℒ(𝜔𝜖(𝑡)) = 𝑠𝜔𝜖(𝑠)

=
𝑠𝑋(𝑠)𝜏𝑚𝑎𝑥

𝐼

⇒ 𝜔𝜖(𝑠)

𝑋(𝑠)
=

𝜏𝑚𝑎𝑥

𝐼

We can now rewrite the transfer function for 𝐻 as:

𝐻(𝑠) =
𝜏𝑚𝑎𝑥

𝐼

30 Chapter 2. Tutorials and Examples

kRPC, Release 0.3.5

The open loop transfer function for the entire system is:

𝐺𝑂𝐿(𝑠) = 𝐶(𝑆) ·𝐻(𝑠) · 𝑠−1

= (𝐾𝑃 + 𝐾𝐼𝑠
−1)

𝜏𝑚𝑎𝑥

𝐼𝑠

The closed loop transfer function is then:

𝐺(𝑠) =
𝐺𝑂𝐿(𝑠)

1 + 𝐺𝑂𝐿(𝑠)

=
𝑎𝐾𝑃 𝑠 + 𝑎𝐾𝐼

𝑠2 + 𝑎𝐾𝑃 𝑠 + 𝑎𝐾𝐼
where 𝑎 =

𝜏𝑚𝑎𝑥

𝐼

The characteristic equation for the system is therefore:

Φ = 𝑠2 +
𝜏𝑚𝑎𝑥

𝐼
𝐾𝑃 𝑠 +

𝜏𝑚𝑎𝑥

𝐼
𝐾𝐼

The characteristic equation for a standard second order system is:

Φ𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑠2 + 2𝜁𝜔0𝑠 + 𝜔2
0

where 𝜁 is the damping ratio and 𝜔0 is the natural frequency of the system.

Equating coefficients between these equations, and rearranging, gives us the gains for the PI controller in terms of 𝜁
and 𝜔0:

𝐾𝑃 =
2𝜁𝜔0𝐼

𝜏𝑚𝑎𝑥

𝐾𝐼 =
𝐼𝜔2

0

𝜏𝑚𝑎𝑥

We now need to choose some performance requirements to place on the system, which will allow us to determine the
values of 𝜁 and 𝜔0, and therefore the gains for the controller.

The percentage by which a second order system overshoots is:

𝑂 = 𝑒
− 𝜋𝜁√

1−𝜁2

And the time it takes to reach the first peak in its output is:

𝑇𝑃 =
𝜋

𝜔0

√︀
1 − 𝜁2

These can be rearranged to give us 𝜁 and 𝜔0 in terms of overshoot and time to peak:

𝜁 =

√︃
ln2(𝑂)

𝜋2 + ln2(𝑂)

𝜔0 =
𝜋

𝑇𝑃

√︀
1 − 𝜁2

By default, kRPC uses the values 𝑂 = 0.01 and 𝑇𝑃 = 3.

2.8.5 Corner Cases

When sitting on the launchpad

In this situation, the autopilot cannot rotate the vessel. This means that the integral term in the controllers will build
up to a large value. This is even true if the vessel is pointing in the correct direction, as small floating point variations
in the computed error will also cause the integral term to increase. The integral terms are therefore fixed at zero to
overcome this.

2.8. AutoPilot 31

kRPC, Release 0.3.5

When the available angular acceleration is zero

This could be caused, for example, by the reaction wheels on a vessel running out of electricity resulting in the vessel
having no torque.

In this situation, the autopilot also has little or no control over the vessel. This means that the integral terms in the
controllers will build up to a large value over time. This is overcome by fixing the integral terms to zero when the
available angular acceleration falls below a small threshold.

This situation also causes an issue with the controller gain auto-tuning: as the available angular acceleration tends
towards zero, the controller gains tend towards infinity. When it equals zero, the auto-tuning would cause a division
by zero. Therefore, auto-tuning is also disabled when the available acceleration falls below the threshold. This leaves
the controller gains at their current values until the available acceleration rises again.

32 Chapter 2. Tutorials and Examples

CHAPTER

THREE

C#

3.1 C# Client

This client provides functionality to interact with a kRPC server from programs written in C#. The
KRPC.Client.dll assembly can be installed using NuGet or downloaded from GitHub.

3.1.1 Installing the Library

Install the client using NuGet or download the assembly from GitHub and reference it in your project. You also need
to install Google.Protobuf using NuGet.

Note: The copy of Google.Protobuf.dll in the GameData folder shipped with the kRPC server plugin should
be avoided. It is a modified version to work within KSP. See here for more details.

3.1.2 Connecting to the Server

To connect to a server, create a Connection object. For example to connect to a server running on the local machine:

using KRPC.Client;
using KRPC.Client.Services.KRPC;

class Program {
public static void Main () {

var connection = new Connection (name : "Example");
var krpc = connection.KRPC ();
System.Console.WriteLine (krpc.GetStatus ().Version);

}
}

The class constructor also accepts arguments that specify what address and port numbers to connect to. For example:

using KRPC.Client;
using KRPC.Client.Services.KRPC;
using System.Net;

class Program {
public static void Main () {

var connection = new Connection (
name : "Example", address: IPAddress.Parse("10.0.2.2"), rpcPort: 1000, streamPort: 1001);

var krpc = connection.KRPC ();

33

http://www.nuget.com/packages/KRPC.Client
https://github.com/krpc/krpc/releases/download/v0.3.5/krpc-csharp-0.3.5.zip
http://www.nuget.com/packages/KRPC.Client
https://github.com/krpc/krpc/releases/download/v0.3.5/krpc-csharp-0.3.5.zip
http://www.nuget.org/packages/Google.Protobuf
https://github.com/djungelorm/protobuf/releases/tag/v3.0.0-beta-2-net35

kRPC, Release 0.3.5

System.Console.WriteLine (krpc.GetStatus ().Version);
}

}

3.1.3 Interacting with the Server

kRPC groups remote procedures into services. The functionality for the services are defined in namespace
KRPC.Client.Services.*.

To interact with a service, you must first instantiate it. The following example connects to the server, instantiates the
SpaceCenter service, and outputs the name of the active vessel:

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;

class Program {
public static void Main () {

var connection = new Connection (name : "Vessel Name");
var spaceCenter = connection.SpaceCenter ();
var vessel = spaceCenter.ActiveVessel;
System.Console.WriteLine (vessel.Name);

}
}

3.1.4 Streaming Data from the Server

A stream repeatedly executes a function on the server, with a fixed set of argument values. It provides a more efficient
way of repeatedly getting the result of a function, avoiding the network overhead of having to invoke it directly.

For example, consider the following loop that continuously prints out the position of the active vessel. This loop incurs
significant communication overheads, as the KRPC.Client.Services.SpaceCenter.Vessel.Position
method is called repeatedly.

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;

class Program {
public static void Main () {

var connection = new Connection ();
var spaceCenter = connection.SpaceCenter ();
var vessel = spaceCenter.ActiveVessel;
var refframe = vessel.Orbit.Body.ReferenceFrame;
while (true)

Console.Out.WriteLine(vessel.Position(refframe));
}

}

The following code achieves the same thing, but is far more efficient. It calls Connection.AddStream once at
the start of the program to create a stream, and then repeatedly gets the position from the stream.

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;

class Program {

34 Chapter 3. C#

kRPC, Release 0.3.5

public static void Main () {
var connection = new Connection ();
var spaceCenter = connection.SpaceCenter ();
var vessel = spaceCenter.ActiveVessel;
var refframe = vessel.Orbit.Body.ReferenceFrame;
var position = connection.AddStream(() => vessel.Position(refframe));
while (true)

Console.Out.WriteLine(position.Get());
}

}

Streams are created for any method call by calling Connection.AddStream and passing it a lambda expression
calling the desired method. This lambda expression must take zero arguments and be either a method call expression
or a parameter call expression. It returns an instance of the Stream class from which the latest value can be obtained
by calling Stream.Get. A stream can be stopped and removed from the server by calling Stream.Remove on the
stream object. All of a clients streams are automatically stopped when it disconnects.

3.1.5 Client API Reference

class Connection
A connection to the kRPC server. All interaction with kRPC is performed via an instance of this class.

Connection (string name = "", IPAddress address = null, int rpcPort = 50000, int streamPort = 50001)
Connect to a kRPC server on the specified IP address and port numbers. If streamPort is 0, does not
connect to the stream server. Passes an optional name to the server to identify the client (up to 32 bytes of
UTF-8 encoded text).

Stream<ReturnType> AddStream<ReturnType> (LambdaExpression expression)
Create a new stream from the given lambda expression. Returns a stream object that can be used to obtain
the latest value of the stream.

Dispose ()
Close the connection and free any resources associated with it.

class Stream<ReturnType>
Object representing a stream.

ReturnType Get ()
Get the most recent value of the stream.

void Remove ()
Remove the stream from the server.

3.2 KRPC API

class KRPC
Main kRPC service, used by clients to interact with basic server functionality.

KRPC.Schema.KRPC.Status GetStatus ()
Returns some information about the server, such as the version.

KRPC.Schema.KRPC.Services GetServices ()
Returns information on all services, procedures, classes, properties etc. provided by the server. Can be
used by client libraries to automatically create functionality such as stubs.

GameScene CurrentGameScene { get; }
Get the current game scene.

3.2. KRPC API 35

kRPC, Release 0.3.5

uint AddStream (KRPC.Schema.KRPC.Request request)
Add a streaming request and return its identifier.

Parameters

Note: Do not call this method from client code. Use streams provided by the C# client library.

void RemoveStream (uint id)
Remove a streaming request.

Parameters

Note: Do not call this method from client code. Use streams provided by the C# client library.

enum GameScene
The game scene. See KRPC.CurrentGameScene.

SpaceCenter
The game scene showing the Kerbal Space Center buildings.

Flight
The game scene showing a vessel in flight (or on the launchpad/runway).

TrackingStation
The tracking station.

EditorVAB
The Vehicle Assembly Building.

EditorSPH
The Space Plane Hangar.

3.3 SpaceCenter API

3.3.1 SpaceCenter

class SpaceCenter
Provides functionality to interact with Kerbal Space Program. This includes controlling the active vessel, man-
aging its resources, planning maneuver nodes and auto-piloting.

Vessel ActiveVessel { get; set; }
The currently active vessel.

IList<Vessel> Vessels { get; }
A list of all the vessels in the game.

IDictionary<string, CelestialBody> Bodies { get; }
A dictionary of all celestial bodies (planets, moons, etc.) in the game, keyed by the name of the body.

CelestialBody TargetBody { get; set; }
The currently targeted celestial body.

Vessel TargetVessel { get; set; }
The currently targeted vessel.

36 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.uint32.aspx
https://msdn.microsoft.com/en-us/library/system.uint32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/s4ys34ea.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

DockingPort TargetDockingPort { get; set; }
The currently targeted docking port.

void ClearTarget ()
Clears the current target.

IList<string> LaunchableVessels (string craftDirectory)
Returns a list of vessels from the given craftDirectory that can be launched.

Parameters

• craftDirectory – Name of the directory in the current saves “Ships” directory. For exam-
ple "VAB" or "SPH".

void LaunchVessel (string craftDirectory, string name, string launchSite)
Launch a vessel.

Parameters

• craftDirectory – Name of the directory in the current saves “Ships” directory, that con-
tains the craft file. For example "VAB" or "SPH".

• name – Name of the vessel to launch. This is the name of the ”.craft” file in the save
directory, without the ”.craft” file extension.

• launchSite – Name of the launch site. For example "LaunchPad" or "Runway".

void LaunchVesselFromVAB (string name)
Launch a new vessel from the VAB onto the launchpad.

Parameters

• name – Name of the vessel to launch.

Note: This is equivalent to calling SpaceCenter.LaunchVessel with the craft directory set to
“VAB” and the launch site set to “LaunchPad”.

void LaunchVesselFromSPH (string name)
Launch a new vessel from the SPH onto the runway.

Parameters

• name – Name of the vessel to launch.

Note: This is equivalent to calling SpaceCenter.LaunchVessel with the craft directory set to
“SPH” and the launch site set to “Runway”.

void Save (string name)
Save the game with a given name. This will create a save file called name.sfs in the folder of the current
save game.

Parameters

void Load (string name)
Load the game with the given name. This will create a load a save file called name.sfs from the folder
of the current save game.

Parameters

void Quicksave ()
Save a quicksave.

3.3. SpaceCenter API 37

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

Note: This is the same as calling SpaceCenter.Save with the name “quicksave”.

void Quickload ()
Load a quicksave.

Note: This is the same as calling SpaceCenter.Load with the name “quicksave”.

Camera Camera { get; }
An object that can be used to control the camera.

double UT { get; }
The current universal time in seconds.

float G { get; }
The value of the gravitational constant G in 𝑁(𝑚/𝑘𝑔)2.

WarpMode WarpMode { get; }
The current time warp mode. Returns WarpMode.None if time warp is not active, WarpMode.Rails
if regular “on-rails” time warp is active, or WarpMode.Physics if physical time warp is active.

float WarpRate { get; }
The current warp rate. This is the rate at which time is passing for either on-rails or physical time warp.
For example, a value of 10 means time is passing 10x faster than normal. Returns 1 if time warp is not
active.

float WarpFactor { get; }
The current warp factor. This is the index of the rate at which time is passing for either regular “on-
rails” or physical time warp. Returns 0 if time warp is not active. When in on-rails time warp,
this is equal to SpaceCenter.RailsWarpFactor, and in physics time warp, this is equal to
SpaceCenter.PhysicsWarpFactor.

int RailsWarpFactor { get; set; }
The time warp rate, using regular “on-rails” time warp. A value between 0 and 7 inclusive. 0 means no
time warp. Returns 0 if physical time warp is active. If requested time warp factor cannot be set, it will be
set to the next lowest possible value. For example, if the vessel is too close to a planet. See the KSP wiki
for details.

int PhysicsWarpFactor { get; set; }
The physical time warp rate. A value between 0 and 3 inclusive. 0 means no time warp. Returns 0 if
regular “on-rails” time warp is active.

bool CanRailsWarpAt (int factor = 1)
Returns true if regular “on-rails” time warp can be used, at the specified warp factor. The maximum
time warp rate is limited by various things, including how close the active vessel is to a planet. See the
KSP wiki for details.

Parameters

• factor – The warp factor to check.

int MaximumRailsWarpFactor { get; }
The current maximum regular “on-rails” warp factor that can be set. A value between 0 and 7 inclusive.
See the KSP wiki for details.

void WarpTo (double ut, float maxRailsRate = 100000.0, float maxPhysicsRate = 2.0)
Uses time acceleration to warp forward to a time in the future, specified by universal time ut. This call
blocks until the desired time is reached. Uses regular “on-rails” or physical time warp as appropriate. For

38 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://en.wikipedia.org/wiki/Gravitational_constant
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
https://msdn.microsoft.com/en-us/library/system.int32.aspx
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

example, physical time warp is used when the active vessel is traveling through an atmosphere. When
using regular “on-rails” time warp, the warp rate is limited by maxRailsRate, and when using physical
time warp, the warp rate is limited by maxPhysicsRate.

Parameters

• ut – The universal time to warp to, in seconds.

• maxRailsRate – The maximum warp rate in regular “on-rails” time warp.

• maxPhysicsRate – The maximum warp rate in physical time warp.

Returns When the time warp is complete.

Tuple<double, double, double> TransformPosition (Tuple<double, double, double> position, Ref-
erenceFrame from, ReferenceFrame to)

Converts a position vector from one reference frame to another.

Parameters

• position – Position vector in reference frame from.

• from – The reference frame that the position vector is in.

• to – The reference frame to covert the position vector to.

Returns The corresponding position vector in reference frame to.

Tuple<double, double, double> TransformDirection (Tuple<double, double, double> direction,
ReferenceFrame from, ReferenceFrame to)

Converts a direction vector from one reference frame to another.

Parameters

• direction – Direction vector in reference frame from.

• from – The reference frame that the direction vector is in.

• to – The reference frame to covert the direction vector to.

Returns The corresponding direction vector in reference frame to.

Tuple<double, double, double, double> TransformRotation (Tuple<double, double, double, dou-
ble> rotation, ReferenceFrame from,
ReferenceFrame to)

Converts a rotation from one reference frame to another.

Parameters

• rotation – Rotation in reference frame from.

• from – The reference frame that the rotation is in.

• to – The corresponding rotation in reference frame to.

Returns The corresponding rotation in reference frame to.

Tuple<double, double, double> TransformVelocity (Tuple<double, double, double> position, Tu-
ple<double, double, double> velocity, Refer-
enceFrame from, ReferenceFrame to)

Converts a velocity vector (acting at the specified position vector) from one reference frame to another.
The position vector is required to take the relative angular velocity of the reference frames into account.

Parameters

• position – Position vector in reference frame from.

• velocity – Velocity vector in reference frame from.

3.3. SpaceCenter API 39

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

• from – The reference frame that the position and velocity vectors are in.

• to – The reference frame to covert the velocity vector to.

Returns The corresponding velocity in reference frame to.

bool FARAvailable { get; }
Whether Ferram Aerospace Research is installed.

enum WarpMode
The time warp mode. Returned by WarpMode

Rails
Time warp is active, and in regular “on-rails” mode.

Physics
Time warp is active, and in physical time warp mode.

None
Time warp is not active.

3.3.2 Vessel

class Vessel
These objects are used to interact with vessels in KSP. This includes getting orbital and flight data, ma-
nipulating control inputs and managing resources. Created using SpaceCenter.ActiveVessel or
SpaceCenter.Vessels.

string Name { get; set; }
The name of the vessel.

VesselType Type { get; set; }
The type of the vessel.

VesselSituation Situation { get; }
The situation the vessel is in.

bool Recoverable { get; }
Whether the vessel is recoverable.

void Recover ()
Recover the vessel.

double MET { get; }
The mission elapsed time in seconds.

Flight Flight (ReferenceFrame referenceFrame = None)
Returns a Flight object that can be used to get flight telemetry for the vessel, in the specified reference
frame.

Parameters

• referenceFrame – Reference frame. Defaults to the vessel’s surface reference frame
(Vessel.SurfaceReferenceFrame).

Note: When this is called with no arguments, the vessel’s surface reference frame is used. This reference
frame moves with the vessel, therefore velocities and speeds returned by the flight object will be zero. See
the reference frames tutorial for examples of getting the orbital speed and surface speed of a vessel.

40 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

Orbit Orbit { get; }
The current orbit of the vessel.

Control Control { get; }
Returns a Control object that can be used to manipulate the vessel’s control inputs. For example, its
pitch/yaw/roll controls, RCS and thrust.

AutoPilot AutoPilot { get; }
An AutoPilot object, that can be used to perform simple auto-piloting of the vessel.

Resources Resources { get; }
A Resources object, that can used to get information about resources stored in the vessel.

Resources ResourcesInDecoupleStage (int stage, bool cumulative = True)
Returns a Resources object, that can used to get information about resources stored in a given stage.

Parameters

• stage – Get resources for parts that are decoupled in this stage.

• cumulative – When false, returns the resources for parts decoupled in just the given
stage. When true returns the resources decoupled in the given stage and all subsequent
stages combined.

Note: For details on stage numbering, see the discussion on Staging.

Parts Parts { get; }
A Parts object, that can used to interact with the parts that make up this vessel.

float Mass { get; }
The total mass of the vessel, including resources, in kg.

float DryMass { get; }
The total mass of the vessel, excluding resources, in kg.

float Thrust { get; }
The total thrust currently being produced by the vessel’s engines, in Newtons. This is computed by sum-
ming Engine.Thrust for every engine in the vessel.

float AvailableThrust { get; }
Gets the total available thrust that can be produced by the vessel’s active engines, in Newtons. This is
computed by summing Engine.AvailableThrust for every active engine in the vessel.

float MaxThrust { get; }
The total maximum thrust that can be produced by the vessel’s active engines, in Newtons. This is com-
puted by summing Engine.MaxThrust for every active engine.

float MaxVacuumThrust { get; }
The total maximum thrust that can be produced by the vessel’s active engines when the vessel is in a
vacuum, in Newtons. This is computed by summing Engine.MaxVacuumThrust for every active
engine.

float SpecificImpulse { get; }
The combined specific impulse of all active engines, in seconds. This is computed using the formula
described here.

float VacuumSpecificImpulse { get; }
The combined vacuum specific impulse of all active engines, in seconds. This is computed using the
formula described here.

3.3. SpaceCenter API 41

https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.3.5

float KerbinSeaLevelSpecificImpulse { get; }
The combined specific impulse of all active engines at sea level on Kerbin, in seconds. This is computed
using the formula described here.

Tuple<double, double, double> MomentOfInertia { get; }
The moment of inertia of the vessel around its center of mass in 𝑘𝑔.𝑚2. The inertia values are
around the pitch, roll and yaw directions respectively. This corresponds to the vessels reference frame
(Vessel.ReferenceFrame).

IList<double> InertiaTensor { get; }
The inertia tensor of the vessel around its center of mass, in the vessels reference frame
(Vessel.ReferenceFrame). Returns the 3x3 matrix as a list of elements, in row-major order.

Tuple<double, double, double> AvailableTorque { get; }
The maximum torque that the vessel generate. Includes contributions from reaction wheels, RCS, gim-
balled engines and aerodynamic control surfaces. Returns the torques in 𝑁.𝑚 around each of the coor-
dinate axes of the vessels reference frame (Vessel.ReferenceFrame). These axes are equivalent to
the pitch, roll and yaw axes of the vessel.

Tuple<double, double, double> AvailableReactionWheelTorque { get; }
The maximum torque that the currently active and powered reaction wheels can generate. Re-
turns the torques in 𝑁.𝑚 around each of the coordinate axes of the vessels reference frame
(Vessel.ReferenceFrame). These axes are equivalent to the pitch, roll and yaw axes of the ves-
sel.

Tuple<double, double, double> AvailableRCSTorque { get; }
The maximum torque that the currently active RCS thrusters can generate. Returns the torques in 𝑁.𝑚
around each of the coordinate axes of the vessels reference frame (Vessel.ReferenceFrame). These
axes are equivalent to the pitch, roll and yaw axes of the vessel.

Tuple<double, double, double> AvailableEngineTorque { get; }
The maximum torque that the currently active and gimballed engines can generate. Returns the torques in
𝑁.𝑚 around each of the coordinate axes of the vessels reference frame (Vessel.ReferenceFrame).
These axes are equivalent to the pitch, roll and yaw axes of the vessel.

Tuple<double, double, double> AvailableControlSurfaceTorque { get; }
The maximum torque that the aerodynamic control surfaces can generate. Returns the torques in 𝑁.𝑚
around each of the coordinate axes of the vessels reference frame (Vessel.ReferenceFrame). These
axes are equivalent to the pitch, roll and yaw axes of the vessel.

ReferenceFrame ReferenceFrame { get; }
The reference frame that is fixed relative to the vessel, and orientated with the vessel.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel.

•The x-axis points out to the right of the vessel.

•The y-axis points in the forward direction of the vessel.

•The z-axis points out of the bottom off the vessel.

ReferenceFrame OrbitalReferenceFrame { get; }
The reference frame that is fixed relative to the vessel, and orientated with the vessels orbital pro-
grade/normal/radial directions.

•The origin is at the center of mass of the vessel.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

42 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

Fig. 3.1: Vessel reference frame origin and axes for the Aeris 3A aircraft

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Note: Be careful not to confuse this with ‘orbit’ mode on the navball.

ReferenceFrame SurfaceReferenceFrame { get; }
The reference frame that is fixed relative to the vessel, and orientated with the surface of the body being
orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the north and up directions on the surface of the body.

•The x-axis points in the zenith direction (upwards, normal to the body being orbited, from the center
of the body towards the center of mass of the vessel).

•The y-axis points northwards towards the astronomical horizon (north, and tangential to the surface
of the body – the direction in which a compass would point when on the surface).

•The z-axis points eastwards towards the astronomical horizon (east, and tangential to the surface of
the body – east on a compass when on the surface).

Note: Be careful not to confuse this with ‘surface’ mode on the navball.

ReferenceFrame SurfaceVelocityReferenceFrame { get; }
The reference frame that is fixed relative to the vessel, and orientated with the velocity vector of the vessel
relative to the surface of the body being orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel’s velocity vector.

•The y-axis points in the direction of the vessel’s velocity vector, relative to the surface of the body
being orbited.

3.3. SpaceCenter API 43

https://en.wikipedia.org/wiki/Zenith
https://en.wikipedia.org/wiki/Horizon
https://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.3.5

Fig. 3.2: Vessel reference frame origin and axes for the Kerbal-X rocket

44 Chapter 3. C#

kRPC, Release 0.3.5

Fig. 3.3: Vessel orbital reference frame origin and axes

Fig. 3.4: Vessel surface reference frame origin and axes

3.3. SpaceCenter API 45

kRPC, Release 0.3.5

•The z-axis is in the plane of the astronomical horizon.

•The x-axis is orthogonal to the other two axes.

Fig. 3.5: Vessel surface velocity reference frame origin and axes

Tuple<double, double, double> Position (ReferenceFrame referenceFrame)
Returns the position vector of the center of mass of the vessel in the given reference frame.

Parameters

Tuple<double, double, double> Velocity (ReferenceFrame referenceFrame)
Returns the velocity vector of the center of mass of the vessel in the given reference frame.

Parameters

Tuple<double, double, double, double> Rotation (ReferenceFrame referenceFrame)
Returns the rotation of the center of mass of the vessel in the given reference frame.

Parameters

Tuple<double, double, double> Direction (ReferenceFrame referenceFrame)
Returns the direction in which the vessel is pointing, as a unit vector, in the given reference frame.

Parameters

Tuple<double, double, double> AngularVelocity (ReferenceFrame referenceFrame)
Returns the angular velocity of the vessel in the given reference frame. The magnitude of the returned
vector is the rotational speed in radians per second, and the direction of the vector indicates the axis of
rotation (using the right hand rule).

Parameters

enum VesselType
The type of a vessel. See Vessel.Type.

Ship
Ship.

Station
Station.

46 Chapter 3. C#

https://en.wikipedia.org/wiki/Horizon
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

Lander
Lander.

Probe
Probe.

Rover
Rover.

Base
Base.

Debris
Debris.

enum VesselSituation
The situation a vessel is in. See Vessel.Situation.

Docked
Vessel is docked to another.

Escaping
Escaping.

Flying
Vessel is flying through an atmosphere.

Landed
Vessel is landed on the surface of a body.

Orbiting
Vessel is orbiting a body.

PreLaunch
Vessel is awaiting launch.

Splashed
Vessel has splashed down in an ocean.

SubOrbital
Vessel is on a sub-orbital trajectory.

3.3.3 CelestialBody

class CelestialBody
Represents a celestial body (such as a planet or moon). See SpaceCenter.Bodies.

string Name { get; }
The name of the body.

IList<CelestialBody> Satellites { get; }
A list of celestial bodies that are in orbit around this celestial body.

Orbit Orbit { get; }
The orbit of the body.

float Mass { get; }
The mass of the body, in kilograms.

float GravitationalParameter { get; }
The standard gravitational parameter of the body in 𝑚3𝑠−2.

3.3. SpaceCenter API 47

https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://en.wikipedia.org/wiki/Standard_gravitational_parameter

kRPC, Release 0.3.5

float SurfaceGravity { get; }
The acceleration due to gravity at sea level (mean altitude) on the body, in 𝑚/𝑠2.

float RotationalPeriod { get; }
The sidereal rotational period of the body, in seconds.

float RotationalSpeed { get; }
The rotational speed of the body, in radians per second.

float EquatorialRadius { get; }
The equatorial radius of the body, in meters.

double SurfaceHeight (double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water this
is equal to 0.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

double BedrockHeight (double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water, this
is the height of the sea-bed and is therefore a negative value.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

Tuple<double, double, double> MSLPosition (double latitude, double longitude, ReferenceFrame ref-
erenceFrame)

The position at mean sea level at the given latitude and longitude, in the given reference frame.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

• referenceFrame – Reference frame for the returned position vector

Tuple<double, double, double> SurfacePosition (double latitude, double longitude, Reference-
Frame referenceFrame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position of the surface of the water.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

• referenceFrame – Reference frame for the returned position vector

Tuple<double, double, double> BedrockPosition (double latitude, double longitude, Reference-
Frame referenceFrame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position at the bottom of the sea-bed.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

48 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

• referenceFrame – Reference frame for the returned position vector

float SphereOfInfluence { get; }
The radius of the sphere of influence of the body, in meters.

bool HasAtmosphere { get; }
true if the body has an atmosphere.

float AtmosphereDepth { get; }
The depth of the atmosphere, in meters.

bool HasAtmosphericOxygen { get; }
true if there is oxygen in the atmosphere, required for air-breathing engines.

ReferenceFrame ReferenceFrame { get; }
The reference frame that is fixed relative to the celestial body.

•The origin is at the center of the body.

•The axes rotate with the body.

•The x-axis points from the center of the body towards the intersection of the prime meridian and
equator (the position at 0° longitude, 0° latitude).

•The y-axis points from the center of the body towards the north pole.

•The z-axis points from the center of the body towards the equator at 90°E longitude.

Fig. 3.6: Celestial body reference frame origin and axes. The equator is shown in blue, and the prime meridian in red.

ReferenceFrame NonRotatingReferenceFrame { get; }
The reference frame that is fixed relative to this celestial body, and orientated in a fixed direction (it does
not rotate with the body).

•The origin is at the center of the body.

•The axes do not rotate.

•The x-axis points in an arbitrary direction through the equator.

•The y-axis points from the center of the body towards the north pole.

3.3. SpaceCenter API 49

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

•The z-axis points in an arbitrary direction through the equator.

ReferenceFrame OrbitalReferenceFrame { get; }
Gets the reference frame that is fixed relative to this celestial body, but orientated with the body’s orbital
prograde/normal/radial directions.

•The origin is at the center of the body.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Tuple<double, double, double> Position (ReferenceFrame referenceFrame)
Returns the position vector of the center of the body in the specified reference frame.

Parameters

Tuple<double, double, double> Velocity (ReferenceFrame referenceFrame)
Returns the velocity vector of the body in the specified reference frame.

Parameters

Tuple<double, double, double, double> Rotation (ReferenceFrame referenceFrame)
Returns the rotation of the body in the specified reference frame.

Parameters

Tuple<double, double, double> Direction (ReferenceFrame referenceFrame)
Returns the direction in which the north pole of the celestial body is pointing, as a unit vector, in the
specified reference frame.

Parameters

Tuple<double, double, double> AngularVelocity (ReferenceFrame referenceFrame)
Returns the angular velocity of the body in the specified reference frame. The magnitude of the vector is
the rotational speed of the body, in radians per second, and the direction of the vector indicates the axis of
rotation, using the right-hand rule.

Parameters

3.3.4 Flight

class Flight
Used to get flight telemetry for a vessel, by calling Vessel.Flight. All of the information returned by this
class is given in the reference frame passed to that method. Obtained by calling Vessel.Flight.

Note: To get orbital information, such as the apoapsis or inclination, see Orbit.

float GForce { get; }
The current G force acting on the vessel in 𝑚/𝑠2.

double MeanAltitude { get; }
The altitude above sea level, in meters. Measured from the center of mass of the vessel.

double SurfaceAltitude { get; }
The altitude above the surface of the body or sea level, whichever is closer, in meters. Measured from the
center of mass of the vessel.

50 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

double BedrockAltitude { get; }
The altitude above the surface of the body, in meters. When over water, this is the altitude above the sea
floor. Measured from the center of mass of the vessel.

double Elevation { get; }
The elevation of the terrain under the vessel, in meters. This is the height of the terrain above sea level,
and is negative when the vessel is over the sea.

double Latitude { get; }
The latitude of the vessel for the body being orbited, in degrees.

double Longitude { get; }
The longitude of the vessel for the body being orbited, in degrees.

Tuple<double, double, double> Velocity { get; }
The velocity vector of the vessel. The magnitude of the vector is the speed of the vessel in meters per
second. The direction of the vector is the direction of the vessels motion.

double Speed { get; }
The speed of the vessel in meters per second.

double HorizontalSpeed { get; }
The horizontal speed of the vessel in meters per second.

double VerticalSpeed { get; }
The vertical speed of the vessel in meters per second.

Tuple<double, double, double> CenterOfMass { get; }
The position of the center of mass of the vessel.

Tuple<double, double, double, double> Rotation { get; }
The rotation of the vessel.

Tuple<double, double, double> Direction { get; }
The direction vector that the vessel is pointing in.

float Pitch { get; }
The pitch angle of the vessel relative to the horizon, in degrees. A value between -90° and +90°.

float Heading { get; }
The heading angle of the vessel relative to north, in degrees. A value between 0° and 360°.

float Roll { get; }
The roll angle of the vessel relative to the horizon, in degrees. A value between -180° and +180°.

Tuple<double, double, double> Prograde { get; }
The unit direction vector pointing in the prograde direction.

Tuple<double, double, double> Retrograde { get; }
The unit direction vector pointing in the retrograde direction.

Tuple<double, double, double> Normal { get; }
The unit direction vector pointing in the normal direction.

Tuple<double, double, double> AntiNormal { get; }
The unit direction vector pointing in the anti-normal direction.

Tuple<double, double, double> Radial { get; }
The unit direction vector pointing in the radial direction.

Tuple<double, double, double> AntiRadial { get; }
The unit direction vector pointing in the anti-radial direction.

3.3. SpaceCenter API 51

https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Latitude
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Longitude
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

float AtmosphereDensity { get; }
The current density of the atmosphere around the vessel, in 𝑘𝑔/𝑚3.

float DynamicPressure { get; }
The dynamic pressure acting on the vessel, in Pascals. This is a measure of the strength of the aerodynamic
forces. It is equal to 1

2 .air density.velocity2. It is commonly denoted as 𝑄.

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float StaticPressure { get; }
The static atmospheric pressure acting on the vessel, in Pascals.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

Tuple<double, double, double> AerodynamicForce { get; }
The total aerodynamic forces acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

Tuple<double, double, double> Lift { get; }
The aerodynamic lift currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

Tuple<double, double, double> Drag { get; }
The aerodynamic drag currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

float SpeedOfSound { get; }
The speed of sound, in the atmosphere around the vessel, in 𝑚/𝑠.

Note: Not available when Ferram Aerospace Research is installed.

float Mach { get; }
The speed of the vessel, in multiples of the speed of sound.

Note: Not available when Ferram Aerospace Research is installed.

52 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

float EquivalentAirSpeed { get; }
The equivalent air speed of the vessel, in 𝑚/𝑠.

Note: Not available when Ferram Aerospace Research is installed.

float TerminalVelocity { get; }
An estimate of the current terminal velocity of the vessel, in 𝑚/𝑠. This is the speed at which the drag
forces cancel out the force of gravity.

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float AngleOfAttack { get; }
Gets the pitch angle between the orientation of the vessel and its velocity vector, in degrees.

float SideslipAngle { get; }
Gets the yaw angle between the orientation of the vessel and its velocity vector, in degrees.

float TotalAirTemperature { get; }
The total air temperature of the atmosphere around the vessel, in Kelvin. This temperature includes the
Flight.StaticAirTemperature and the vessel’s kinetic energy.

float StaticAirTemperature { get; }
The static (ambient) temperature of the atmosphere around the vessel, in Kelvin.

float StallFraction { get; }
Gets the current amount of stall, between 0 and 1. A value greater than 0.005 indicates a minor stall and a
value greater than 0.5 indicates a large-scale stall.

Note: Requires Ferram Aerospace Research.

float DragCoefficient { get; }
Gets the coefficient of drag. This is the amount of drag produced by the vessel. It depends on air speed,
air density and wing area.

Note: Requires Ferram Aerospace Research.

float LiftCoefficient { get; }
Gets the coefficient of lift. This is the amount of lift produced by the vessel, and depends on air speed, air
density and wing area.

Note: Requires Ferram Aerospace Research.

float BallisticCoefficient { get; }
Gets the ballistic coefficient.

Note: Requires Ferram Aerospace Research.

float ThrustSpecificFuelConsumption { get; }
Gets the thrust specific fuel consumption for the jet engines on the vessel. This is a measure of the

3.3. SpaceCenter API 53

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://en.wikipedia.org/wiki/Equivalent_airspeed
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://en.wikipedia.org/wiki/Total_air_temperature
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://en.wikipedia.org/wiki/Total_air_temperature
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://en.wikipedia.org/wiki/Ballistic_coefficient
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

efficiency of the engines, with a lower value indicating a more efficient vessel. This value is the number of
Newtons of fuel that are burned, per hour, to product one newton of thrust.

Note: Requires Ferram Aerospace Research.

3.3.5 Orbit

class Orbit
Describes an orbit. For example, the orbit of a vessel, obtained by calling Vessel.Orbit, or a celestial body,
obtained by calling CelestialBody.Orbit.

CelestialBody Body { get; }
The celestial body (e.g. planet or moon) around which the object is orbiting.

double Apoapsis { get; }
Gets the apoapsis of the orbit, in meters, from the center of mass of the body being orbited.

Note: For the apoapsis altitude reported on the in-game map view, use Orbit.ApoapsisAltitude.

double Periapsis { get; }
The periapsis of the orbit, in meters, from the center of mass of the body being orbited.

Note: For the periapsis altitude reported on the in-game map view, use Orbit.PeriapsisAltitude.

double ApoapsisAltitude { get; }
The apoapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to Orbit.Apoapsis minus the equatorial radius of the body.

double PeriapsisAltitude { get; }
The periapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to Orbit.Periapsis minus the equatorial radius of the body.

double SemiMajorAxis { get; }
The semi-major axis of the orbit, in meters.

double SemiMinorAxis { get; }
The semi-minor axis of the orbit, in meters.

double Radius { get; }
The current radius of the orbit, in meters. This is the distance between the center of mass of the object in
orbit, and the center of mass of the body around which it is orbiting.

Note: This value will change over time if the orbit is elliptical.

double Speed { get; }
The current orbital speed of the object in meters per second.

54 Chapter 3. C#

http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

Note: This value will change over time if the orbit is elliptical.

double Period { get; }
The orbital period, in seconds.

double TimeToApoapsis { get; }
The time until the object reaches apoapsis, in seconds.

double TimeToPeriapsis { get; }
The time until the object reaches periapsis, in seconds.

double Eccentricity { get; }
The eccentricity of the orbit.

double Inclination { get; }
The inclination of the orbit, in radians.

double LongitudeOfAscendingNode { get; }
The longitude of the ascending node, in radians.

double ArgumentOfPeriapsis { get; }
The argument of periapsis, in radians.

double MeanAnomalyAtEpoch { get; }
The mean anomaly at epoch.

double Epoch { get; }
The time since the epoch (the point at which the mean anomaly at epoch was measured, in seconds.

double MeanAnomaly { get; }
The mean anomaly.

double EccentricAnomaly { get; }
The eccentric anomaly.

Tuple<double, double, double> ReferencePlaneNormal (ReferenceFrame referenceFrame)
The unit direction vector that is normal to the orbits reference plane, in the given reference frame. The
reference plane is the plane from which the orbits inclination is measured.

Parameters

Tuple<double, double, double> ReferencePlaneDirection (ReferenceFrame referenceFrame)
The unit direction vector from which the orbits longitude of ascending node is measured, in the given
reference frame.

Parameters

double TimeToSOIChange { get; }
The time until the object changes sphere of influence, in seconds. Returns NaN if the object is not going
to change sphere of influence.

Orbit NextOrbit { get; }
If the object is going to change sphere of influence in the future, returns the new orbit after the change.
Otherwise returns null.

3.3.6 Control

class Control
Used to manipulate the controls of a vessel. This includes adjusting the throttle, enabling/disabling sys-

3.3. SpaceCenter API 55

https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Orbital_eccentricity
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Orbital_inclination
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Argument_of_periapsis
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Mean_anomaly
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Mean_anomaly
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Mean_anomaly
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://en.wikipedia.org/wiki/Eccentric_anomaly
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

tems such as SAS and RCS, or altering the direction in which the vessel is pointing. Obtained by calling
Vessel.Control.

Note: Control inputs (such as pitch, yaw and roll) are zeroed when all clients that have set one or more of these
inputs are no longer connected.

bool SAS { get; set; }
The state of SAS.

Note: Equivalent to AutoPilot.SAS

SASMode SASMode { get; set; }
The current SASMode. These modes are equivalent to the mode buttons to the left of the navball that
appear when SAS is enabled.

Note: Equivalent to AutoPilot.SASMode

SpeedMode SpeedMode { get; set; }
The current SpeedMode of the navball. This is the mode displayed next to the speed at the top of the
navball.

bool RCS { get; set; }
The state of RCS.

bool Gear { get; set; }
The state of the landing gear/legs.

bool Lights { get; set; }
The state of the lights.

bool Brakes { get; set; }
The state of the wheel brakes.

bool Abort { get; set; }
The state of the abort action group.

float Throttle { get; set; }
The state of the throttle. A value between 0 and 1.

float Pitch { get; set; }
The state of the pitch control. A value between -1 and 1. Equivalent to the w and s keys.

float Yaw { get; set; }
The state of the yaw control. A value between -1 and 1. Equivalent to the a and d keys.

float Roll { get; set; }
The state of the roll control. A value between -1 and 1. Equivalent to the q and e keys.

float Forward { get; set; }
The state of the forward translational control. A value between -1 and 1. Equivalent to the h and n keys.

float Up { get; set; }
The state of the up translational control. A value between -1 and 1. Equivalent to the i and k keys.

float Right { get; set; }
The state of the right translational control. A value between -1 and 1. Equivalent to the j and l keys.

56 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

float WheelThrottle { get; set; }
The state of the wheel throttle. A value between -1 and 1. A value of 1 rotates the wheels forwards, a value
of -1 rotates the wheels backwards.

float WheelSteering { get; set; }
The state of the wheel steering. A value between -1 and 1. A value of 1 steers to the left, and a value of -1
steers to the right.

int CurrentStage { get; }
The current stage of the vessel. Corresponds to the stage number in the in-game UI.

IList<Vessel> ActivateNextStage ()
Activates the next stage. Equivalent to pressing the space bar in-game.

Returns A list of vessel objects that are jettisoned from the active vessel.

bool GetActionGroup (uint group)
Returns true if the given action group is enabled.

Parameters

• group – A number between 0 and 9 inclusive.

void SetActionGroup (uint group, bool state)
Sets the state of the given action group (a value between 0 and 9 inclusive).

Parameters

• group – A number between 0 and 9 inclusive.

void ToggleActionGroup (uint group)
Toggles the state of the given action group.

Parameters

• group – A number between 0 and 9 inclusive.

Node AddNode (double ut, float prograde = 0.0, float normal = 0.0, float radial = 0.0)
Creates a maneuver node at the given universal time, and returns a Node object that can be used to modify
it. Optionally sets the magnitude of the delta-v for the maneuver node in the prograde, normal and radial
directions.

Parameters

• ut – Universal time of the maneuver node.

• prograde – Delta-v in the prograde direction.

• normal – Delta-v in the normal direction.

• radial – Delta-v in the radial direction.

IList<Node> Nodes { get; }
Returns a list of all existing maneuver nodes, ordered by time from first to last.

void RemoveNodes ()
Remove all maneuver nodes.

enum SASMode
The behavior of the SAS auto-pilot. See AutoPilot.SASMode.

StabilityAssist
Stability assist mode. Dampen out any rotation.

Maneuver
Point in the burn direction of the next maneuver node.

3.3. SpaceCenter API 57

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.uint32.aspx
https://msdn.microsoft.com/en-us/library/system.uint32.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.uint32.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx

kRPC, Release 0.3.5

Prograde
Point in the prograde direction.

Retrograde
Point in the retrograde direction.

Normal
Point in the orbit normal direction.

AntiNormal
Point in the orbit anti-normal direction.

Radial
Point in the orbit radial direction.

AntiRadial
Point in the orbit anti-radial direction.

Target
Point in the direction of the current target.

AntiTarget
Point away from the current target.

enum SpeedMode
The mode of the speed reported in the navball. See Control.SpeedMode.

Orbit
Speed is relative to the vessel’s orbit.

Surface
Speed is relative to the surface of the body being orbited.

Target
Speed is relative to the current target.

3.3.7 Parts

The following classes allow interaction with a vessels individual parts.

58 Chapter 3. C#

kRPC, Release 0.3.5

• Parts
• Part
• Module
• Specific Types of Part

– Cargo Bay
– Control Surface
– Decoupler
– Docking Port
– Engine
– Experiment
– Fairing
– Intake
– Landing Gear
– Landing Leg
– Launch Clamp
– Light
– Parachute
– Radiator
– Resource Converter
– Resource Harvester
– Reaction Wheel
– RCS
– Sensor
– Solar Panel
– Thruster

• Trees of Parts
– Traversing the Tree
– Attachment Modes

• Fuel Lines
• Staging

Parts

class Parts
Instances of this class are used to interact with the parts of a vessel. An instance can be obtained by calling
Vessel.Parts.

IList<Part> All { get; }
A list of all of the vessels parts.

Part Root { get; }
The vessels root part.

Note: See the discussion on Trees of Parts.

Part Controlling { get; set; }
The part from which the vessel is controlled.

IList<Part> WithName (string name)
A list of parts whose Part.Name is name.

Parameters

3.3. SpaceCenter API 59

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

IList<Part> WithTitle (string title)
A list of all parts whose Part.Title is title.

Parameters

IList<Part> WithModule (string moduleName)
A list of all parts that contain a Module whose Module.Name is moduleName.

Parameters

IList<Part> InStage (int stage)
A list of all parts that are activated in the given stage.

Parameters

Note: See the discussion on Staging.

IList<Part> InDecoupleStage (int stage)
A list of all parts that are decoupled in the given stage.

Parameters

Note: See the discussion on Staging.

IList<Module> ModulesWithName (string moduleName)
A list of modules (combined across all parts in the vessel) whose Module.Name is moduleName.

Parameters

IList<CargoBay> CargoBays { get; }
A list of all cargo bays in the vessel.

IList<ControlSurface> ControlSurfaces { get; }
A list of all control surfaces in the vessel.

IList<Decoupler> Decouplers { get; }
A list of all decouplers in the vessel.

IList<DockingPort> DockingPorts { get; }
A list of all docking ports in the vessel.

DockingPort DockingPortWithName (string name)
The first docking port in the vessel with the given port name, as returned by DockingPort.Name.
Returns null if there are no such docking ports.

Parameters

IList<Engine> Engines { get; }
A list of all engines in the vessel.

Note: This includes any part that generates thrust. This covers many different types of engine, including
liquid fuel rockets, solid rocket boosters, jet engines and RCS thrusters.

IList<Experiment> Experiments { get; }
A list of all science experiments in the vessel.

IList<Fairing> Fairings { get; }
A list of all fairings in the vessel.

60 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx

kRPC, Release 0.3.5

IList<Intake> Intakes { get; }
A list of all intakes in the vessel.

IList<LandingGear> LandingGear { get; }
A list of all landing gear attached to the vessel.

IList<LandingLeg> LandingLegs { get; }
A list of all landing legs attached to the vessel.

IList<LaunchClamp> LaunchClamps { get; }
A list of all launch clamps attached to the vessel.

IList<Light> Lights { get; }
A list of all lights in the vessel.

IList<Parachute> Parachutes { get; }
A list of all parachutes in the vessel.

IList<Radiator> Radiators { get; }
A list of all radiators in the vessel.

IList<RCS> RCS { get; }
A list of all RCS blocks/thrusters in the vessel.

IList<ReactionWheel> ReactionWheels { get; }
A list of all reaction wheels in the vessel.

IList<ResourceConverter> ResourceConverters { get; }
A list of all resource converters in the vessel.

IList<ResourceHarvester> ResourceHarvesters { get; }
A list of all resource harvesters in the vessel.

IList<Sensor> Sensors { get; }
A list of all sensors in the vessel.

IList<SolarPanel> SolarPanels { get; }
A list of all solar panels in the vessel.

Part

class Part
Represents an individual part. Vessels are made up of multiple parts. Instances of this class can be obtained by
several methods in Parts.

string Name { get; }
Internal name of the part, as used in part cfg files. For example “Mark1-2Pod”.

string Title { get; }
Title of the part, as shown when the part is right clicked in-game. For example “Mk1-2 Command Pod”.

double Cost { get; }
The cost of the part, in units of funds.

Vessel Vessel { get; }
The vessel that contains this part.

Part Parent { get; }
The parts parent. Returns null if the part does not have a parent. This, in combination with
Part.Children, can be used to traverse the vessels parts tree.

3.3. SpaceCenter API 61

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

Note: See the discussion on Trees of Parts.

IList<Part> Children { get; }
The parts children. Returns an empty list if the part has no children. This, in combination with
Part.Parent, can be used to traverse the vessels parts tree.

Note: See the discussion on Trees of Parts.

bool AxiallyAttached { get; }
Whether the part is axially attached to its parent, i.e. on the top or bottom of its parent. If the part has no
parent, returns false.

Note: See the discussion on Attachment Modes.

bool RadiallyAttached { get; }
Whether the part is radially attached to its parent, i.e. on the side of its parent. If the part has no parent,
returns false.

Note: See the discussion on Attachment Modes.

int Stage { get; }
The stage in which this part will be activated. Returns -1 if the part is not activated by staging.

Note: See the discussion on Staging.

int DecoupleStage { get; }
The stage in which this part will be decoupled. Returns -1 if the part is never decoupled from the vessel.

Note: See the discussion on Staging.

bool Massless { get; }
Whether the part is massless.

double Mass { get; }
The current mass of the part, including resources it contains, in kilograms. Returns zero if the part is
massless.

double DryMass { get; }
The mass of the part, not including any resources it contains, in kilograms. Returns zero if the part is
massless.

bool Shielded { get; }
Whether the part is shielded from the exterior of the vessel, for example by a fairing.

float DynamicPressure { get; }
The dynamic pressure acting on the part, in Pascals.

double ImpactTolerance { get; }
The impact tolerance of the part, in meters per second.

62 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
http://wiki.kerbalspaceprogram.com/wiki/Massless_part
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

double Temperature { get; }
Temperature of the part, in Kelvin.

double SkinTemperature { get; }
Temperature of the skin of the part, in Kelvin.

double MaxTemperature { get; }
Maximum temperature that the part can survive, in Kelvin.

double MaxSkinTemperature { get; }
Maximum temperature that the skin of the part can survive, in Kelvin.

float ThermalMass { get; }
A measure of how much energy it takes to increase the internal temperature of the part, in Joules per
Kelvin.

float ThermalSkinMass { get; }
A measure of how much energy it takes to increase the skin temperature of the part, in Joules per Kelvin.

float ThermalResourceMass { get; }
A measure of how much energy it takes to increase the temperature of the resources contained in the part,
in Joules per Kelvin.

float ThermalConductionFlux { get; }
The rate at which heat energy is conducting into or out of the part via contact with other parts. Measured
in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy, and
negative means it is losing heat energy.

float ThermalConvectionFlux { get; }
The rate at which heat energy is convecting into or out of the part from the surrounding atmosphere.
Measured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat
energy, and negative means it is losing heat energy.

float ThermalRadiationFlux { get; }
The rate at which heat energy is radiating into or out of the part from the surrounding environment. Mea-
sured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy,
and negative means it is losing heat energy.

float ThermalInternalFlux { get; }
The rate at which heat energy is begin generated by the part. For example, some engines generate heat by
combusting fuel. Measured in energy per unit time, or power, in Watts. A positive value means the part is
gaining heat energy, and negative means it is losing heat energy.

float ThermalSkinToInternalFlux { get; }
The rate at which heat energy is transferring between the part’s skin and its internals. Measured in energy
per unit time, or power, in Watts. A positive value means the part’s internals are gaining heat energy, and
negative means its skin is gaining heat energy.

Resources Resources { get; }
A Resources object for the part.

bool Crossfeed { get; }
Whether this part is crossfeed capable.

bool IsFuelLine { get; }
Whether this part is a fuel line.

IList<Part> FuelLinesFrom { get; }
The parts that are connected to this part via fuel lines, where the direction of the fuel line is into this part.

3.3. SpaceCenter API 63

https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx

kRPC, Release 0.3.5

Note: See the discussion on Fuel Lines.

IList<Part> FuelLinesTo { get; }
The parts that are connected to this part via fuel lines, where the direction of the fuel line is out of this part.

Note: See the discussion on Fuel Lines.

IList<Module> Modules { get; }
The modules for this part.

CargoBay CargoBay { get; }
A CargoBay if the part is a cargo bay, otherwise null.

ControlSurface ControlSurface { get; }
A ControlSurface if the part is an aerodynamic control surface, otherwise null.

Decoupler Decoupler { get; }
A Decoupler if the part is a decoupler, otherwise null.

DockingPort DockingPort { get; }
A DockingPort if the part is a docking port, otherwise null.

Engine Engine { get; }
An Engine if the part is an engine, otherwise null.

Experiment Experiment { get; }
An Experiment if the part is a science experiment, otherwise null.

Fairing Fairing { get; }
A Fairing if the part is a fairing, otherwise null.

Intake Intake { get; }
An Intake if the part is an intake, otherwise null.

Note: This includes any part that generates thrust. This covers many different types of engine, including
liquid fuel rockets, solid rocket boosters and jet engines. For RCS thrusters see RCS.

LandingGear LandingGear { get; }
A LandingGear if the part is a landing gear, otherwise null.

LandingLeg LandingLeg { get; }
A LandingLeg if the part is a landing leg, otherwise null.

LaunchClamp LaunchClamp { get; }
A LaunchClamp if the part is a launch clamp, otherwise null.

Light Light { get; }
A Light if the part is a light, otherwise null.

Parachute Parachute { get; }
A Parachute if the part is a parachute, otherwise null.

Radiator Radiator { get; }
A Radiator if the part is a radiator, otherwise null.

RCS RCS { get; }
A RCS if the part is an RCS block/thruster, otherwise null.

64 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx

kRPC, Release 0.3.5

ReactionWheel ReactionWheel { get; }
A ReactionWheel if the part is a reaction wheel, otherwise null.

ResourceConverter ResourceConverter { get; }
A ResourceConverter if the part is a resource converter, otherwise null.

ResourceHarvester ResourceHarvester { get; }
A ResourceHarvester if the part is a resource harvester, otherwise null.

Sensor Sensor { get; }
A Sensor if the part is a sensor, otherwise null.

SolarPanel SolarPanel { get; }
A SolarPanel if the part is a solar panel, otherwise null.

Tuple<double, double, double> Position (ReferenceFrame referenceFrame)
The position of the part in the given reference frame.

Parameters

Note: This is a fixed position in the part, defined by the parts model. It s not necessarily the same as the
parts center of mass. Use Part.CenterOfMass to get the parts center of mass.

Tuple<double, double, double> CenterOfMass (ReferenceFrame referenceFrame)
The position of the parts center of mass in the given reference frame. If the part is physicsless, this is
equivalent to Part.Position.

Parameters

Tuple<double, double, double> Direction (ReferenceFrame referenceFrame)
The direction of the part in the given reference frame.

Parameters

Tuple<double, double, double> Velocity (ReferenceFrame referenceFrame)
The velocity of the part in the given reference frame.

Parameters

Tuple<double, double, double, double> Rotation (ReferenceFrame referenceFrame)
The rotation of the part in the given reference frame.

Parameters

Tuple<double, double, double> MomentOfInertia { get; }
The moment of inertia of the part in 𝑘𝑔.𝑚2 around its center of mass in the parts reference frame
(ReferenceFrame).

IList<double> InertiaTensor { get; }
The inertia tensor of the part in the parts reference frame (ReferenceFrame). Returns the 3x3 matrix
as a list of elements, in row-major order.

ReferenceFrame ReferenceFrame { get; }
The reference frame that is fixed relative to this part, and centered on a fixed position within the part,
defined by the parts model.

•The origin is at the position of the part, as returned by Part.Position.

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

3.3. SpaceCenter API 65

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by DockingPort.ReferenceFrame.

Fig. 3.7: Mk1 Command Pod reference frame origin and axes

ReferenceFrame CenterOfMassReferenceFrame { get; }
The reference frame that is fixed relative to this part, and centered on its center of mass.

•The origin is at the center of mass of the part, as returned by Part.CenterOfMass.

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by DockingPort.ReferenceFrame.

Module

class Module
This can be used to interact with a specific part module. This includes part modules in stock KSP, and those
added by mods. In KSP, each part has zero or more PartModules associated with it. Each one contains some of
the functionality of the part. For example, an engine has a “ModuleEngines” part module that contains all the
functionality of an engine.

string Name { get; }
Name of the PartModule. For example, “ModuleEngines”.

Part Part { get; }
The part that contains this module.

66 Chapter 3. C#

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation#MODULES
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

IDictionary<string, string> Fields { get; }
The modules field names and their associated values, as a dictionary. These are the values visible in the
right-click menu of the part.

bool HasField (string name)
Returns true if the module has a field with the given name.

Parameters

• name – Name of the field.

string GetField (string name)
Returns the value of a field.

Parameters

• name – Name of the field.

void SetFieldInt (string name, int value)
Set the value of a field to the given integer number.

Parameters

• name – Name of the field.

• value – Value to set.

void SetFieldFloat (string name, float value)
Set the value of a field to the given floating point number.

Parameters

• name – Name of the field.

• value – Value to set.

void SetFieldString (string name, string value)
Set the value of a field to the given string.

Parameters

• name – Name of the field.

• value – Value to set.

void ResetField (string name)
Set the value of a field to its original value.

Parameters

• name – Name of the field.

IList<string> Events { get; }
A list of the names of all of the modules events. Events are the clickable buttons visible in the right-click
menu of the part.

bool HasEvent (string name)
true if the module has an event with the given name.

Parameters

void TriggerEvent (string name)
Trigger the named event. Equivalent to clicking the button in the right-click menu of the part.

Parameters

3.3. SpaceCenter API 67

https://msdn.microsoft.com/en-us/library/s4ys34ea.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

IList<string> Actions { get; }
A list of all the names of the modules actions. These are the parts actions that can be assigned to action
groups in the in-game editor.

bool HasAction (string name)
true if the part has an action with the given name.

Parameters

void SetAction (string name, bool value = True)
Set the value of an action with the given name.

Parameters

Specific Types of Part

The following classes provide functionality for specific types of part.

• Cargo Bay
• Control Surface
• Decoupler
• Docking Port
• Engine
• Experiment
• Fairing
• Intake
• Landing Gear
• Landing Leg
• Launch Clamp
• Light
• Parachute
• Radiator
• Resource Converter
• Resource Harvester
• Reaction Wheel
• RCS
• Sensor
• Solar Panel
• Thruster

Cargo Bay

class CargoBay
A cargo bay. Obtained by calling Part.CargoBay .

Part Part { get; }
The part object for this cargo bay.

CargoBayState State { get; }
The state of the cargo bay.

bool Open { get; set; }
Whether the cargo bay is open.

68 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

enum CargoBayState
The state of a cargo bay. See CargoBay.State.

Open
Cargo bay is fully open.

Closed
Cargo bay closed and locked.

Opening
Cargo bay is opening.

Closing
Cargo bay is closing.

Control Surface

class ControlSurface
An aerodynamic control surface. Obtained by calling Part.ControlSurface.

Part Part { get; }
The part object for this control surface.

bool PitchEnabled { get; set; }
Whether the control surface has pitch control enabled.

bool YawEnabled { get; set; }
Whether the control surface has yaw control enabled.

bool RollEnabled { get; set; }
Whether the control surface has roll control enabled.

bool Inverted { get; set; }
Whether the control surface movement is inverted.

bool Deployed { get; set; }
Whether the control surface has been fully deployed.

float SurfaceArea { get; }
Surface area of the control surface in 𝑚2.

Tuple<double, double, double> AvailableTorque { get; }
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel.ReferenceFrame.

Decoupler

class Decoupler
A decoupler. Obtained by calling Part.Decoupler

Part Part { get; }
The part object for this decoupler.

Vessel Decouple ()
Fires the decoupler. Returns the new vessel created when the decoupler fires. Throws an exception if the
decoupler has already fired.

bool Decoupled { get; }
Whether the decoupler has fired.

3.3. SpaceCenter API 69

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

float Impulse { get; }
The impulse that the decoupler imparts when it is fired, in Newton seconds.

Docking Port

class DockingPort
A docking port. Obtained by calling Part.DockingPort

Part Part { get; }
The part object for this docking port.

string Name { get; set; }
The port name of the docking port. This is the name of the port that can be set in the right click menu,
when the Docking Port Alignment Indicator mod is installed. If this mod is not installed, returns the title
of the part (Part.Title).

DockingPortState State { get; }
The current state of the docking port.

Part DockedPart { get; }
The part that this docking port is docked to. Returns null if this docking port is not docked to anything.

Vessel Undock ()
Undocks the docking port and returns the new Vessel that is created. This method can be called for
either docking port in a docked pair. Throws an exception if the docking port is not docked to anything.

Note: After undocking, the active vessel may change. See SpaceCenter.ActiveVessel.

float ReengageDistance { get; }
The distance a docking port must move away when it undocks before it becomes ready to dock with another
port, in meters.

bool HasShield { get; }
Whether the docking port has a shield.

bool Shielded { get; set; }
The state of the docking ports shield, if it has one. Returns true if the docking port has a shield, and
the shield is closed. Otherwise returns false. When set to true, the shield is closed, and when set to
false the shield is opened. If the docking port does not have a shield, setting this attribute has no effect.

Tuple<double, double, double> Position (ReferenceFrame referenceFrame)
The position of the docking port in the given reference frame.

Parameters

Tuple<double, double, double> Direction (ReferenceFrame referenceFrame)
The direction that docking port points in, in the given reference frame.

Parameters

Tuple<double, double, double, double> Rotation (ReferenceFrame referenceFrame)
The rotation of the docking port, in the given reference frame.

Parameters

ReferenceFrame ReferenceFrame { get; }
The reference frame that is fixed relative to this docking port, and oriented with the port.

•The origin is at the position of the docking port.

70 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
http://forum.kerbalspaceprogram.com/index.php?/topic/40423-11-docking-port-alignment-indicator-version-621-beta-updated-04122016/
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

•The axes rotate with the docking port.

•The x-axis points out to the right side of the docking port.

•The y-axis points in the direction the docking port is facing.

•The z-axis points out of the bottom off the docking port.

Note: This reference frame is not necessarily equivalent to the reference frame for the part, returned by
Part.ReferenceFrame.

Fig. 3.8: Docking port reference frame origin and axes

enum DockingPortState
The state of a docking port. See DockingPort.State.

Ready
The docking port is ready to dock to another docking port.

Docked
The docking port is docked to another docking port, or docked to another part (from the VAB/SPH).

Docking
The docking port is very close to another docking port, but has not docked. It is using magnetic force to
acquire a solid dock.

Undocking
The docking port has just been undocked from another docking port, and is disabled until it moves away
by a sufficient distance (DockingPort.ReengageDistance).

Shielded
The docking port has a shield, and the shield is closed.

3.3. SpaceCenter API 71

kRPC, Release 0.3.5

Fig. 3.9: Inline docking port reference frame origin and axes

Moving
The docking ports shield is currently opening/closing.

Engine

class Engine
An engine, including ones of various types. For example liquid fuelled gimballed engines, solid rocket boosters
and jet engines. Obtained by calling Part.Engine.

Note: For RCS thrusters Part.RCS.

Part Part { get; }
The part object for this engine.

bool Active { get; set; }
Whether the engine is active. Setting this attribute may have no effect, depending on
Engine.CanShutdown and Engine.CanRestart.

float Thrust { get; }
The current amount of thrust being produced by the engine, in Newtons.

float AvailableThrust { get; }
The amount of thrust, in Newtons, that would be produced by the engine when activated and with its
throttle set to 100%. Returns zero if the engine does not have any fuel. Takes the engine’s current
Engine.ThrustLimit and atmospheric conditions into account.

float MaxThrust { get; }
The amount of thrust, in Newtons, that would be produced by the engine when activated and fueled, with
its throttle and throttle limiter set to 100%.

72 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

float MaxVacuumThrust { get; }
The maximum amount of thrust that can be produced by the engine in a vacuum, in Newtons. This is the
amount of thrust produced by the engine when activated, Engine.ThrustLimit is set to 100%, the
main vessel’s throttle is set to 100% and the engine is in a vacuum.

float ThrustLimit { get; set; }
The thrust limiter of the engine. A value between 0 and 1. Setting this attribute may have no effect, for
example the thrust limit for a solid rocket booster cannot be changed in flight.

IList<Thruster> Thrusters { get; }
The components of the engine that generate thrust.

Note: For example, this corresponds to the rocket nozzel on a solid rocket booster, or the in-
dividual nozzels on a RAPIER engine. The overall thrust produced by the engine, as reported by
Engine.AvailableThrust, Engine.MaxThrust and others, is the sum of the thrust generated
by each thruster.

float SpecificImpulse { get; }
The current specific impulse of the engine, in seconds. Returns zero if the engine is not active.

float VacuumSpecificImpulse { get; }
The vacuum specific impulse of the engine, in seconds.

float KerbinSeaLevelSpecificImpulse { get; }
The specific impulse of the engine at sea level on Kerbin, in seconds.

IList<string> PropellantNames { get; }
The names of the propellants that the engine consumes.

IDictionary<string, float> PropellantRatios { get; }
The ratio of resources that the engine consumes. A dictionary mapping resource names to the ratio at
which they are consumed by the engine.

Note: For example, if the ratios are 0.6 for LiquidFuel and 0.4 for Oxidizer, then for every 0.6 units of
LiquidFuel that the engine burns, it will burn 0.4 units of Oxidizer.

IList<Propellant> Propellants { get; }
The propellants that the engine consumes.

bool HasFuel { get; }
Whether the engine has any fuel available.

Note: The engine must be activated for this property to update correctly.

float Throttle { get; }
The current throttle setting for the engine. A value between 0 and 1. This is not necessarily the same as
the vessel’s main throttle setting, as some engines take time to adjust their throttle (such as jet engines).

bool ThrottleLocked { get; }
Whether the Control.Throttle affects the engine. For example, this is true for liquid fueled rock-
ets, and false for solid rocket boosters.

bool CanRestart { get; }
Whether the engine can be restarted once shutdown. If the engine cannot be shutdown, returns false.
For example, this is true for liquid fueled rockets and false for solid rocket boosters.

3.3. SpaceCenter API 73

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/s4ys34ea.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

bool CanShutdown { get; }
Whether the engine can be shutdown once activated. For example, this is true for liquid fueled rockets
and false for solid rocket boosters.

bool HasModes { get; }
Whether the engine has multiple modes of operation.

string Mode { get; set; }
The name of the current engine mode.

IDictionary<string, Engine> Modes { get; }
The available modes for the engine. A dictionary mapping mode names to Engine objects.

void ToggleMode ()
Toggle the current engine mode.

bool AutoModeSwitch { get; set; }
Whether the engine will automatically switch modes.

bool Gimballed { get; }
Whether the engine is gimballed.

float GimbalRange { get; }
The range over which the gimbal can move, in degrees. Returns 0 if the engine is not gimballed.

bool GimbalLocked { get; set; }
Whether the engines gimbal is locked in place. Setting this attribute has no effect if the engine is not
gimballed.

float GimbalLimit { get; set; }
The gimbal limiter of the engine. A value between 0 and 1. Returns 0 if the gimbal is locked.

Tuple<double, double, double> AvailableTorque { get; }
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel.ReferenceFrame. Returns zero if the engine is inactive, or not
gimballed.

class Propellant
A propellant for an engine. Obtains by calling Engine.Propellants.

string Name { get; }
The name of the propellant.

double CurrentAmount { get; }
The current amount of propellant.

double CurrentRequirement { get; }
The required amount of propellant.

double TotalResourceAvailable { get; }
The total amount of the underlying resource currently reachable given resource flow rules.

double TotalResourceCapacity { get; }
The total vehicle capacity for the underlying propellant resource, restricted by resource flow rules.

bool IgnoreForIsp { get; }
If this propellant should be ignored when calculating required mass flow given specific impulse.

bool IgnoreForThrustCurve { get; }
If this propellant should be ignored for thrust curve calculations.

bool DrawStackGauge { get; }
If this propellant has a stack gauge or not.

74 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/s4ys34ea.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

bool IsDeprived { get; }
If this propellant is deprived.

float Ratio { get; }
The propellant ratio.

IList<Resource> ConnectedResources { get; }
The reachable resources connected to this propellant.

Experiment

class Experiment
Obtained by calling Part.Experiment.

Part Part { get; }
The part object for this experiment.

void Run ()
Run the experiment.

void Transmit ()
Transmit all experimental data contained by this part.

void Dump ()
Dump the experimental data contained by the experiment.

void Reset ()
Reset the experiment.

bool Deployed { get; }
Whether the experiment has been deployed.

bool Rerunnable { get; }
Whether the experiment can be re-run.

bool Inoperable { get; }
Whether the experiment is inoperable.

bool HasData { get; }
Whether the experiment contains data.

IList<ScienceData> Data { get; }
The data contained in this experiment.

class ScienceData
Obtained by calling Experiment.Data.

float DataAmount { get; }
Data amount.

float ScienceValue { get; }
Science value.

float TransmitValue { get; }
Transmit value.

Fairing

class Fairing
A fairing. Obtained by calling Part.Fairing.

3.3. SpaceCenter API 75

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

Part Part { get; }
The part object for this fairing.

void Jettison ()
Jettison the fairing. Has no effect if it has already been jettisoned.

bool Jettisoned { get; }
Whether the fairing has been jettisoned.

Intake

class Intake
An air intake. Obtained by calling Part.Intake.

Part Part { get; }
The part object for this intake.

bool Open { get; set; }
Whether the intake is open.

float Speed { get; }
Speed of the flow into the intake, in 𝑚/𝑠.

float Flow { get; }
The rate of flow into the intake, in units of resource per second.

float Area { get; }
The area of the intake’s opening, in square meters.

Landing Gear

class LandingGear
Landing gear with wheels. Obtained by calling Part.LandingGear.

Part Part { get; }
The part object for this landing gear.

LandingGearState State { get; }
Gets the current state of the landing gear.

Note: Fixed landing gear are always deployed.

bool Deployable { get; }
Whether the landing gear is deployable.

bool Deployed { get; set; }
Whether the landing gear is deployed.

Note: Fixed landing gear are always deployed. Returns an error if you try to deploy fixed landing gear.

enum LandingGearState
The state of a landing gear. See LandingGear.State.

Deployed
Landing gear is fully deployed.

76 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

Retracted
Landing gear is fully retracted.

Deploying
Landing gear is being deployed.

Retracting
Landing gear is being retracted.

Broken
Landing gear is broken.

Landing Leg

class LandingLeg
A landing leg. Obtained by calling Part.LandingLeg.

Part Part { get; }
The part object for this landing leg.

LandingLegState State { get; }
The current state of the landing leg.

bool Deployed { get; set; }
Whether the landing leg is deployed.

Note: Fixed landing legs are always deployed. Returns an error if you try to deploy fixed landing gear.

enum LandingLegState
The state of a landing leg. See LandingLeg.State.

Deployed
Landing leg is fully deployed.

Retracted
Landing leg is fully retracted.

Deploying
Landing leg is being deployed.

Retracting
Landing leg is being retracted.

Broken
Landing leg is broken.

Launch Clamp

class LaunchClamp
A launch clamp. Obtained by calling Part.LaunchClamp.

Part Part { get; }
The part object for this launch clamp.

void Release ()
Releases the docking clamp. Has no effect if the clamp has already been released.

3.3. SpaceCenter API 77

https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

Light

class Light
A light. Obtained by calling Part.Light.

Part Part { get; }
The part object for this light.

bool Active { get; set; }
Whether the light is switched on.

Tuple<float, float, float> Color { get; set; }
The color of the light, as an RGB triple.

float PowerUsage { get; }
The current power usage, in units of charge per second.

Parachute

class Parachute
A parachute. Obtained by calling Part.Parachute.

Part Part { get; }
The part object for this parachute.

void Deploy ()
Deploys the parachute. This has no effect if the parachute has already been deployed.

bool Deployed { get; }
Whether the parachute has been deployed.

ParachuteState State { get; }
The current state of the parachute.

float DeployAltitude { get; set; }
The altitude at which the parachute will full deploy, in meters.

float DeployMinPressure { get; set; }
The minimum pressure at which the parachute will semi-deploy, in atmospheres.

enum ParachuteState
The state of a parachute. See Parachute.State.

Stowed
The parachute is safely tucked away inside its housing.

Active
The parachute is still stowed, but ready to semi-deploy.

SemiDeployed
The parachute has been deployed and is providing some drag, but is not fully deployed yet.

Deployed
The parachute is fully deployed.

Cut
The parachute has been cut.

78 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

Radiator

class Radiator
A radiator. Obtained by calling Part.Radiator.

Part Part { get; }
The part object for this radiator.

bool Deployable { get; }
Whether the radiator is deployable.

bool Deployed { get; set; }
For a deployable radiator, true if the radiator is extended. If the radiator is not deployable, this is always
true.

RadiatorState State { get; }
The current state of the radiator.

Note: A fixed radiator is always RadiatorState.Extended.

enum RadiatorState
The state of a radiator. RadiatorState

Extended
Radiator is fully extended.

Retracted
Radiator is fully retracted.

Extending
Radiator is being extended.

Retracting
Radiator is being retracted.

Broken
Radiator is being broken.

Resource Converter

class ResourceConverter
A resource converter. Obtained by calling Part.ResourceConverter.

Part Part { get; }
The part object for this converter.

int Count { get; }
The number of converters in the part.

string Name (int index)
The name of the specified converter.

Parameters

• index – Index of the converter.

bool Active (int index)
True if the specified converter is active.

Parameters

3.3. SpaceCenter API 79

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx

kRPC, Release 0.3.5

• index – Index of the converter.

void Start (int index)
Start the specified converter.

Parameters

• index – Index of the converter.

void Stop (int index)
Stop the specified converter.

Parameters

• index – Index of the converter.

ResourceConverterState State (int index)
The state of the specified converter.

Parameters

• index – Index of the converter.

string StatusInfo (int index)
Status information for the specified converter. This is the full status message shown in the in-game UI.

Parameters

• index – Index of the converter.

IList<string> Inputs (int index)
List of the names of resources consumed by the specified converter.

Parameters

• index – Index of the converter.

IList<string> Outputs (int index)
List of the names of resources produced by the specified converter.

Parameters

• index – Index of the converter.

enum ResourceConverterState
The state of a resource converter. See ResourceConverter.State.

Running
Converter is running.

Idle
Converter is idle.

MissingResource
Converter is missing a required resource.

StorageFull
No available storage for output resource.

Capacity
At preset resource capacity.

Unknown
Unknown state. Possible with modified resource converters. In this case, check
ResourceConverter.StatusInfo for more information.

80 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx

kRPC, Release 0.3.5

Resource Harvester

class ResourceHarvester
A resource harvester (drill). Obtained by calling Part.ResourceHarvester.

Part Part { get; }
The part object for this harvester.

ResourceHarvesterState State { get; }
The state of the harvester.

bool Deployed { get; set; }
Whether the harvester is deployed.

bool Active { get; set; }
Whether the harvester is actively drilling.

float ExtractionRate { get; }
The rate at which the drill is extracting ore, in units per second.

float ThermalEfficiency { get; }
The thermal efficiency of the drill, as a percentage of its maximum.

float CoreTemperature { get; }
The core temperature of the drill, in Kelvin.

float OptimumCoreTemperature { get; }
The core temperature at which the drill will operate with peak efficiency, in Kelvin.

enum ResourceHarvesterState
The state of a resource harvester. See ResourceHarvester.State.

Deploying
The drill is deploying.

Deployed
The drill is deployed and ready.

Retracting
The drill is retracting.

Retracted
The drill is retracted.

Active
The drill is running.

Reaction Wheel

class ReactionWheel
A reaction wheel. Obtained by calling Part.ReactionWheel.

Part Part { get; }
The part object for this reaction wheel.

bool Active { get; set; }
Whether the reaction wheel is active.

bool Broken { get; }
Whether the reaction wheel is broken.

3.3. SpaceCenter API 81

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

Tuple<double, double, double> AvailableTorque { get; }
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel.ReferenceFrame. Returns zero if the reaction wheel is inactive
or broken.

Tuple<double, double, double> MaxTorque { get; }
The maximum torque the reaction wheel can provide, is it active, in the pitch, roll and yaw axes of the ves-
sel, in Newton meters. These axes correspond to the coordinate axes of the Vessel.ReferenceFrame.

RCS

class RCS
An RCS block or thruster. Obtained by calling Part.RCS.

Part Part { get; }
The part object for this RCS.

bool Active { get; }
Whether the RCS thrusters are active. An RCS thruster is inactive if the RCS action group is disabled
(Control.RCS), the RCS thruster itself is not enabled (RCS.Enabled) or it is covered by a fairing
(Part.Shielded).

bool Enabled { get; set; }
Whether the RCS thrusters are enabled.

bool PitchEnabled { get; set; }
Whether the RCS thruster will fire when pitch control input is given.

bool YawEnabled { get; set; }
Whether the RCS thruster will fire when yaw control input is given.

bool RollEnabled { get; set; }
Whether the RCS thruster will fire when roll control input is given.

bool ForwardEnabled { get; set; }
Whether the RCS thruster will fire when pitch control input is given.

bool UpEnabled { get; set; }
Whether the RCS thruster will fire when yaw control input is given.

bool RightEnabled { get; set; }
Whether the RCS thruster will fire when roll control input is given.

Tuple<double, double, double> AvailableTorque { get; }
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel.ReferenceFrame. Returns zero if the RCS is inactive.

float MaxThrust { get; }
The maximum amount of thrust that can be produced by the RCS thrusters when active, in Newtons.

float MaxVacuumThrust { get; }
The maximum amount of thrust that can be produced by the RCS thrusters when active in a vacuum, in
Newtons.

IList<Thruster> Thrusters { get; }
A list of thrusters, one of each nozzel in the RCS part.

float SpecificImpulse { get; }
The current specific impulse of the RCS, in seconds. Returns zero if the RCS is not active.

82 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

float VacuumSpecificImpulse { get; }
The vacuum specific impulse of the RCS, in seconds.

float KerbinSeaLevelSpecificImpulse { get; }
The specific impulse of the RCS at sea level on Kerbin, in seconds.

IList<string> Propellants { get; }
The names of resources that the RCS consumes.

IDictionary<string, float> PropellantRatios { get; }
The ratios of resources that the RCS consumes. A dictionary mapping resource names to the ratios at
which they are consumed by the RCS.

bool HasFuel { get; }
Whether the RCS has fuel available.

Note: The RCS thruster must be activated for this property to update correctly.

Sensor

class Sensor
A sensor, such as a thermometer. Obtained by calling Part.Sensor.

Part Part { get; }
The part object for this sensor.

bool Active { get; set; }
Whether the sensor is active.

string Value { get; }
The current value of the sensor.

float PowerUsage { get; }
The current power usage of the sensor, in units of charge per second.

Solar Panel

class SolarPanel
A solar panel. Obtained by calling Part.SolarPanel.

Part Part { get; }
The part object for this solar panel.

bool Deployed { get; set; }
Whether the solar panel is extended.

SolarPanelState State { get; }
The current state of the solar panel.

float EnergyFlow { get; }
The current amount of energy being generated by the solar panel, in units of charge per second.

float SunExposure { get; }
The current amount of sunlight that is incident on the solar panel, as a percentage. A value between 0 and
1.

enum SolarPanelState
The state of a solar panel. See SolarPanel.State.

3.3. SpaceCenter API 83

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/s4ys34ea.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

Extended
Solar panel is fully extended.

Retracted
Solar panel is fully retracted.

Extending
Solar panel is being extended.

Retracting
Solar panel is being retracted.

Broken
Solar panel is broken.

Thruster

class Thruster
The component of an Engine or RCS part that generates thrust. Can obtained by calling
Engine.Thrusters or RCS.Thrusters.

Note: Engines can consist of multiple thrusters. For example, the S3 KS-25x4 “Mammoth” has four rocket
nozzels, and so consists of four thrusters.

Part Part { get; }
The Part that contains this thruster.

Tuple<double, double, double> ThrustPosition (ReferenceFrame referenceFrame)
The position at which the thruster generates thrust, in the given reference frame. For gimballed engines,
this takes into account the current rotation of the gimbal.

Parameters

Tuple<double, double, double> ThrustDirection (ReferenceFrame referenceFrame)
The direction of the force generated by the thruster, in the given reference frame. This is opposite to the
direction in which the thruster expels propellant. For gimballed engines, this takes into account the current
rotation of the gimbal.

Parameters

ReferenceFrame ThrustReferenceFrame { get; }
A reference frame that is fixed relative to the thruster and orientated with its thrust direction
(Thruster.ThrustDirection). For gimballed engines, this takes into account the current rotation
of the gimbal.

•The origin is at the position of thrust for this thruster (Thruster.ThrustPosition).

•The axes rotate with the thrust direction. This is the direction in which the thruster expels propellant,
including any gimballing.

•The y-axis points along the thrust direction.

•The x-axis and z-axis are perpendicular to the thrust direction.

bool Gimballed { get; }
Whether the thruster is gimballed.

Tuple<double, double, double> GimbalPosition (ReferenceFrame referenceFrame)
Position around which the gimbal pivots.

84 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

Parameters

Tuple<double, double, double> GimbalAngle { get; }
The current gimbal angle in the pitch, roll and yaw axes.

Tuple<double, double, double> InitialThrustPosition (ReferenceFrame referenceFrame)
The position at which the thruster generates thrust, when the engine is in its initial position (no gimballing),
in the given reference frame.

Parameters

Note: This position can move when the gimbal rotates. This is because the thrust position and gimbal
position are not necessarily the same.

Tuple<double, double, double> InitialThrustDirection (ReferenceFrame referenceFrame)
The direction of the force generated by the thruster, when the engine is in its initial position (no gim-
balling), in the given reference frame. This is opposite to the direction in which the thruster expels propel-
lant.

Parameters

Trees of Parts

Vessels in KSP are comprised of a number of parts, connected to one another in a
tree structure. An example vessel is shown in Figure 1, and the corresponding tree of
parts in Figure 2. The craft file for this example can also be downloaded here.

Fig. 3.10: Figure 1 – Example parts making up a vessel.

Traversing the Tree

The tree of parts can be traversed using the at-
tributes Parts.Root, Part.Parent and
Part.Children.

The root of the tree is the same as the vessels
root part (part number 1 in the example above)
and can be obtained by calling Parts.Root.
A parts children can be obtained by calling
Part.Children. If the part does not have
any children, Part.Children returns an
empty list. A parts parent can be obtained by
calling Part.Parent. If the part does not
have a parent (as is the case for the root part),
Part.Parent returns null.

The following C# example uses these at-
tributes to perform a depth-first traversal over
all of the parts in a vessel:

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;
using System.Collections.Generic;
using System.Net;

3.3. SpaceCenter API 85

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

class AttachmentModes {
public static void Main () {

var connection = new Connection ();
var vessel = connection.SpaceCenter ().ActiveVessel;
var root = vessel.Parts.Root;
var stack = new Stack<Tuple<Part,int>> ();
stack.Push (new Tuple<Part,int> (root, 0));
while (stack.Count > 0) {

var item = stack.Pop ();
Part part = item.Item1;
int depth = item.Item2;
Console.WriteLine (new String (' ', depth) + part.Title);
foreach (var child in part.Children)

stack.Push (new Tuple<Part,int> (child, depth + 1));
}

}
}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1
TR-18A Stack Decoupler
FL-T400 Fuel Tank
LV-909 Liquid Fuel Engine
TR-18A Stack Decoupler
FL-T800 Fuel Tank
LV-909 Liquid Fuel Engine
TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

LT-1 Landing Struts
LT-1 Landing Struts

Mk16 Parachute

Attachment Modes

Parts can be attached to other parts either ra-
dially (on the side of the parent part) or axially
(on the end of the parent part, to form a stack).

For example, in the vessel pictured above, the
parachute (part 2) is axially connected to its
parent (the command pod – part 1), and the
landing leg (part 5) is radially connected to its
parent (the fuel tank – part 4).

86 Chapter 3. C#

kRPC, Release 0.3.5

The root part of a vessel (for example the com-
mand pod – part 1) does not have a parent part,

so does not have an attachment mode. However, the part is consider to be axially attached to nothing.

Fig. 3.11: Figure 2 – Tree of parts for the vessel in Figure 1. Arrows
point from the parent part to the child part.

The following C# example does a depth-first
traversal as before, but also prints out the at-
tachment mode used by the part:

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;
using System.Collections.Generic;
using System.Net;

class AttachmentModes
{

public static void Main ()
{

var connection = new Connection ();
var vessel = connection.SpaceCenter ().ActiveVessel;
var root = vessel.Parts.Root;
var stack = new Stack<Tuple<Part,int>> ();
stack.Push (new Tuple<Part,int> (root, 0));
while (stack.Count > 0) {

var item = stack.Pop ();
Part part = item.Item1;
int depth = item.Item2;
string attachMode = (part.AxiallyAttached ? "axial" : "radial");
Console.WriteLine (new String (' ', depth) + part.Title + " - " + attachMode);
foreach (var child in part.Children)

stack.Push (new Tuple<Part,int> (child, depth + 1));
}

}
}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1 - axial
TR-18A Stack Decoupler - axial
FL-T400 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TR-18A Stack Decoupler - axial
FL-T800 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

LT-1 Landing Struts - radial

3.3. SpaceCenter API 87

kRPC, Release 0.3.5

LT-1 Landing Struts - radial
Mk16 Parachute - axial

Fuel Lines

Fig. 3.12: Figure 5 – Fuel lines from the example
in Figure 1. Fuel flows from the parts highlighted
in green, into the part highlighted in blue.

Fig. 3.13: Figure 4 – A subset of the parts tree
from Figure 2 above.

Fuel lines are considered parts, and are included in the parts tree
(for example, as pictured in Figure 4). However, the parts tree
does not contain information about which parts fuel lines connect
to. The parent part of a fuel line is the part from which it will take
fuel (as shown in Figure 4) however the part that it will send fuel
to is not represented in the parts tree.

Figure 5 shows the fuel lines from the example vessel pictured
earlier. Fuel line part 15 (in red) takes fuel from a fuel tank (part
11 – in green) and feeds it into another fuel tank (part 9 – in blue).
The fuel line is therefore a child of part 11, but its connection to
part 9 is not represented in the tree.

The attributes Part.FuelLinesFrom and
Part.FuelLinesTo can be used to discover these connec-
tions. In the example in Figure 5, when Part.FuelLinesTo
is called on fuel tank part 11, it will return a list of parts
containing just fuel tank part 9 (the blue part). When
Part.FuelLinesFrom is called on fuel tank part 9, it
will return a list containing fuel tank parts 11 and 17 (the parts
colored green).

Staging

Each part has two staging numbers associated with it: the stage
in which the part is activated and the stage in which the part is
decoupled. These values can be obtained using Part.Stage
and Part.DecoupleStage respectively. For parts that are
not activated by staging, Part.Stage returns -1. For parts that

88 Chapter 3. C#

kRPC, Release 0.3.5

are never decoupled, Part.DecoupleStage returns a value
of -1.

Figure 6 shows an example staging sequence for a vessel. Figure
7 shows the stages in which each part of the vessel will be acti-
vated. Figure 8 shows the stages in which each part of the vessel
will be decoupled.

Fig. 3.14: Figure 6 – Example vessel from Figure 1 with a staging sequence.

3.3. SpaceCenter API 89

kRPC, Release 0.3.5

Fig. 3.15: Figure 7 – The stage in which each part is activated.

Fig. 3.16: Figure 8 – The stage in which each part is decou-
pled.

3.3.8 Resources

class Resources
Represents the collection of resources
stored in a vessel, stage or part. Cre-
ated by calling Vessel.Resources,
Vessel.ResourcesInDecoupleStage
or Part.Resources.

IList<Resource> All { get; }
All the individual resources that can be stored.

IList<Resource> WithResource (string name)
All the individual resources with the given name
that can be stored.

Parameters

IList<string> Names { get; }
A list of resource names that can be stored.

bool HasResource (string name)
Check whether the named resource can be stored.

Parameters

90 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

• name – The name of the resource.

float Amount (string name)
Returns the amount of a resource that is currently
stored.

Parameters

• name – The name of the resource.

float Max (string name)
Returns the amount of a resource that can be stored.

Parameters

• name – The name of the resource.

float Density (string name)
Returns the density of a resource, in kg/l.

Parameters

• name – The name of the resource.

ResourceFlowMode FlowMode (string name)
Returns the flow mode of a resource.

Parameters

• name – The name of the resource.

bool Enabled { get; set; }
Whether use of all the resources are enabled.

Note: This is true if all of the resources are enabled.
If any of the resources are not enabled, this is false.

class Resource
An individual resource stored within a part. Created
using methods in the Resources class.

string Name { get; }
The name of the resource.

Part Part { get; }
The part containing the resource.

float Amount { get; }
The amount of the resource that is currently stored
in the part.

float Max { get; }
The total amount of the resource that can be stored
in the part.

float Density { get; }
The density of the resource, in 𝑘𝑔/𝑙.

ResourceFlowMode FlowMode { get; }
The flow mode of the resource.

bool Enabled { get; set; }
Whether use of this resource is enabled.

3.3. SpaceCenter API 91

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

class ResourceTransfer
Transfer resources between parts.

ResourceTransfer Start (Part fromPart, Part toPart, string resource, float maxAmount)
Start transferring a resource transfer between a pair
of parts. The transfer will move at most maxAmount
units of the resource, depending on how much of
the resource is available in the source part and
how much storage is available in the destination
part. Use ResourceTransfer.Complete
to check if the transfer is complete. Use
ResourceTransfer.Amount to see how
much of the resource has been transferred.

Parameters

• fromPart – The part to transfer to.

• toPart – The part to transfer from.

• resource – The name of the resource to transfer.

• maxAmount – The maximum amount of resource to
transfer.

float Amount { get; }
The amount of the resource that has been transferred.

bool Complete { get; }
Whether the transfer has completed.

enum ResourceFlowMode
The way in which a resource flows between parts.
See Resources.FlowMode.

Vessel
The resource flows to any part in the vessel. For
example, electric charge.

Stage
The resource flows from parts in the first stage,
followed by the second, and so on. For example,
mono-propellant.

Adjacent
The resource flows between adjacent parts within
the vessel. For example, liquid fuel or oxidizer.

None
The resource does not flow. For example, solid fuel.

3.3.9 Node

class Node
Represents a maneuver node. Can be created using
Control.AddNode.

float Prograde { get; set; }
The magnitude of the maneuver nodes delta-v in the
prograde direction, in meters per second.

92 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

float Normal { get; set; }
The magnitude of the maneuver nodes delta-v in the
normal direction, in meters per second.

float Radial { get; set; }
The magnitude of the maneuver nodes delta-v in the
radial direction, in meters per second.

float DeltaV { get; set; }
The delta-v of the maneuver node, in meters per
second.

Note: Does not change when executing the maneu-
ver node. See Node.RemainingDeltaV .

float RemainingDeltaV { get; }
Gets the remaining delta-v of the maneuver node, in
meters per second. Changes as the node is executed.
This is equivalent to the delta-v reported in-game.

Tuple<double, double, double> BurnVector (ReferenceFrame referenceFrame = None)
Returns a vector whose direction the direction of the
maneuver node burn, and whose magnitude is the
delta-v of the burn in m/s.

Parameters

Note: Does not change when executing the maneu-
ver node. See Node.RemainingBurnVector.

Tuple<double, double, double> RemainingBurnVector (ReferenceFrame referenceFrame = None)
Returns a vector whose direction the direction of
the maneuver node burn, and whose magnitude is
the delta-v of the burn in m/s. The direction and
magnitude change as the burn is executed.

Parameters

double UT { get; set; }
The universal time at which the maneuver will occur,
in seconds.

double TimeTo { get; }
The time until the maneuver node will be encoun-
tered, in seconds.

Orbit Orbit { get; }
The orbit that results from executing the maneuver
node.

void Remove ()
Removes the maneuver node.

ReferenceFrame ReferenceFrame { get; }
Gets the reference frame that is fixed relative to the
maneuver node’s burn.

3.3. SpaceCenter API 93

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

•The origin is at the position of the maneuver node.

•The y-axis points in the direction of the burn.

•The x-axis and z-axis point in arbitrary but fixed di-
rections.

ReferenceFrame OrbitalReferenceFrame { get; }
Gets the reference frame that is fixed relative to
the maneuver node, and orientated with the orbital
prograde/normal/radial directions of the original
orbit at the maneuver node’s position.

•The origin is at the position of the maneuver node.

•The x-axis points in the orbital anti-radial direction
of the original orbit, at the position of the maneuver
node.

•The y-axis points in the orbital prograde direction
of the original orbit, at the position of the maneuver
node.

•The z-axis points in the orbital normal direction of
the original orbit, at the position of the maneuver
node.

Tuple<double, double, double> Position (ReferenceFrame referenceFrame)
Returns the position vector of the maneuver node in
the given reference frame.

Parameters

Tuple<double, double, double> Direction (ReferenceFrame referenceFrame)
Returns the unit direction vector of the maneuver
nodes burn in the given reference frame.

Parameters

3.3.10 ReferenceFrame

class ReferenceFrame
Represents a reference frame for positions, rotations
and velocities. Contains:

•The position of the origin.

•The directions of the x, y and z axes.

•The linear velocity of the frame.

•The angular velocity of the frame.

Note: This class does not contain any properties
or methods. It is only used as a parameter to other
functions.

94 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

3.3.11 AutoPilot

class AutoPilot
Provides basic auto-piloting utilities for a vessel.
Created by calling Vessel.AutoPilot.

Note: If a client engages the auto-pilot and then
closes its connection to the server, the auto-pilot will
be disengaged and its target reference frame, direc-
tion and roll reset to default.

void Engage ()
Engage the auto-pilot.

void Disengage ()
Disengage the auto-pilot.

void Wait ()
Blocks until the vessel is pointing in the target di-
rection and has the target roll (if set).

float Error { get; }
The error, in degrees, between the direction the
ship has been asked to point in and the direction
it is pointing in. Returns zero if the auto-pilot has
not been engaged and SAS is not enabled or is in
stability assist mode.

float PitchError { get; }
The error, in degrees, between the vessels current
and target pitch. Returns zero if the auto-pilot has
not been engaged.

float HeadingError { get; }
The error, in degrees, between the vessels current
and target heading. Returns zero if the auto-pilot
has not been engaged.

float RollError { get; }
The error, in degrees, between the vessels current
and target roll. Returns zero if the auto-pilot has not
been engaged or no target roll is set.

ReferenceFrame ReferenceFrame { get; set; }
The reference frame for the target direction
(AutoPilot.TargetDirection).

float TargetPitch { get; set; }
The target pitch, in degrees, between -90° and +90°.

float TargetHeading { get; set; }
The target heading, in degrees, between 0° and 360°.

float TargetRoll { get; set; }
The target roll, in degrees. NaN if no target roll is
set.

3.3. SpaceCenter API 95

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

Tuple<double, double, double> TargetDirection { get; set; }
Direction vector corresponding to the target pitch
and heading.

void TargetPitchAndHeading (float pitch, float heading)
Set target pitch and heading angles.

Parameters

• pitch – Target pitch angle, in degrees between -90°
and +90°.

• heading – Target heading angle, in degrees between
0° and 360°.

bool SAS { get; set; }
The state of SAS.

Note: Equivalent to Control.SAS

SASMode SASMode { get; set; }
The current SASMode. These modes are equivalent
to the mode buttons to the left of the navball that
appear when SAS is enabled.

Note: Equivalent to Control.SASMode

double RollThreshold { get; set; }
The threshold at which the autopilot will try to match
the target roll angle, if any. Defaults to 5 degrees.

Tuple<double, double, double> StoppingTime { get; set; }
The maximum amount of time that the vessel should
need to come to a complete stop. This determines
the maximum angular velocity of the vessel. A
vector of three stopping times, in seconds, one for
each of the pitch, roll and yaw axes. Defaults to 0.5
seconds for each axis.

Tuple<double, double, double> DecelerationTime { get; set; }
The time the vessel should take to come to a stop
pointing in the target direction. This determines the
angular acceleration used to decelerate the vessel. A
vector of three times, in seconds, one for each of the
pitch, roll and yaw axes. Defaults to 5 seconds for
each axis.

Tuple<double, double, double> AttenuationAngle { get; set; }
The angle at which the autopilot considers the vessel
to be pointing close to the target. This determines
the midpoint of the target velocity attenuation
function. A vector of three angles, in degrees, one
for each of the pitch, roll and yaw axes. Defaults to
1° for each axis.

96 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

bool AutoTune { get; set; }
Whether the rotation rate controllers PID parameters
should be automatically tuned using the vessels
moment of inertia and available torque. Defaults
to true. See AutoPilot.TimeToPeak and
AutoPilot.Overshoot.

Tuple<double, double, double> TimeToPeak { get; set; }
The target time to peak used to autotune the PID
controllers. A vector of three times, in seconds, for
each of the pitch, roll and yaw axes. Defaults to 3
seconds for each axis.

Tuple<double, double, double> Overshoot { get; set; }
The target overshoot percentage used to autotune the
PID controllers. A vector of three values, between
0 and 1, for each of the pitch, roll and yaw axes.
Defaults to 0.01 for each axis.

Tuple<double, double, double> PitchPIDGains { get; set; }
Gains for the pitch PID controller.

Note: When AutoPilot.AutoTune is true,
these values are updated automatically, which will
overwrite any manual changes.

Tuple<double, double, double> RollPIDGains { get; set; }
Gains for the roll PID controller.

Note: When AutoPilot.AutoTune is true,
these values are updated automatically, which will
overwrite any manual changes.

Tuple<double, double, double> YawPIDGains { get; set; }
Gains for the yaw PID controller.

Note: When AutoPilot.AutoTune is true,
these values are updated automatically, which will
overwrite any manual changes.

3.3.12 Geometry Types

class Vector3
3-dimensional vectors are represented as a 3-tuple.
For example:

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;
using System.Net;

class VectorExample {

3.3. SpaceCenter API 97

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

public static void Main () {
var connection = new Connection ();
var vessel = connection.SpaceCenter ().ActiveVessel;
Tuple<double,double,double> v = vessel.Flight ().Prograde;
Console.WriteLine (v.Item1 + "," + v.Item2 + "," + v.Item3);

}
}

class Quaternion
Quaternions (rotations in 3-dimensional space) are
encoded as a 4-tuple containing the x, y, z and w
components. For example:

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;
using System.Net;

class QuaternionExample {
public static void Main () {

var connection = new Connection ();
var spaceCenter = connection.SpaceCenter ();
var vessel = spaceCenter.ActiveVessel;
Tuple<double,double,double,double> q = vessel.Flight ().Rotation;
Console.WriteLine (q.Item1 + "," + q.Item2 + "," + q.Item3 + "," + q.Item4);

}
}

3.3.13 Camera

class Camera
Controls the game’s camera. Obtained by calling
SpaceCenter.Camera.

CameraMode Mode { get; set; }
The current mode of the camera.

float Pitch { get; set; }
The pitch of the camera, in degrees. A value between
Camera.MinPitch and Camera.MaxPitch

float Heading { get; set; }
The heading of the camera, in degrees.

float Distance { get; set; }
The distance from the camera to the subject. A
value between Camera.MinDistance and
Camera.MaxDistance.

float MinPitch { get; }
The minimum pitch of the camera.

float MaxPitch { get; }
The maximum pitch of the camera.

float MinDistance { get; }
Minimum distance from the camera to the subject.

98 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

float MaxDistance { get; }
Maximum distance from the camera to the subject.

float DefaultDistance { get; }
Default distance from the camera to the subject.

CelestialBody FocussedBody { get; set; }
In map mode, the celestial body that the camera
is focussed on. Returns null if the camera is not
focussed on a celestial body. Returns an error is the
camera is not in map mode.

Vessel FocussedVessel { get; set; }
In map mode, the vessel that the camera is focussed
on. Returns null if the camera is not focussed on a
vessel. Returns an error is the camera is not in map
mode.

Node FocussedNode { get; set; }
In map mode, the maneuver node that the camera
is focussed on. Returns null if the camera is not
focussed on a maneuver node. Returns an error is
the camera is not in map mode.

enum CameraMode
See Camera.Mode.

Automatic
The camera is showing the active vessel, in “auto”
mode.

Free
The camera is showing the active vessel, in “free”
mode.

Chase
The camera is showing the active vessel, in “chase”
mode.

Locked
The camera is showing the active vessel, in “locked”
mode.

Orbital
The camera is showing the active vessel, in “orbital”
mode.

IVA
The Intra-Vehicular Activity view is being shown.

Map
The map view is being shown.

3.3. SpaceCenter API 99

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

3.4 Drawing API

3.4.1 Drawing

class Drawing
Provides functionality for drawing objects in the
flight scene.

Line AddLine (Tuple<double, double, double> start, Tuple<double, double, double> end, SpaceCen-
ter.ReferenceFrame referenceFrame, bool visible = True)

Draw a line in the scene.

Parameters

• start – Position of the start of the line.

• end – Position of the end of the line.

• referenceFrame – Reference frame that the posi-
tions are in.

• visible – Whether the line is visible.

Line AddDirection (Tuple<double, double, double> direction, SpaceCenter.ReferenceFrame refer-
enceFrame, float length = 10.0, bool visible = True)

Draw a direction vector in the scene, from the center
of mass of the active vessel.

Parameters

• direction – Direction to draw the line in.

• referenceFrame – Reference frame that the direc-
tion is in.

• length – The length of the line.

• visible – Whether the line is visible.

Polygon AddPolygon (IList<Tuple<double, double, double>> vertices, SpaceCenter.ReferenceFrame
referenceFrame, bool visible = True)

Draw a polygon in the scene, defined by a list of
vertices.

Parameters

• vertices – Vertices of the polygon.

• referenceFrame – Reference frame that the vertices
are in.

• visible – Whether the polygon is visible.

Text AddText (string text, SpaceCenter.ReferenceFrame referenceFrame, Tuple<double, double, dou-
ble> position, Tuple<double, double, double, double> rotation, bool visible = True)

Draw text in the scene.

Parameters

• text – The string to draw.

• referenceFrame – Reference frame that the text po-
sition is in.

• position – Position of the text.

100 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

• rotation – Rotation of the text, as a quaternion.

• visible – Whether the text is visible.

void Clear (bool clientOnly = False)
Remove all objects being drawn.

Parameters

• clientOnly – If true, only remove objects created by
the calling client.

3.4.2 Line

class Line
A line. Created using Drawing.AddLine.

Tuple<double, double, double> Start { get; set; }
Start position of the line.

Tuple<double, double, double> End { get; set; }
End position of the line.

SpaceCenter.ReferenceFrame ReferenceFrame { get; set; }
Reference frame for the positions of the object.

bool Visible { get; set; }
Whether the object is visible.

Tuple<double, double, double> Color { get; set; }
Set the color

string Material { get; set; }
Material used to render the object. Creates the ma-
terial from a shader with the given name.

float Thickness { get; set; }
Set the thickness

void Remove ()
Remove the object.

3.4.3 Polygon

class Polygon
A polygon. Created using
Drawing.AddPolygon.

IList<Tuple<double, double, double>> Vertices { get; set; }
Vertices for the polygon.

SpaceCenter.ReferenceFrame ReferenceFrame { get; set; }
Reference frame for the positions of the object.

bool Visible { get; set; }
Whether the object is visible.

void Remove ()
Remove the object.

3.4. Drawing API 101

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

Tuple<double, double, double> Color { get; set; }
Set the color

string Material { get; set; }
Material used to render the object. Creates the ma-
terial from a shader with the given name.

float Thickness { get; set; }
Set the thickness

3.4.4 Text

class Text
Text. Created using Drawing.AddText.

Tuple<double, double, double> Position { get; set; }
Position of the text.

Tuple<double, double, double, double> Rotation { get; set; }
Rotation of the text as a quaternion.

SpaceCenter.ReferenceFrame ReferenceFrame { get; set; }
Reference frame for the positions of the object.

bool Visible { get; set; }
Whether the object is visible.

void Remove ()
Remove the object.

string Content { get; set; }
The text string

string Font { get; set; }
Name of the font

IList<string> AvailableFonts { get; }
A list of all available fonts.

int Size { get; set; }
Font size.

float CharacterSize { get; set; }
Character size.

UI.FontStyle Style { get; set; }
Font style.

Tuple<double, double, double> Color { get; set; }
Set the color

string Material { get; set; }
Material used to render the object. Creates the ma-
terial from a shader with the given name.

UI.TextAlignment Alignment { get; set; }
Alignment.

float LineSpacing { get; set; }
Line spacing.

102 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

UI.TextAnchor Anchor { get; set; }
Anchor.

3.5 InfernalRobotics API

Provides RPCs to interact with the InfernalRobotics
mod. Provides the following classes:

3.5.1 InfernalRobotics

class InfernalRobotics
This service provides functionality to interact with
Infernal Robotics.

IList<ServoGroup> ServoGroups (SpaceCenter.Vessel vessel)
A list of all the servo groups in the given vessel.

Parameters

ServoGroup ServoGroupWithName (SpaceCenter.Vessel vessel, string name)
Returns the servo group in the given vessel with
the given name, or null if none exists. If multiple
servo groups have the same name, only one of them
is returned.

Parameters

• vessel – Vessel to check.

• name – Name of servo group to find.

Servo ServoWithName (SpaceCenter.Vessel vessel, string name)
Returns the servo in the given vessel with the given
name or null if none exists. If multiple servos
have the same name, only one of them is returned.

Parameters

• vessel – Vessel to check.

• name – Name of the servo to find.

3.5.2 ServoGroup

class ServoGroup
A group of ser-
vos, obtained by calling
InfernalRobotics.ServoGroups
or InfernalRobotics.ServoGroupWithName.
Represents the “Servo Groups” in the Infernal-
Robotics UI.

string Name { get; set; }
The name of the group.

3.5. InfernalRobotics API 103

http://forum.kerbalspaceprogram.com/index.php?/topic/104535-105-magic-smoke-industries-infernal-robotics-0214/
http://forum.kerbalspaceprogram.com/index.php?/topic/104535-105-magic-smoke-industries-infernal-robotics-0214/
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

string ForwardKey { get; set; }
The key assigned to be the “forward” key for the
group.

string ReverseKey { get; set; }
The key assigned to be the “reverse” key for the
group.

float Speed { get; set; }
The speed multiplier for the group.

bool Expanded { get; set; }
Whether the group is expanded in the Infernal-
Robotics UI.

IList<Servo> Servos { get; }
The servos that are in the group.

Servo ServoWithName (string name)
Returns the servo with the given name from this
group, or null if none exists.

Parameters

• name – Name of servo to find.

IList<SpaceCenter.Part> Parts { get; }
The parts containing the servos in the group.

void MoveRight ()
Moves all of the servos in the group to the right.

void MoveLeft ()
Moves all of the servos in the group to the left.

void MoveCenter ()
Moves all of the servos in the group to the center.

void MoveNextPreset ()
Moves all of the servos in the group to the next
preset.

void MovePrevPreset ()
Moves all of the servos in the group to the previous
preset.

void Stop ()
Stops the servos in the group.

3.5.3 Servo

class Servo
Represents a servo. Obtained
using ServoGroup.Servos,
ServoGroup.ServoWithName or
InfernalRobotics.ServoWithName.

string Name { get; set; }
The name of the servo.

104 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

SpaceCenter.Part Part { get; }
The part containing the servo.

bool Highlight { set; }
Whether the servo should be highlighted in-game.

float Position { get; }
The position of the servo.

float MinConfigPosition { get; }
The minimum position of the servo, specified by the
part configuration.

float MaxConfigPosition { get; }
The maximum position of the servo, specified by
the part configuration.

float MinPosition { get; set; }
The minimum position of the servo, specified by the
in-game tweak menu.

float MaxPosition { get; set; }
The maximum position of the servo, specified by
the in-game tweak menu.

float ConfigSpeed { get; }
The speed multiplier of the servo, specified by the
part configuration.

float Speed { get; set; }
The speed multiplier of the servo, specified by the
in-game tweak menu.

float CurrentSpeed { get; set; }
The current speed at which the servo is moving.

float Acceleration { get; set; }
The current speed multiplier set in the UI.

bool IsMoving { get; }
Whether the servo is moving.

bool IsFreeMoving { get; }
Whether the servo is freely moving.

bool IsLocked { get; set; }
Whether the servo is locked.

bool IsAxisInverted { get; set; }
Whether the servos axis is inverted.

void MoveRight ()
Moves the servo to the right.

void MoveLeft ()
Moves the servo to the left.

void MoveCenter ()
Moves the servo to the center.

void MoveNextPreset ()
Moves the servo to the next preset.

3.5. InfernalRobotics API 105

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

void MovePrevPreset ()
Moves the servo to the previous preset.

void MoveTo (float position, float speed)
Moves the servo to position and sets the speed mul-
tiplier to speed.

Parameters

• position – The position to move the servo to.

• speed – Speed multiplier for the movement.

void Stop ()
Stops the servo.

3.5.4 Example

The following example gets the control group named
“MyGroup”, prints out the names and positions of
all of the servos in the group, then moves all of the
servos to the right for 1 second.

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using KRPC.Client.Services.InfernalRobotics;
using System;
using System.Threading;
using System.Net;

class IR {
public static void Main () {

var connection = new Connection (name: "InfernalRobotics Example");
var vessel = connection.SpaceCenter ().ActiveVessel;
var ir = connection.InfernalRobotics ();

var group = ir.ServoGroupWithName (vessel, "MyGroup");
if (group == null) {

Console.WriteLine ("Group not found");
return;

}

foreach (var servo in group.Servos)
Console.WriteLine (servo.Name + " " + servo.Position);

group.MoveRight ();
Thread.Sleep (1000);
group.Stop ();

}
}

3.6 Kerbal Alarm Clock API

Provides RPCs to interact with the Kerbal Alarm
Clock mod. Provides the following classes:

106 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/
http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/

kRPC, Release 0.3.5

3.6.1 KerbalAlarmClock

class KerbalAlarmClock
This service provides functionality to interact with
Kerbal Alarm Clock.

IList<Alarm> Alarms { get; }
A list of all the alarms.

Alarm AlarmWithName (string name)
Get the alarm with the given name, or null if no
alarms have that name. If more than one alarm has
the name, only returns one of them.

Parameters

• name – Name of the alarm to search for.

IList<Alarm> AlarmsWithType (AlarmType type)
Get a list of alarms of the specified type.

Parameters

• type – Type of alarm to return.

Alarm CreateAlarm (AlarmType type, string name, double ut)
Create a new alarm and return it.

Parameters

• type – Type of the new alarm.

• name – Name of the new alarm.

• ut – Time at which the new alarm should trigger.

3.6.2 Alarm

class Alarm
Represents an alarm. Obtained by call-
ing KerbalAlarmClock.Alarms,
KerbalAlarmClock.AlarmWithName or
KerbalAlarmClock.AlarmsWithType.

AlarmAction Action { get; set; }
The action that the alarm triggers.

double Margin { get; set; }
The number of seconds before the event that the
alarm will fire.

double Time { get; set; }
The time at which the alarm will fire.

AlarmType Type { get; }
The type of the alarm.

string ID { get; }
The unique identifier for the alarm.

string Name { get; set; }
The short name of the alarm.

3.6. Kerbal Alarm Clock API 107

http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

string Notes { get; set; }
The long description of the alarm.

double Remaining { get; }
The number of seconds until the alarm will fire.

bool Repeat { get; set; }
Whether the alarm will be repeated after it has fired.

double RepeatPeriod { get; set; }
The time delay to automatically create an alarm
after it has fired.

SpaceCenter.Vessel Vessel { get; set; }
The vessel that the alarm is attached to.

SpaceCenter.CelestialBody XferOriginBody { get; set; }
The celestial body the vessel is departing from.

SpaceCenter.CelestialBody XferTargetBody { get; set; }
The celestial body the vessel is arriving at.

void Remove ()
Removes the alarm.

3.6.3 AlarmType

enum AlarmType
The type of an alarm.

Raw
An alarm for a specific date/time or a specific period
in the future.

Maneuver
An alarm based on the next maneuver node on the
current ships flight path. This node will be stored
and can be restored when you come back to the ship.

ManeuverAuto
See AlarmType.Maneuver.

Apoapsis
An alarm for furthest part of the orbit from the
planet.

Periapsis
An alarm for nearest part of the orbit from the planet.

AscendingNode
Ascending node for the targeted object, or equatorial
ascending node.

DescendingNode
Descending node for the targeted object, or equato-
rial descending node.

Closest
An alarm based on the closest approach of this ves-
sel to the targeted vessel, some number of orbits
into the future.

108 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

Contract
An alarm based on the expiry or deadline of con-
tracts in career modes.

ContractAuto
See AlarmType.Contract.

Crew
An alarm that is attached to a crew member.

Distance
An alarm that is triggered when a selected target
comes within a chosen distance.

EarthTime
An alarm based on the time in the “Earth” alternative
Universe (aka the Real World).

LaunchRendevous
An alarm that fires as your landed craft passes under
the orbit of your target.

SOIChange
An alarm manually based on when the next SOI
point is on the flight path or set to continually
monitor the active flight path and add alarms as it
detects SOI changes.

SOIChangeAuto
See AlarmType.SOIChange.

Transfer
An alarm based on Interplanetary Transfer Phase
Angles, i.e. when should I launch to planet X?
Based on Kosmo Not’s post and used in Olex’s
Calculator.

TransferModelled
See AlarmType.Transfer.

3.6.4 AlarmAction

enum AlarmAction
The action performed by an alarm when it fires.

DoNothing
Don’t do anything at all...

DoNothingDeleteWhenPassed
Don’t do anything, and delete the alarm.

KillWarp
Drop out of time warp.

KillWarpOnly
Drop out of time warp.

MessageOnly
Display a message.

3.6. Kerbal Alarm Clock API 109

kRPC, Release 0.3.5

PauseGame
Pause the game.

3.6.5 Example

The following example creates a new alarm for the
active vessel. The alarm is set to trigger after 10 sec-
onds have passed, and display a message.

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using KRPC.Client.Services.KerbalAlarmClock;
using System;
using System.Net;

class KAC {
public static void Main () {

var connection = new Connection (name: "Kerbal Alarm Clock Example");
var kac = connection.KerbalAlarmClock ();
var alarm = kac.CreateAlarm (AlarmType.Raw, "My New Alarm", connection.SpaceCenter ().UT + 10);
alarm.Notes = "10 seconds have now passed since the alarm was created.";
alarm.Action = AlarmAction.MessageOnly;

}
}

3.7 RemoteTech API

3.7.1 RemoteTech

class RemoteTech
This service provides functionality to interact with
RemoteTech.

IList<string> GroundStations { get; }
The names of the ground stations.

Comms Comms (SpaceCenter.Vessel vessel)
Get a communications object, representing the com-
munication capability of a particular vessel.

Parameters

Antenna Antenna (SpaceCenter.Part part)
Get the antenna object for a particular part.

Parameters

3.7.2 Comms

class Comms
Communications for a vessel.

SpaceCenter.Vessel Vessel { get; }
Get the vessel.

110 Chapter 3. C#

http://forum.kerbalspaceprogram.com/index.php?/topic/75245-11-remotetech-v1610-2016-04-12/
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

bool HasLocalControl { get; }
Whether the vessel can be controlled locally.

bool HasFlightComputer { get; }
Whether the vessel has a flight computer on board.

bool HasConnection { get; }
Whether the vessel has any connection.

bool HasConnectionToGroundStation { get; }
Whether the vessel has a connection to a ground
station.

double SignalDelay { get; }
The shortest signal delay to the vessel, in seconds.

double SignalDelayToGroundStation { get; }
The signal delay between the vessel and the closest
ground station, in seconds.

double SignalDelayToVessel (SpaceCenter.Vessel other)
The signal delay between the this vessel and another
vessel, in seconds.

Parameters

IList<Antenna> Antennas { get; }
The antennas for this vessel.

3.7.3 Antenna

class Antenna
A RemoteTech antenna. Obtained by calling
Comms.Antennas or RemoteTech.Antenna.

SpaceCenter.Part Part { get; }
Get the part containing this antenna.

bool HasConnection { get; }
Whether the antenna has a connection.

Target Target { get; set; }
The object that the antenna is targetting.
This property can be used to set the target to
Target.None or Target.ActiveVessel.
To set the target to a celestial body, ground sta-
tion or vessel see Antenna.TargetBody ,
Antenna.TargetGroundStation and
Antenna.TargetVessel.

SpaceCenter.CelestialBody TargetBody { get; set; }
The celestial body the antenna is targetting.

string TargetGroundStation { get; set; }
The ground station the antenna is targetting.

SpaceCenter.Vessel TargetVessel { get; set; }
The vessel the antenna is targetting.

3.7. RemoteTech API 111

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

enum Target
The type of object an antenna is targetting. See
Antenna.Target.

ActiveVessel
The active vessel.

CelestialBody
A celestial body.

GroundStation
A ground station.

Vessel
A specific vessel.

None
No target.

3.8 User Interface API

3.8.1 UI

class UI
Provides functionality for drawing and interacting
with in-game user interface elements.

Canvas StockCanvas { get; }
The stock UI canvas.

Canvas AddCanvas ()
Add a new canvas.

Note: If you want to add UI elements to KSPs stock
UI canvas, use UI.StockCanvas.

void Message (string content, float duration = 1.0, MessagePosition position = 1)
Display a message on the screen.

Parameters

• content – Message content.

• duration – Duration before the message disappears,
in seconds.

• position – Position to display the message.

Note: The message appears just like a stock mes-
sage, for example quicksave or quickload messages.

void Clear (bool clientOnly = False)
Remove all user interface elements.

Parameters

112 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

• clientOnly – If true, only remove objects created by
the calling client.

enum MessagePosition
Message position.

TopLeft
Top left.

TopCenter
Top center.

TopRight
Top right.

BottomCenter
Bottom center.

3.8.2 Canvas

class Canvas
A canvas for user interface elements. See
UI.StockCanvas and UI.AddCanvas.

RectTransform RectTransform { get; }
The rect transform for the canvas.

bool Visible { get; set; }
Whether the UI object is visible.

Panel AddPanel (bool visible = True)
Create a new container for user interface elements.

Parameters

• visible – Whether the panel is visible.

Text AddText (string content, bool visible = True)
Add text to the canvas.

Parameters

• content – The text.

• visible – Whether the text is visible.

InputField AddInputField (bool visible = True)
Add an input field to the canvas.

Parameters

• visible – Whether the input field is visible.

Button AddButton (string content, bool visible = True)
Add a button to the canvas.

Parameters

• content – The label for the button.

• visible – Whether the button is visible.

void Remove ()
Remove the UI object.

3.8. User Interface API 113

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.3.5

3.8.3 Panel

class Panel
A container for user interface elements. See
Canvas.AddPanel.

RectTransform RectTransform { get; }
The rect transform for the panel.

bool Visible { get; set; }
Whether the UI object is visible.

Panel AddPanel (bool visible = True)
Create a panel within this panel.

Parameters

• visible – Whether the new panel is visible.

Text AddText (string content, bool visible = True)
Add text to the panel.

Parameters

• content – The text.

• visible – Whether the text is visible.

InputField AddInputField (bool visible = True)
Add an input field to the panel.

Parameters

• visible – Whether the input field is visible.

Button AddButton (string content, bool visible = True)
Add a button to the panel.

Parameters

• content – The label for the button.

• visible – Whether the button is visible.

void Remove ()
Remove the UI object.

3.8.4 Text

class Text
A text label. See Panel.AddText.

RectTransform RectTransform { get; }
The rect transform for the text.

bool Visible { get; set; }
Whether the UI object is visible.

string Content { get; set; }
The text string

string Font { get; set; }
Name of the font

114 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

IList<string> AvailableFonts { get; }
A list of all available fonts.

int Size { get; set; }
Font size.

FontStyle Style { get; set; }
Font style.

Tuple<double, double, double> Color { get; set; }
Set the color

TextAnchor Alignment { get; set; }
Alignment.

float LineSpacing { get; set; }
Line spacing.

void Remove ()
Remove the UI object.

enum FontStyle
Font style.

Normal
Normal.

Bold
Bold.

Italic
Italic.

BoldAndItalic
Bold and italic.

enum TextAlignment
Text alignment.

Left
Left aligned.

Right
Right aligned.

Center
Center aligned.

enum TextAnchor
Text alignment.

LowerCenter
Lower center.

LowerLeft
Lower left.

LowerRight
Lower right.

MiddleCenter
Middle center.

3.8. User Interface API 115

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.3.5

MiddleLeft
Middle left.

MiddleRight
Middle right.

UpperCenter
Upper center.

UpperLeft
Upper left.

UpperRight
Upper right.

3.8.5 Button

class Button
A text label. See Panel.AddButton.

RectTransform RectTransform { get; }
The rect transform for the text.

bool Visible { get; set; }
Whether the UI object is visible.

Text Text { get; }
The text for the button.

bool Clicked { get; set; }
Whether the button has been clicked.

Note: This property is set to true when the user
clicks the button. A client script should reset the
property to false in order to detect subsequent but-
ton presses.

void Remove ()
Remove the UI object.

3.8.6 InputField

class InputField
An input field. See Panel.AddInputField.

RectTransform RectTransform { get; }
The rect transform for the input field.

bool Visible { get; set; }
Whether the UI object is visible.

string Value { get; set; }
The value of the input field.

Text Text { get; }
The text component of the input field.

116 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

Note: Use InputField.Value to get and set
the value in the field. This object can be used to alter
the style of the input field’s text.

bool Changed { get; set; }
Whether the input field has been changed.

Note: This property is set to true when the user
modifies the value of the input field. A client script
should reset the property to false in order to detect
subsequent changes.

void Remove ()
Remove the UI object.

3.8.7 Rect Transform

class RectTransform
A Unity engine Rect Transform for a UI object. See
the Unity manual for more details.

Tuple<double, double> Position { get; set; }
Position of the rectangles pivot point relative to the
anchors.

Tuple<double, double, double> LocalPosition { get; set; }
Position of the rectangles pivot point relative to the
anchors.

Tuple<double, double> Size { get; set; }
Width and height of the rectangle.

Tuple<double, double> UpperRight { get; set; }
Position of the rectangles upper right corner relative
to the anchors.

Tuple<double, double> LowerLeft { get; set; }
Position of the rectangles lower left corner relative
to the anchors.

Tuple<double, double> Anchor { set; }
Set the minimum and maximum anchor points as a
fraction of the size of the parent rectangle.

Tuple<double, double> AnchorMax { get; set; }
The anchor point for the lower left corner of the
rectangle defined as a fraction of the size of the
parent rectangle.

Tuple<double, double> AnchorMin { get; set; }
The anchor point for the upper right corner of the
rectangle defined as a fraction of the size of the
parent rectangle.

3.8. User Interface API 117

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
http://docs.unity3d.com/Manual/class-RectTransform.html
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.3.5

Tuple<double, double> Pivot { get; set; }
Location of the pivot point around which the rect-
angle rotates, defined as a fraction of the size of the
rectangle itself.

Tuple<double, double, double, double> Rotation { get; set; }
Rotation, as a quaternion, of the object around its
pivot point.

Tuple<double, double, double> Scale { get; set; }
Scale factor applied to the object in the x, y and z
dimensions.

118 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

CHAPTER

FOUR

C++

4.1 C++ Client

This client provides functionality to interact with a kRPC server from programs written in C++. It can be downloaded
from GitHub.

4.1.1 Installing the Library

Installing Dependencies

First you need to install kRPC’s dependencies: ASIO which is used for network communication and protobuf which
is used to serialize messages.

ASIO is a headers-only library. The boost version is not required, installing the non-Boost variant is sufficient. On
Ubuntu, this can be done using apt:

sudo apt-get install libasio-dev

Alternatively it can be downloaded via the ASIO website.

Protobuf version 3 is also required, and can be downloaded from GitHub. Installation instructions can be found here.

Note: The version of protobuf currently provided in Ubuntu’s apt repositories is version 2. This will not work with
kRPC.

Install using the configure script

Once the dependencies have been installed, you can install the kRPC client library and headers using the configure
script provided with the source. Download the source archive, extract it and then execute the following:

./configure
make
sudo make install
sudo ldconfig

Install using CMake

Alternatively, you can install the client library and headers using CMake. Download the source archive, extract it and
execute the following:

119

https://github.com/krpc/krpc/releases/download/v0.3.5/krpc-cpp-0.3.5.zip
https://github.com/krpc/krpc/releases/download/v0.3.5/krpc-cpp-0.3.5.zip
http://think-async.com/
https://github.com/google/protobuf
http://think-async.com/Asio/Download
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/blob/master/src/README.md
https://github.com/krpc/krpc/releases/download/v0.3.5/krpc-cpp-0.3.5.zip
https://github.com/krpc/krpc/releases/download/v0.3.5/krpc-cpp-0.3.5.zip

kRPC, Release 0.3.5

cmake .
make
sudo make install
sudo ldconfig

Install manually

The library is fairly simple to build manually if you can’t use the configure script or CMake. The headers are in the
include folder and the source files are in src.

4.1.2 Using the Library

kRPC programs need to be compiled with C++ 2011 support enabled, and linked against libkrpc and
libprotobuf. The following example program connects to the server, queries it for its version and prints it out:

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <iostream>

int main() {
krpc::Client conn = krpc::connect();
krpc::services::KRPC krpc(&conn);
std::cout << "Connected to kRPC server version " << krpc.get_status().version() << std::endl;

}

To compile this program using GCC, save the source as main.cpp and run the following:

g++ main.cpp -std=c++11 -lkrpc -lprotobuf

Note: If you get linker errors claiming that there are undefined references to google::protobuf::... you
probably have an older version of protobuf installed on your system. In this case, replace -lprotobuf with
-l:libprotobuf.so.10 in the above command to force GCC to use the correct version of the library.

Connecting to the Server

To connect to a server, use the krpc::connect() function. This returns a client object through which you can
interact with the server. When called without any arguments, it will connect to the local machine on the default port
numbers. You can specify different connection settings, including a descriptive name for the client, as follows:

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <iostream>

int main() {
krpc::Client conn = krpc::connect("Remote example", "my.domain.name", 1000, 1001);
krpc::services::KRPC krpc(&conn);
std::cout << krpc.get_status().version() << std::endl;

}

120 Chapter 4. C++

kRPC, Release 0.3.5

Interacting with the Server

kRPC groups remote procedures into services. The functionality for the services are defined in the header files in
krpc/services/.... For example, all of the functionality provided by the SpaceCenter service is contained in
the header file krpc/services/space_center.hpp.

To interact with a service, you must include its header file and create an instance of the service, passing a
krpc::Client object to its constructor. The following example connects to the server, instantiates the SpaceCenter
service and outputs the name of the active vessel:

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect("Vessel Name");
SpaceCenter sc(&conn);
SpaceCenter::Vessel vessel = sc.active_vessel();
std::cout << vessel.name() << std::endl;

}

Streaming Data from the Server

A stream repeatedly executes a function on the server, with a fixed set of argument values. It provides a more efficient
way of repeatedly getting the result of a function, avoiding the network overhead of having to invoke it directly.

For example, consider the following loop that continuously prints out the position of the active vessel. This loop incurs
significant communication overheads, as the vessel.position() function is called repeatedly.

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect();
KRPC krpc(&conn);
SpaceCenter sc(&conn);
SpaceCenter::Vessel vessel = sc.active_vessel();
SpaceCenter::ReferenceFrame refframe = vessel.orbit().body().reference_frame();
while (true) {
std::tuple<double,double,double> pos = vessel.position(refframe);
std::cout << std::get<0>(pos) << ","

<< std::get<1>(pos) << ","
<< std::get<2>(pos) << std::endl;

}
}

The following code achieves the same thing, but is far more efficient. It calls vessel.position_stream() once
at the start of the program to create a stream, and then repeatedly gets the position from the stream.

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <krpc/services/space_center.hpp>

4.1. C++ Client 121

kRPC, Release 0.3.5

#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect();
KRPC krpc(&conn);
SpaceCenter sc(&conn);
SpaceCenter::Vessel vessel = sc.active_vessel();
SpaceCenter::ReferenceFrame refframe = vessel.orbit().body().reference_frame();
krpc::Stream<std::tuple<double,double,double>> pos_stream = vessel.position_stream(refframe);
while (true) {
std::tuple<double,double,double> pos = pos_stream();
std::cout << std::get<0>(pos) << ","

<< std::get<1>(pos) << ","
<< std::get<2>(pos) << std::endl;

}
}

A stream can be created for any function call (except property setters) by adding _stream to the end of the function’s
name. This returns a stream object of type krpc::Stream, where T is the return type of the original function. The
most recent value of the stream can be obtained by calling krpc::Stream<T>::operator()(). A stream can
be stopped and removed from the server by calling krpc::Stream<T>::remove() on the stream object. All of
a clients streams are automatically stopped when it disconnects.

4.1.3 Client API Reference

Client connect(const std::string &name = “”, const std::string &address = “127.0.0.1”, unsigned int rpc_port
= 50000, unsigned int stream_port = 50001)

This function creates a connection to a kRPC server. It returns a krpc::Client object, through which the
server can be communicated with.

Parameters

• name (std::string) – A descriptive name for the connection. This is passed to the server and
appears, for example, in the client connection dialog on the in-game server window.

• address (std::string) – The address of the server to connect to. Can either be a hostname or
an IP address in dotted decimal notation. Defaults to ‘127.0.0.1’.

• rpc_port (unsigned int) – The port number of the RPC Server. Defaults to 50000.

• stream_port (unsigned int) – The port number of the Stream Server. Defaults to 50001. Set
it to 0 to disable connection to the stream server.

class Client
This class provides the interface for communicating with the server. It is used by service class instances to
invoke remote procedure calls. Instances of this class can be obtained by calling krpc::connect().

class KRPC
This class provides access to the basic server functionality provided by the KRPC service. Most of this function-
ality is used internally by the client (for example to create and remove streams) and therefore does not need to
be used directly from application code. The only exception that may be useful is KRPC::get_status().

KRPC(krpc::Client *client)
Construct an instance of this service from the given krpc::Client object.

122 Chapter 4. C++

kRPC, Release 0.3.5

krpc::schema::Status get_status()
Gets a status message from the server containing information including the server’s version string and
performance statistics.

For example, the following prints out the version string for the server:

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <iostream>

int main() {
krpc::Client conn = krpc::connect("Remote example", "my.domain.name", 1000, 1001);
krpc::services::KRPC krpc(&conn);
std::cout << krpc.get_status().version() << std::endl;

}

Or to get the rate at which the server is sending and receiving data over the network:

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <iostream>

int main() {
krpc::Client conn = krpc::connect();
krpc::services::KRPC krpc(&conn);
krpc::schema::Status status = krpc.get_status();
std::cout << "Data in = " << (status.bytes_read_rate()/1024.0) << " KB/s" << std::endl;
std::cout << "Data out = " << (status.bytes_written_rate()/1024.0) << " KB/s" << std::endl;

}

class Stream<T>
A stream object. Streams are created by calling a function with _stream appended to its name.

T operator()()
Get the most recently received value from the stream.

void remove()
Remove the stream from the server.

4.2 KRPC API

class KRPC : public krpc::Service
Main kRPC service, used by clients to interact with basic server functionality.

KRPC(krpc::Client *client)
Construct an instance of this service.

krpc::schema::Status get_status()
Returns some information about the server, such as the version.

krpc::schema::Services get_services()
Returns information on all services, procedures, classes, properties etc. provided by the server. Can be
used by client libraries to automatically create functionality such as stubs.

GameScene current_game_scene()
Get the current game scene.

uint32_t add_stream(krpc::schema::Request request)
Add a streaming request and return its identifier.

4.2. KRPC API 123

kRPC, Release 0.3.5

Parameters

Note: Do not call this method from client code. Use streams provided by the C++ client library.

void remove_stream(uint32_t id)
Remove a streaming request.

Parameters

Note: Do not call this method from client code. Use streams provided by the C++ client library.

enum struct GameScene
The game scene. See current_game_scene().

enumerator space_center
The game scene showing the Kerbal Space Center buildings.

enumerator flight
The game scene showing a vessel in flight (or on the launchpad/runway).

enumerator tracking_station
The tracking station.

enumerator editor_vab
The Vehicle Assembly Building.

enumerator editor_sph
The Space Plane Hangar.

4.3 SpaceCenter API

4.3.1 SpaceCenter

class SpaceCenter : public krpc::Service
Provides functionality to interact with Kerbal Space Program. This includes controlling the active vessel, man-
aging its resources, planning maneuver nodes and auto-piloting.

SpaceCenter(krpc::Client *client)
Construct an instance of this service.

Vessel active_vessel()

void set_active_vessel(Vessel value)
The currently active vessel.

std::vector<Vessel> vessels()
A list of all the vessels in the game.

std::map<std::string, CelestialBody> bodies()
A dictionary of all celestial bodies (planets, moons, etc.) in the game, keyed by the name of the body.

CelestialBody target_body()

void set_target_body(CelestialBody value)
The currently targeted celestial body.

Vessel target_vessel()

124 Chapter 4. C++

kRPC, Release 0.3.5

void set_target_vessel(Vessel value)
The currently targeted vessel.

DockingPort target_docking_port()

void set_target_docking_port(DockingPort value)
The currently targeted docking port.

void clear_target()
Clears the current target.

std::vector<std::string> launchable_vessels(std::string craft_directory)
Returns a list of vessels from the given craft_directory that can be launched.

Parameters

• craft_directory – Name of the directory in the current saves “Ships” directory. For exam-
ple "VAB" or "SPH".

void launch_vessel(std::string craft_directory, std::string name, std::string launch_site)
Launch a vessel.

Parameters

• craft_directory – Name of the directory in the current saves “Ships” directory, that con-
tains the craft file. For example "VAB" or "SPH".

• name – Name of the vessel to launch. This is the name of the ”.craft” file in the save
directory, without the ”.craft” file extension.

• launch_site – Name of the launch site. For example "LaunchPad" or "Runway".

void launch_vessel_from_vab(std::string name)
Launch a new vessel from the VAB onto the launchpad.

Parameters

• name – Name of the vessel to launch.

Note: This is equivalent to calling launch_vessel() with the craft directory set to “VAB” and the
launch site set to “LaunchPad”.

void launch_vessel_from_sph(std::string name)
Launch a new vessel from the SPH onto the runway.

Parameters

• name – Name of the vessel to launch.

Note: This is equivalent to calling launch_vessel() with the craft directory set to “SPH” and the
launch site set to “Runway”.

void save(std::string name)
Save the game with a given name. This will create a save file called name.sfs in the folder of the current
save game.

Parameters

void load(std::string name)
Load the game with the given name. This will create a load a save file called name.sfs from the folder
of the current save game.

4.3. SpaceCenter API 125

kRPC, Release 0.3.5

Parameters

void quicksave()
Save a quicksave.

Note: This is the same as calling save() with the name “quicksave”.

void quickload()
Load a quicksave.

Note: This is the same as calling load() with the name “quicksave”.

Camera camera()
An object that can be used to control the camera.

double ut()
The current universal time in seconds.

float g()
The value of the gravitational constant G in 𝑁(𝑚/𝑘𝑔)2.

WarpMode warp_mode()
The current time warp mode. Returns WarpMode::none if time warp is not active,
WarpMode::rails if regular “on-rails” time warp is active, or WarpMode::physics if physical
time warp is active.

float warp_rate()
The current warp rate. This is the rate at which time is passing for either on-rails or physical time warp.
For example, a value of 10 means time is passing 10x faster than normal. Returns 1 if time warp is not
active.

float warp_factor()
The current warp factor. This is the index of the rate at which time is passing for either regular “on-rails”
or physical time warp. Returns 0 if time warp is not active. When in on-rails time warp, this is equal to
rails_warp_factor(), and in physics time warp, this is equal to physics_warp_factor().

int32_t rails_warp_factor()

void set_rails_warp_factor(int32_t value)
The time warp rate, using regular “on-rails” time warp. A value between 0 and 7 inclusive. 0 means no
time warp. Returns 0 if physical time warp is active. If requested time warp factor cannot be set, it will be
set to the next lowest possible value. For example, if the vessel is too close to a planet. See the KSP wiki
for details.

int32_t physics_warp_factor()

void set_physics_warp_factor(int32_t value)
The physical time warp rate. A value between 0 and 3 inclusive. 0 means no time warp. Returns 0 if
regular “on-rails” time warp is active.

bool can_rails_warp_at(int32_t factor = 1)
Returns true if regular “on-rails” time warp can be used, at the specified warp factor. The maximum
time warp rate is limited by various things, including how close the active vessel is to a planet. See the
KSP wiki for details.

Parameters

• factor – The warp factor to check.

126 Chapter 4. C++

https://en.wikipedia.org/wiki/Gravitational_constant
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.3.5

int32_t maximum_rails_warp_factor()
The current maximum regular “on-rails” warp factor that can be set. A value between 0 and 7 inclusive.
See the KSP wiki for details.

void warp_to(double ut, float max_rails_rate = 100000.0, float max_physics_rate = 2.0)
Uses time acceleration to warp forward to a time in the future, specified by universal time ut. This call
blocks until the desired time is reached. Uses regular “on-rails” or physical time warp as appropriate. For
example, physical time warp is used when the active vessel is traveling through an atmosphere. When
using regular “on-rails” time warp, the warp rate is limited by max_rails_rate, and when using physical
time warp, the warp rate is limited by max_physics_rate.

Parameters

• ut – The universal time to warp to, in seconds.

• max_rails_rate – The maximum warp rate in regular “on-rails” time warp.

• max_physics_rate – The maximum warp rate in physical time warp.

Returns When the time warp is complete.

std::tuple<double, double, double> transform_position(std::tuple<double, double, double> po-
sition, ReferenceFrame from, Reference-
Frame to)

Converts a position vector from one reference frame to another.

Parameters

• position – Position vector in reference frame from.

• from – The reference frame that the position vector is in.

• to – The reference frame to covert the position vector to.

Returns The corresponding position vector in reference frame to.

std::tuple<double, double, double> transform_direction(std::tuple<double, double, double> di-
rection, ReferenceFrame from, Refer-
enceFrame to)

Converts a direction vector from one reference frame to another.

Parameters

• direction – Direction vector in reference frame from.

• from – The reference frame that the direction vector is in.

• to – The reference frame to covert the direction vector to.

Returns The corresponding direction vector in reference frame to.

std::tuple<double, double, double, double> transform_rotation(std::tuple<double, double, dou-
ble, double> rotation, Reference-
Frame from, ReferenceFrame to)

Converts a rotation from one reference frame to another.

Parameters

• rotation – Rotation in reference frame from.

• from – The reference frame that the rotation is in.

• to – The corresponding rotation in reference frame to.

Returns The corresponding rotation in reference frame to.

4.3. SpaceCenter API 127

http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.3.5

std::tuple<double, double, double> transform_velocity(std::tuple<double, double, double> po-
sition, std::tuple<double, double, dou-
ble> velocity, ReferenceFrame from, Ref-
erenceFrame to)

Converts a velocity vector (acting at the specified position vector) from one reference frame to another.
The position vector is required to take the relative angular velocity of the reference frames into account.

Parameters

• position – Position vector in reference frame from.

• velocity – Velocity vector in reference frame from.

• from – The reference frame that the position and velocity vectors are in.

• to – The reference frame to covert the velocity vector to.

Returns The corresponding velocity in reference frame to.

bool far_available()
Whether Ferram Aerospace Research is installed.

enum struct WarpMode
The time warp mode. Returned by WarpMode

enumerator rails
Time warp is active, and in regular “on-rails” mode.

enumerator physics
Time warp is active, and in physical time warp mode.

enumerator none
Time warp is not active.

4.3.2 Vessel

class Vessel
These objects are used to interact with vessels in KSP. This includes getting orbital and flight data, manipulating
control inputs and managing resources. Created using active_vessel() or vessels().

std::string name()

void set_name(std::string value)
The name of the vessel.

VesselType type()

void set_type(VesselType value)
The type of the vessel.

VesselSituation situation()
The situation the vessel is in.

bool recoverable()
Whether the vessel is recoverable.

void recover()
Recover the vessel.

double met()
The mission elapsed time in seconds.

128 Chapter 4. C++

http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

Flight flight(ReferenceFrame reference_frame = None)
Returns a Flight object that can be used to get flight telemetry for the vessel, in the specified reference
frame.

Parameters

• reference_frame – Reference frame. Defaults to the vessel’s surface reference frame
(Vessel::surface_reference_frame()).

Note: When this is called with no arguments, the vessel’s surface reference frame is used. This reference
frame moves with the vessel, therefore velocities and speeds returned by the flight object will be zero. See
the reference frames tutorial for examples of getting the orbital speed and surface speed of a vessel.

Orbit orbit()
The current orbit of the vessel.

Control control()
Returns a Control object that can be used to manipulate the vessel’s control inputs. For example, its
pitch/yaw/roll controls, RCS and thrust.

AutoPilot auto_pilot()
An AutoPilot object, that can be used to perform simple auto-piloting of the vessel.

Resources resources()
A Resources object, that can used to get information about resources stored in the vessel.

Resources resources_in_decouple_stage(int32_t stage, bool cumulative = True)
Returns a Resources object, that can used to get information about resources stored in a given stage.

Parameters

• stage – Get resources for parts that are decoupled in this stage.

• cumulative – When false, returns the resources for parts decoupled in just the given
stage. When true returns the resources decoupled in the given stage and all subsequent
stages combined.

Note: For details on stage numbering, see the discussion on Staging.

Parts parts()
A Parts object, that can used to interact with the parts that make up this vessel.

float mass()
The total mass of the vessel, including resources, in kg.

float dry_mass()
The total mass of the vessel, excluding resources, in kg.

float thrust()
The total thrust currently being produced by the vessel’s engines, in Newtons. This is computed by sum-
ming Engine::thrust() for every engine in the vessel.

float available_thrust()
Gets the total available thrust that can be produced by the vessel’s active engines, in Newtons. This is
computed by summing Engine::available_thrust() for every active engine in the vessel.

float max_thrust()
The total maximum thrust that can be produced by the vessel’s active engines, in Newtons. This is com-
puted by summing Engine::max_thrust() for every active engine.

4.3. SpaceCenter API 129

kRPC, Release 0.3.5

float max_vacuum_thrust()
The total maximum thrust that can be produced by the vessel’s active engines when the vessel is in a
vacuum, in Newtons. This is computed by summing Engine::max_vacuum_thrust() for every
active engine.

float specific_impulse()
The combined specific impulse of all active engines, in seconds. This is computed using the formula
described here.

float vacuum_specific_impulse()
The combined vacuum specific impulse of all active engines, in seconds. This is computed using the
formula described here.

float kerbin_sea_level_specific_impulse()
The combined specific impulse of all active engines at sea level on Kerbin, in seconds. This is computed
using the formula described here.

std::tuple<double, double, double> moment_of_inertia()
The moment of inertia of the vessel around its center of mass in 𝑘𝑔.𝑚2. The inertia values are
around the pitch, roll and yaw directions respectively. This corresponds to the vessels reference frame
(Vessel::reference_frame()).

std::vector<double> inertia_tensor()
The inertia tensor of the vessel around its center of mass, in the vessels reference frame
(Vessel::reference_frame()). Returns the 3x3 matrix as a list of elements, in row-major order.

std::tuple<double, double, double> available_torque()
The maximum torque that the vessel generate. Includes contributions from reaction wheels, RCS, gim-
balled engines and aerodynamic control surfaces. Returns the torques in 𝑁.𝑚 around each of the coordi-
nate axes of the vessels reference frame (Vessel::reference_frame()). These axes are equivalent
to the pitch, roll and yaw axes of the vessel.

std::tuple<double, double, double> available_reaction_wheel_torque()
The maximum torque that the currently active and powered reaction wheels can generate. Re-
turns the torques in 𝑁.𝑚 around each of the coordinate axes of the vessels reference frame
(Vessel::reference_frame()). These axes are equivalent to the pitch, roll and yaw axes of the
vessel.

std::tuple<double, double, double> available_rcs_torque()
The maximum torque that the currently active RCS thrusters can generate. Returns the torques in 𝑁.𝑚
around each of the coordinate axes of the vessels reference frame (Vessel::reference_frame()).
These axes are equivalent to the pitch, roll and yaw axes of the vessel.

std::tuple<double, double, double> available_engine_torque()
The maximum torque that the currently active and gimballed engines can generate. Re-
turns the torques in 𝑁.𝑚 around each of the coordinate axes of the vessels reference frame
(Vessel::reference_frame()). These axes are equivalent to the pitch, roll and yaw axes of the
vessel.

std::tuple<double, double, double> available_control_surface_torque()
The maximum torque that the aerodynamic control surfaces can generate. Returns the torques in 𝑁.𝑚
around each of the coordinate axes of the vessels reference frame (Vessel::reference_frame()).
These axes are equivalent to the pitch, roll and yaw axes of the vessel.

ReferenceFrame reference_frame()
The reference frame that is fixed relative to the vessel, and orientated with the vessel.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel.

130 Chapter 4. C++

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.3.5

•The x-axis points out to the right of the vessel.

•The y-axis points in the forward direction of the vessel.

•The z-axis points out of the bottom off the vessel.

Fig. 4.1: Vessel reference frame origin and axes for the Aeris 3A aircraft

ReferenceFrame orbital_reference_frame()
The reference frame that is fixed relative to the vessel, and orientated with the vessels orbital pro-
grade/normal/radial directions.

•The origin is at the center of mass of the vessel.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Note: Be careful not to confuse this with ‘orbit’ mode on the navball.

ReferenceFrame surface_reference_frame()
The reference frame that is fixed relative to the vessel, and orientated with the surface of the body being
orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the north and up directions on the surface of the body.

•The x-axis points in the zenith direction (upwards, normal to the body being orbited, from the center
of the body towards the center of mass of the vessel).

•The y-axis points northwards towards the astronomical horizon (north, and tangential to the surface
of the body – the direction in which a compass would point when on the surface).

•The z-axis points eastwards towards the astronomical horizon (east, and tangential to the surface of
the body – east on a compass when on the surface).

4.3. SpaceCenter API 131

https://en.wikipedia.org/wiki/Zenith
https://en.wikipedia.org/wiki/Horizon
https://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.3.5

Fig. 4.2: Vessel reference frame origin and axes for the Kerbal-X rocket

132 Chapter 4. C++

kRPC, Release 0.3.5

Fig. 4.3: Vessel orbital reference frame origin and axes

Note: Be careful not to confuse this with ‘surface’ mode on the navball.

ReferenceFrame surface_velocity_reference_frame()
The reference frame that is fixed relative to the vessel, and orientated with the velocity vector of the vessel
relative to the surface of the body being orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel’s velocity vector.

•The y-axis points in the direction of the vessel’s velocity vector, relative to the surface of the body
being orbited.

•The z-axis is in the plane of the astronomical horizon.

•The x-axis is orthogonal to the other two axes.

std::tuple<double, double, double> position(ReferenceFrame reference_frame)
Returns the position vector of the center of mass of the vessel in the given reference frame.

Parameters

std::tuple<double, double, double> velocity(ReferenceFrame reference_frame)
Returns the velocity vector of the center of mass of the vessel in the given reference frame.

Parameters

std::tuple<double, double, double, double> rotation(ReferenceFrame reference_frame)
Returns the rotation of the center of mass of the vessel in the given reference frame.

Parameters

std::tuple<double, double, double> direction(ReferenceFrame reference_frame)
Returns the direction in which the vessel is pointing, as a unit vector, in the given reference frame.

Parameters

4.3. SpaceCenter API 133

https://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.3.5

Fig. 4.4: Vessel surface reference frame origin and axes

Fig. 4.5: Vessel surface velocity reference frame origin and axes

134 Chapter 4. C++

kRPC, Release 0.3.5

std::tuple<double, double, double> angular_velocity(ReferenceFrame reference_frame)
Returns the angular velocity of the vessel in the given reference frame. The magnitude of the returned
vector is the rotational speed in radians per second, and the direction of the vector indicates the axis of
rotation (using the right hand rule).

Parameters

enum struct VesselType
The type of a vessel. See Vessel::type().

enumerator ship
Ship.

enumerator station
Station.

enumerator lander
Lander.

enumerator probe
Probe.

enumerator rover
Rover.

enumerator base
Base.

enumerator debris
Debris.

enum struct VesselSituation
The situation a vessel is in. See Vessel::situation().

enumerator docked
Vessel is docked to another.

enumerator escaping
Escaping.

enumerator flying
Vessel is flying through an atmosphere.

enumerator landed
Vessel is landed on the surface of a body.

enumerator orbiting
Vessel is orbiting a body.

enumerator pre_launch
Vessel is awaiting launch.

enumerator splashed
Vessel has splashed down in an ocean.

enumerator sub_orbital
Vessel is on a sub-orbital trajectory.

4.3.3 CelestialBody

class CelestialBody
Represents a celestial body (such as a planet or moon). See bodies().

4.3. SpaceCenter API 135

kRPC, Release 0.3.5

std::string name()
The name of the body.

std::vector<CelestialBody> satellites()
A list of celestial bodies that are in orbit around this celestial body.

Orbit orbit()
The orbit of the body.

float mass()
The mass of the body, in kilograms.

float gravitational_parameter()
The standard gravitational parameter of the body in 𝑚3𝑠−2.

float surface_gravity()
The acceleration due to gravity at sea level (mean altitude) on the body, in 𝑚/𝑠2.

float rotational_period()
The sidereal rotational period of the body, in seconds.

float rotational_speed()
The rotational speed of the body, in radians per second.

float equatorial_radius()
The equatorial radius of the body, in meters.

double surface_height(double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water this
is equal to 0.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

double bedrock_height(double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water, this
is the height of the sea-bed and is therefore a negative value.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

std::tuple<double, double, double> msl_position(double latitude, double longitude, ReferenceFrame
reference_frame)

The position at mean sea level at the given latitude and longitude, in the given reference frame.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

• reference_frame – Reference frame for the returned position vector

std::tuple<double, double, double> surface_position(double latitude, double longitude, Refer-
enceFrame reference_frame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position of the surface of the water.

Parameters

136 Chapter 4. C++

https://en.wikipedia.org/wiki/Standard_gravitational_parameter

kRPC, Release 0.3.5

• latitude – Latitude in degrees

• longitude – Longitude in degrees

• reference_frame – Reference frame for the returned position vector

std::tuple<double, double, double> bedrock_position(double latitude, double longitude, Refer-
enceFrame reference_frame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position at the bottom of the sea-bed.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

• reference_frame – Reference frame for the returned position vector

float sphere_of_influence()
The radius of the sphere of influence of the body, in meters.

bool has_atmosphere()
true if the body has an atmosphere.

float atmosphere_depth()
The depth of the atmosphere, in meters.

bool has_atmospheric_oxygen()
true if there is oxygen in the atmosphere, required for air-breathing engines.

ReferenceFrame reference_frame()
The reference frame that is fixed relative to the celestial body.

•The origin is at the center of the body.

•The axes rotate with the body.

•The x-axis points from the center of the body towards the intersection of the prime meridian and
equator (the position at 0° longitude, 0° latitude).

•The y-axis points from the center of the body towards the north pole.

•The z-axis points from the center of the body towards the equator at 90°E longitude.

ReferenceFrame non_rotating_reference_frame()
The reference frame that is fixed relative to this celestial body, and orientated in a fixed direction (it does
not rotate with the body).

•The origin is at the center of the body.

•The axes do not rotate.

•The x-axis points in an arbitrary direction through the equator.

•The y-axis points from the center of the body towards the north pole.

•The z-axis points in an arbitrary direction through the equator.

ReferenceFrame orbital_reference_frame()
Gets the reference frame that is fixed relative to this celestial body, but orientated with the body’s orbital
prograde/normal/radial directions.

•The origin is at the center of the body.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

4.3. SpaceCenter API 137

kRPC, Release 0.3.5

Fig. 4.6: Celestial body reference frame origin and axes. The equator is shown in blue, and the prime meridian in red.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

std::tuple<double, double, double> position(ReferenceFrame reference_frame)
Returns the position vector of the center of the body in the specified reference frame.

Parameters

std::tuple<double, double, double> velocity(ReferenceFrame reference_frame)
Returns the velocity vector of the body in the specified reference frame.

Parameters

std::tuple<double, double, double, double> rotation(ReferenceFrame reference_frame)
Returns the rotation of the body in the specified reference frame.

Parameters

std::tuple<double, double, double> direction(ReferenceFrame reference_frame)
Returns the direction in which the north pole of the celestial body is pointing, as a unit vector, in the
specified reference frame.

Parameters

std::tuple<double, double, double> angular_velocity(ReferenceFrame reference_frame)
Returns the angular velocity of the body in the specified reference frame. The magnitude of the vector is
the rotational speed of the body, in radians per second, and the direction of the vector indicates the axis of
rotation, using the right-hand rule.

Parameters

4.3.4 Flight

class Flight
Used to get flight telemetry for a vessel, by calling Vessel::flight(). All of the information returned by

138 Chapter 4. C++

kRPC, Release 0.3.5

this class is given in the reference frame passed to that method. Obtained by calling Vessel::flight().

Note: To get orbital information, such as the apoapsis or inclination, see Orbit.

float g_force()
The current G force acting on the vessel in 𝑚/𝑠2.

double mean_altitude()
The altitude above sea level, in meters. Measured from the center of mass of the vessel.

double surface_altitude()
The altitude above the surface of the body or sea level, whichever is closer, in meters. Measured from the
center of mass of the vessel.

double bedrock_altitude()
The altitude above the surface of the body, in meters. When over water, this is the altitude above the sea
floor. Measured from the center of mass of the vessel.

double elevation()
The elevation of the terrain under the vessel, in meters. This is the height of the terrain above sea level,
and is negative when the vessel is over the sea.

double latitude()
The latitude of the vessel for the body being orbited, in degrees.

double longitude()
The longitude of the vessel for the body being orbited, in degrees.

std::tuple<double, double, double> velocity()
The velocity vector of the vessel. The magnitude of the vector is the speed of the vessel in meters per
second. The direction of the vector is the direction of the vessels motion.

double speed()
The speed of the vessel in meters per second.

double horizontal_speed()
The horizontal speed of the vessel in meters per second.

double vertical_speed()
The vertical speed of the vessel in meters per second.

std::tuple<double, double, double> center_of_mass()
The position of the center of mass of the vessel.

std::tuple<double, double, double, double> rotation()
The rotation of the vessel.

std::tuple<double, double, double> direction()
The direction vector that the vessel is pointing in.

float pitch()
The pitch angle of the vessel relative to the horizon, in degrees. A value between -90° and +90°.

float heading()
The heading angle of the vessel relative to north, in degrees. A value between 0° and 360°.

float roll()
The roll angle of the vessel relative to the horizon, in degrees. A value between -180° and +180°.

std::tuple<double, double, double> prograde()
The unit direction vector pointing in the prograde direction.

4.3. SpaceCenter API 139

https://en.wikipedia.org/wiki/Latitude
https://en.wikipedia.org/wiki/Longitude

kRPC, Release 0.3.5

std::tuple<double, double, double> retrograde()
The unit direction vector pointing in the retrograde direction.

std::tuple<double, double, double> normal()
The unit direction vector pointing in the normal direction.

std::tuple<double, double, double> anti_normal()
The unit direction vector pointing in the anti-normal direction.

std::tuple<double, double, double> radial()
The unit direction vector pointing in the radial direction.

std::tuple<double, double, double> anti_radial()
The unit direction vector pointing in the anti-radial direction.

float atmosphere_density()
The current density of the atmosphere around the vessel, in 𝑘𝑔/𝑚3.

float dynamic_pressure()
The dynamic pressure acting on the vessel, in Pascals. This is a measure of the strength of the aerodynamic
forces. It is equal to 1

2 .air density.velocity2. It is commonly denoted as 𝑄.

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float static_pressure()
The static atmospheric pressure acting on the vessel, in Pascals.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

std::tuple<double, double, double> aerodynamic_force()
The total aerodynamic forces acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

std::tuple<double, double, double> lift()
The aerodynamic lift currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

std::tuple<double, double, double> drag()
The aerodynamic drag currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

140 Chapter 4. C++

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

float speed_of_sound()
The speed of sound, in the atmosphere around the vessel, in 𝑚/𝑠.

Note: Not available when Ferram Aerospace Research is installed.

float mach()
The speed of the vessel, in multiples of the speed of sound.

Note: Not available when Ferram Aerospace Research is installed.

float equivalent_air_speed()
The equivalent air speed of the vessel, in 𝑚/𝑠.

Note: Not available when Ferram Aerospace Research is installed.

float terminal_velocity()
An estimate of the current terminal velocity of the vessel, in 𝑚/𝑠. This is the speed at which the drag
forces cancel out the force of gravity.

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float angle_of_attack()
Gets the pitch angle between the orientation of the vessel and its velocity vector, in degrees.

float sideslip_angle()
Gets the yaw angle between the orientation of the vessel and its velocity vector, in degrees.

float total_air_temperature()
The total air temperature of the atmosphere around the vessel, in Kelvin. This temperature includes the
Flight::static_air_temperature() and the vessel’s kinetic energy.

float static_air_temperature()
The static (ambient) temperature of the atmosphere around the vessel, in Kelvin.

float stall_fraction()
Gets the current amount of stall, between 0 and 1. A value greater than 0.005 indicates a minor stall and a
value greater than 0.5 indicates a large-scale stall.

Note: Requires Ferram Aerospace Research.

float drag_coefficient()
Gets the coefficient of drag. This is the amount of drag produced by the vessel. It depends on air speed,
air density and wing area.

Note: Requires Ferram Aerospace Research.

float lift_coefficient()
Gets the coefficient of lift. This is the amount of lift produced by the vessel, and depends on air speed, air
density and wing area.

4.3. SpaceCenter API 141

http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Equivalent_airspeed
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Total_air_temperature
https://en.wikipedia.org/wiki/Total_air_temperature
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

Note: Requires Ferram Aerospace Research.

float ballistic_coefficient()
Gets the ballistic coefficient.

Note: Requires Ferram Aerospace Research.

float thrust_specific_fuel_consumption()
Gets the thrust specific fuel consumption for the jet engines on the vessel. This is a measure of the
efficiency of the engines, with a lower value indicating a more efficient vessel. This value is the number of
Newtons of fuel that are burned, per hour, to product one newton of thrust.

Note: Requires Ferram Aerospace Research.

4.3.5 Orbit

class Orbit
Describes an orbit. For example, the orbit of a vessel, obtained by calling Vessel::orbit(), or a celestial
body, obtained by calling CelestialBody::orbit().

CelestialBody body()
The celestial body (e.g. planet or moon) around which the object is orbiting.

double apoapsis()
Gets the apoapsis of the orbit, in meters, from the center of mass of the body being orbited.

Note: For the apoapsis altitude reported on the in-game map view, use
Orbit::apoapsis_altitude().

double periapsis()
The periapsis of the orbit, in meters, from the center of mass of the body being orbited.

Note: For the periapsis altitude reported on the in-game map view, use
Orbit::periapsis_altitude().

double apoapsis_altitude()
The apoapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to Orbit::apoapsis() minus the equatorial radius of the body.

double periapsis_altitude()
The periapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to Orbit::periapsis() minus the equatorial radius of the body.

142 Chapter 4. C++

http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Ballistic_coefficient
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

double semi_major_axis()
The semi-major axis of the orbit, in meters.

double semi_minor_axis()
The semi-minor axis of the orbit, in meters.

double radius()
The current radius of the orbit, in meters. This is the distance between the center of mass of the object in
orbit, and the center of mass of the body around which it is orbiting.

Note: This value will change over time if the orbit is elliptical.

double speed()
The current orbital speed of the object in meters per second.

Note: This value will change over time if the orbit is elliptical.

double period()
The orbital period, in seconds.

double time_to_apoapsis()
The time until the object reaches apoapsis, in seconds.

double time_to_periapsis()
The time until the object reaches periapsis, in seconds.

double eccentricity()
The eccentricity of the orbit.

double inclination()
The inclination of the orbit, in radians.

double longitude_of_ascending_node()
The longitude of the ascending node, in radians.

double argument_of_periapsis()
The argument of periapsis, in radians.

double mean_anomaly_at_epoch()
The mean anomaly at epoch.

double epoch()
The time since the epoch (the point at which the mean anomaly at epoch was measured, in seconds.

double mean_anomaly()
The mean anomaly.

double eccentric_anomaly()
The eccentric anomaly.

static std::tuple<double, double, double> reference_plane_normal(ReferenceFrame refer-
ence_frame)

The unit direction vector that is normal to the orbits reference plane, in the given reference frame. The
reference plane is the plane from which the orbits inclination is measured.

Parameters

4.3. SpaceCenter API 143

https://en.wikipedia.org/wiki/Orbital_eccentricity
https://en.wikipedia.org/wiki/Orbital_inclination
https://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
https://en.wikipedia.org/wiki/Argument_of_periapsis
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Eccentric_anomaly

kRPC, Release 0.3.5

static std::tuple<double, double, double> reference_plane_direction(ReferenceFrame refer-
ence_frame)

The unit direction vector from which the orbits longitude of ascending node is measured, in the given
reference frame.

Parameters

double time_to_soi_change()
The time until the object changes sphere of influence, in seconds. Returns NaN if the object is not going
to change sphere of influence.

Orbit next_orbit()
If the object is going to change sphere of influence in the future, returns the new orbit after the change.
Otherwise returns NULL.

4.3.6 Control

class Control
Used to manipulate the controls of a vessel. This includes adjusting the throttle, enabling/disabling sys-
tems such as SAS and RCS, or altering the direction in which the vessel is pointing. Obtained by calling
Vessel::control().

Note: Control inputs (such as pitch, yaw and roll) are zeroed when all clients that have set one or more of these
inputs are no longer connected.

bool sas()

void set_sas(bool value)
The state of SAS.

Note: Equivalent to AutoPilot::sas()

SASMode sas_mode()

void set_sas_mode(SASMode value)
The current SASMode. These modes are equivalent to the mode buttons to the left of the navball that
appear when SAS is enabled.

Note: Equivalent to AutoPilot::sas_mode()

SpeedMode speed_mode()

void set_speed_mode(SpeedMode value)
The current SpeedMode of the navball. This is the mode displayed next to the speed at the top of the
navball.

bool rcs()

void set_rcs(bool value)
The state of RCS.

bool gear()

void set_gear(bool value)
The state of the landing gear/legs.

144 Chapter 4. C++

kRPC, Release 0.3.5

bool lights()

void set_lights(bool value)
The state of the lights.

bool brakes()

void set_brakes(bool value)
The state of the wheel brakes.

bool abort()

void set_abort(bool value)
The state of the abort action group.

float throttle()

void set_throttle(float value)
The state of the throttle. A value between 0 and 1.

float pitch()

void set_pitch(float value)
The state of the pitch control. A value between -1 and 1. Equivalent to the w and s keys.

float yaw()

void set_yaw(float value)
The state of the yaw control. A value between -1 and 1. Equivalent to the a and d keys.

float roll()

void set_roll(float value)
The state of the roll control. A value between -1 and 1. Equivalent to the q and e keys.

float forward()

void set_forward(float value)
The state of the forward translational control. A value between -1 and 1. Equivalent to the h and n keys.

float up()

void set_up(float value)
The state of the up translational control. A value between -1 and 1. Equivalent to the i and k keys.

float right()

void set_right(float value)
The state of the right translational control. A value between -1 and 1. Equivalent to the j and l keys.

float wheel_throttle()

void set_wheel_throttle(float value)
The state of the wheel throttle. A value between -1 and 1. A value of 1 rotates the wheels forwards, a value
of -1 rotates the wheels backwards.

float wheel_steering()

void set_wheel_steering(float value)
The state of the wheel steering. A value between -1 and 1. A value of 1 steers to the left, and a value of -1
steers to the right.

int32_t current_stage()
The current stage of the vessel. Corresponds to the stage number in the in-game UI.

4.3. SpaceCenter API 145

kRPC, Release 0.3.5

std::vector<Vessel> activate_next_stage()
Activates the next stage. Equivalent to pressing the space bar in-game.

Returns A list of vessel objects that are jettisoned from the active vessel.

bool get_action_group(uint32_t group)
Returns true if the given action group is enabled.

Parameters

• group – A number between 0 and 9 inclusive.

void set_action_group(uint32_t group, bool state)
Sets the state of the given action group (a value between 0 and 9 inclusive).

Parameters

• group – A number between 0 and 9 inclusive.

void toggle_action_group(uint32_t group)
Toggles the state of the given action group.

Parameters

• group – A number between 0 and 9 inclusive.

Node add_node(double ut, float prograde = 0.0, float normal = 0.0, float radial = 0.0)
Creates a maneuver node at the given universal time, and returns a Node object that can be used to modify
it. Optionally sets the magnitude of the delta-v for the maneuver node in the prograde, normal and radial
directions.

Parameters

• ut – Universal time of the maneuver node.

• prograde – Delta-v in the prograde direction.

• normal – Delta-v in the normal direction.

• radial – Delta-v in the radial direction.

std::vector<Node> nodes()
Returns a list of all existing maneuver nodes, ordered by time from first to last.

void remove_nodes()
Remove all maneuver nodes.

enum struct SASMode
The behavior of the SAS auto-pilot. See AutoPilot::sas_mode().

enumerator stability_assist
Stability assist mode. Dampen out any rotation.

enumerator maneuver
Point in the burn direction of the next maneuver node.

enumerator prograde
Point in the prograde direction.

enumerator retrograde
Point in the retrograde direction.

enumerator normal
Point in the orbit normal direction.

146 Chapter 4. C++

kRPC, Release 0.3.5

enumerator anti_normal
Point in the orbit anti-normal direction.

enumerator radial
Point in the orbit radial direction.

enumerator anti_radial
Point in the orbit anti-radial direction.

enumerator target
Point in the direction of the current target.

enumerator anti_target
Point away from the current target.

enum struct SpeedMode
The mode of the speed reported in the navball. See Control::speed_mode().

enumerator orbit
Speed is relative to the vessel’s orbit.

enumerator surface
Speed is relative to the surface of the body being orbited.

enumerator target
Speed is relative to the current target.

4.3.7 Parts

The following classes allow interaction with a vessels individual parts.

4.3. SpaceCenter API 147

kRPC, Release 0.3.5

• Parts
• Part
• Module
• Specific Types of Part

– Cargo Bay
– Control Surface
– Decoupler
– Docking Port
– Engine
– Experiment
– Fairing
– Intake
– Landing Gear
– Landing Leg
– Launch Clamp
– Light
– Parachute
– Radiator
– Resource Converter
– Resource Harvester
– Reaction Wheel
– RCS
– Sensor
– Solar Panel
– Thruster

• Trees of Parts
– Traversing the Tree
– Attachment Modes

• Fuel Lines
• Staging

Parts

class Parts
Instances of this class are used to interact with the parts of a vessel. An instance can be obtained by calling
Vessel::parts().

std::vector<Part> all()
A list of all of the vessels parts.

Part root()
The vessels root part.

Note: See the discussion on Trees of Parts.

Part controlling()

void set_controlling(Part value)
The part from which the vessel is controlled.

std::vector<Part> with_name(std::string name)
A list of parts whose Part::name() is name.

Parameters

148 Chapter 4. C++

kRPC, Release 0.3.5

std::vector<Part> with_title(std::string title)
A list of all parts whose Part::title() is title.

Parameters

std::vector<Part> with_module(std::string module_name)
A list of all parts that contain a Module whose Module::name() is module_name.

Parameters

std::vector<Part> in_stage(int32_t stage)
A list of all parts that are activated in the given stage.

Parameters

Note: See the discussion on Staging.

std::vector<Part> in_decouple_stage(int32_t stage)
A list of all parts that are decoupled in the given stage.

Parameters

Note: See the discussion on Staging.

std::vector<Module> modules_with_name(std::string module_name)
A list of modules (combined across all parts in the vessel) whose Module::name() is module_name.

Parameters

std::vector<CargoBay> cargo_bays()
A list of all cargo bays in the vessel.

std::vector<ControlSurface> control_surfaces()
A list of all control surfaces in the vessel.

std::vector<Decoupler> decouplers()
A list of all decouplers in the vessel.

std::vector<DockingPort> docking_ports()
A list of all docking ports in the vessel.

DockingPort docking_port_with_name(std::string name)
The first docking port in the vessel with the given port name, as returned by DockingPort::name().
Returns NULL if there are no such docking ports.

Parameters

std::vector<Engine> engines()
A list of all engines in the vessel.

Note: This includes any part that generates thrust. This covers many different types of engine, including
liquid fuel rockets, solid rocket boosters, jet engines and RCS thrusters.

std::vector<Experiment> experiments()
A list of all science experiments in the vessel.

std::vector<Fairing> fairings()
A list of all fairings in the vessel.

4.3. SpaceCenter API 149

kRPC, Release 0.3.5

std::vector<Intake> intakes()
A list of all intakes in the vessel.

std::vector<LandingGear> landing_gear()
A list of all landing gear attached to the vessel.

std::vector<LandingLeg> landing_legs()
A list of all landing legs attached to the vessel.

std::vector<LaunchClamp> launch_clamps()
A list of all launch clamps attached to the vessel.

std::vector<Light> lights()
A list of all lights in the vessel.

std::vector<Parachute> parachutes()
A list of all parachutes in the vessel.

std::vector<Radiator> radiators()
A list of all radiators in the vessel.

std::vector<RCS> rcs()
A list of all RCS blocks/thrusters in the vessel.

std::vector<ReactionWheel> reaction_wheels()
A list of all reaction wheels in the vessel.

std::vector<ResourceConverter> resource_converters()
A list of all resource converters in the vessel.

std::vector<ResourceHarvester> resource_harvesters()
A list of all resource harvesters in the vessel.

std::vector<Sensor> sensors()
A list of all sensors in the vessel.

std::vector<SolarPanel> solar_panels()
A list of all solar panels in the vessel.

Part

class Part
Represents an individual part. Vessels are made up of multiple parts. Instances of this class can be obtained by
several methods in Parts.

std::string name()
Internal name of the part, as used in part cfg files. For example “Mark1-2Pod”.

std::string title()
Title of the part, as shown when the part is right clicked in-game. For example “Mk1-2 Command Pod”.

double cost()
The cost of the part, in units of funds.

Vessel vessel()
The vessel that contains this part.

Part parent()
The parts parent. Returns NULL if the part does not have a parent. This, in combination with
Part::children(), can be used to traverse the vessels parts tree.

150 Chapter 4. C++

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation

kRPC, Release 0.3.5

Note: See the discussion on Trees of Parts.

std::vector<Part> children()
The parts children. Returns an empty list if the part has no children. This, in combination with
Part::parent(), can be used to traverse the vessels parts tree.

Note: See the discussion on Trees of Parts.

bool axially_attached()
Whether the part is axially attached to its parent, i.e. on the top or bottom of its parent. If the part has no
parent, returns false.

Note: See the discussion on Attachment Modes.

bool radially_attached()
Whether the part is radially attached to its parent, i.e. on the side of its parent. If the part has no parent,
returns false.

Note: See the discussion on Attachment Modes.

int32_t stage()
The stage in which this part will be activated. Returns -1 if the part is not activated by staging.

Note: See the discussion on Staging.

int32_t decouple_stage()
The stage in which this part will be decoupled. Returns -1 if the part is never decoupled from the vessel.

Note: See the discussion on Staging.

bool massless()
Whether the part is massless.

double mass()
The current mass of the part, including resources it contains, in kilograms. Returns zero if the part is
massless.

double dry_mass()
The mass of the part, not including any resources it contains, in kilograms. Returns zero if the part is
massless.

bool shielded()
Whether the part is shielded from the exterior of the vessel, for example by a fairing.

float dynamic_pressure()
The dynamic pressure acting on the part, in Pascals.

double impact_tolerance()
The impact tolerance of the part, in meters per second.

4.3. SpaceCenter API 151

http://wiki.kerbalspaceprogram.com/wiki/Massless_part

kRPC, Release 0.3.5

double temperature()
Temperature of the part, in Kelvin.

double skin_temperature()
Temperature of the skin of the part, in Kelvin.

double max_temperature()
Maximum temperature that the part can survive, in Kelvin.

double max_skin_temperature()
Maximum temperature that the skin of the part can survive, in Kelvin.

float thermal_mass()
A measure of how much energy it takes to increase the internal temperature of the part, in Joules per
Kelvin.

float thermal_skin_mass()
A measure of how much energy it takes to increase the skin temperature of the part, in Joules per Kelvin.

float thermal_resource_mass()
A measure of how much energy it takes to increase the temperature of the resources contained in the part,
in Joules per Kelvin.

float thermal_conduction_flux()
The rate at which heat energy is conducting into or out of the part via contact with other parts. Measured
in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy, and
negative means it is losing heat energy.

float thermal_convection_flux()
The rate at which heat energy is convecting into or out of the part from the surrounding atmosphere.
Measured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat
energy, and negative means it is losing heat energy.

float thermal_radiation_flux()
The rate at which heat energy is radiating into or out of the part from the surrounding environment. Mea-
sured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy,
and negative means it is losing heat energy.

float thermal_internal_flux()
The rate at which heat energy is begin generated by the part. For example, some engines generate heat by
combusting fuel. Measured in energy per unit time, or power, in Watts. A positive value means the part is
gaining heat energy, and negative means it is losing heat energy.

float thermal_skin_to_internal_flux()
The rate at which heat energy is transferring between the part’s skin and its internals. Measured in energy
per unit time, or power, in Watts. A positive value means the part’s internals are gaining heat energy, and
negative means its skin is gaining heat energy.

Resources resources()
A Resources object for the part.

bool crossfeed()
Whether this part is crossfeed capable.

bool is_fuel_line()
Whether this part is a fuel line.

std::vector<Part> fuel_lines_from()
The parts that are connected to this part via fuel lines, where the direction of the fuel line is into this part.

152 Chapter 4. C++

kRPC, Release 0.3.5

Note: See the discussion on Fuel Lines.

std::vector<Part> fuel_lines_to()
The parts that are connected to this part via fuel lines, where the direction of the fuel line is out of this part.

Note: See the discussion on Fuel Lines.

std::vector<Module> modules()
The modules for this part.

CargoBay cargo_bay()
A CargoBay if the part is a cargo bay, otherwise NULL.

ControlSurface control_surface()
A ControlSurface if the part is an aerodynamic control surface, otherwise NULL.

Decoupler decoupler()
A Decoupler if the part is a decoupler, otherwise NULL.

DockingPort docking_port()
A DockingPort if the part is a docking port, otherwise NULL.

Engine engine()
An Engine if the part is an engine, otherwise NULL.

Experiment experiment()
An Experiment if the part is a science experiment, otherwise NULL.

Fairing fairing()
A Fairing if the part is a fairing, otherwise NULL.

Intake intake()
An Intake if the part is an intake, otherwise NULL.

Note: This includes any part that generates thrust. This covers many different types of engine, including
liquid fuel rockets, solid rocket boosters and jet engines. For RCS thrusters see RCS.

LandingGear landing_gear()
A LandingGear if the part is a landing gear, otherwise NULL.

LandingLeg landing_leg()
A LandingLeg if the part is a landing leg, otherwise NULL.

LaunchClamp launch_clamp()
A LaunchClamp if the part is a launch clamp, otherwise NULL.

Light light()
A Light if the part is a light, otherwise NULL.

Parachute parachute()
A Parachute if the part is a parachute, otherwise NULL.

Radiator radiator()
A Radiator if the part is a radiator, otherwise NULL.

RCS rcs()
A RCS if the part is an RCS block/thruster, otherwise NULL.

4.3. SpaceCenter API 153

kRPC, Release 0.3.5

ReactionWheel reaction_wheel()
A ReactionWheel if the part is a reaction wheel, otherwise NULL.

ResourceConverter resource_converter()
A ResourceConverter if the part is a resource converter, otherwise NULL.

ResourceHarvester resource_harvester()
A ResourceHarvester if the part is a resource harvester, otherwise NULL.

Sensor sensor()
A Sensor if the part is a sensor, otherwise NULL.

SolarPanel solar_panel()
A SolarPanel if the part is a solar panel, otherwise NULL.

std::tuple<double, double, double> position(ReferenceFrame reference_frame)
The position of the part in the given reference frame.

Parameters

Note: This is a fixed position in the part, defined by the parts model. It s not necessarily the same as the
parts center of mass. Use Part::center_of_mass() to get the parts center of mass.

std::tuple<double, double, double> center_of_mass(ReferenceFrame reference_frame)
The position of the parts center of mass in the given reference frame. If the part is physicsless, this is
equivalent to Part::position().

Parameters

std::tuple<double, double, double> direction(ReferenceFrame reference_frame)
The direction of the part in the given reference frame.

Parameters

std::tuple<double, double, double> velocity(ReferenceFrame reference_frame)
The velocity of the part in the given reference frame.

Parameters

std::tuple<double, double, double, double> rotation(ReferenceFrame reference_frame)
The rotation of the part in the given reference frame.

Parameters

std::tuple<double, double, double> moment_of_inertia()
The moment of inertia of the part in 𝑘𝑔.𝑚2 around its center of mass in the parts reference frame
(ReferenceFrame).

std::vector<double> inertia_tensor()
The inertia tensor of the part in the parts reference frame (ReferenceFrame). Returns the 3x3 matrix
as a list of elements, in row-major order.

ReferenceFrame reference_frame()
The reference frame that is fixed relative to this part, and centered on a fixed position within the part,
defined by the parts model.

•The origin is at the position of the part, as returned by Part::position().

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

154 Chapter 4. C++

kRPC, Release 0.3.5

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by DockingPort::reference_frame().

Fig. 4.7: Mk1 Command Pod reference frame origin and axes

ReferenceFrame center_of_mass_reference_frame()
The reference frame that is fixed relative to this part, and centered on its center of mass.

•The origin is at the center of mass of the part, as returned by Part::center_of_mass().

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by DockingPort::reference_frame().

Module

class Module
This can be used to interact with a specific part module. This includes part modules in stock KSP, and those
added by mods. In KSP, each part has zero or more PartModules associated with it. Each one contains some of
the functionality of the part. For example, an engine has a “ModuleEngines” part module that contains all the
functionality of an engine.

std::string name()
Name of the PartModule. For example, “ModuleEngines”.

Part part()
The part that contains this module.

4.3. SpaceCenter API 155

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation#MODULES

kRPC, Release 0.3.5

std::map<std::string, std::string> fields()
The modules field names and their associated values, as a dictionary. These are the values visible in the
right-click menu of the part.

bool has_field(std::string name)
Returns true if the module has a field with the given name.

Parameters

• name – Name of the field.

std::string get_field(std::string name)
Returns the value of a field.

Parameters

• name – Name of the field.

void set_field_int(std::string name, int32_t value)
Set the value of a field to the given integer number.

Parameters

• name – Name of the field.

• value – Value to set.

void set_field_float(std::string name, float value)
Set the value of a field to the given floating point number.

Parameters

• name – Name of the field.

• value – Value to set.

void set_field_string(std::string name, std::string value)
Set the value of a field to the given string.

Parameters

• name – Name of the field.

• value – Value to set.

void reset_field(std::string name)
Set the value of a field to its original value.

Parameters

• name – Name of the field.

std::vector<std::string> events()
A list of the names of all of the modules events. Events are the clickable buttons visible in the right-click
menu of the part.

bool has_event(std::string name)
true if the module has an event with the given name.

Parameters

void trigger_event(std::string name)
Trigger the named event. Equivalent to clicking the button in the right-click menu of the part.

Parameters

156 Chapter 4. C++

kRPC, Release 0.3.5

std::vector<std::string> actions()
A list of all the names of the modules actions. These are the parts actions that can be assigned to action
groups in the in-game editor.

bool has_action(std::string name)
true if the part has an action with the given name.

Parameters

void set_action(std::string name, bool value = True)
Set the value of an action with the given name.

Parameters

Specific Types of Part

The following classes provide functionality for specific types of part.

• Cargo Bay
• Control Surface
• Decoupler
• Docking Port
• Engine
• Experiment
• Fairing
• Intake
• Landing Gear
• Landing Leg
• Launch Clamp
• Light
• Parachute
• Radiator
• Resource Converter
• Resource Harvester
• Reaction Wheel
• RCS
• Sensor
• Solar Panel
• Thruster

Cargo Bay

class CargoBay
A cargo bay. Obtained by calling Part::cargo_bay().

Part part()
The part object for this cargo bay.

CargoBayState state()
The state of the cargo bay.

bool open()

void set_open(bool value)
Whether the cargo bay is open.

4.3. SpaceCenter API 157

kRPC, Release 0.3.5

enum struct CargoBayState
The state of a cargo bay. See CargoBay::state().

enumerator open
Cargo bay is fully open.

enumerator closed
Cargo bay closed and locked.

enumerator opening
Cargo bay is opening.

enumerator closing
Cargo bay is closing.

Control Surface

class ControlSurface
An aerodynamic control surface. Obtained by calling Part::control_surface().

Part part()
The part object for this control surface.

bool pitch_enabled()

void set_pitch_enabled(bool value)
Whether the control surface has pitch control enabled.

bool yaw_enabled()

void set_yaw_enabled(bool value)
Whether the control surface has yaw control enabled.

bool roll_enabled()

void set_roll_enabled(bool value)
Whether the control surface has roll control enabled.

bool inverted()

void set_inverted(bool value)
Whether the control surface movement is inverted.

bool deployed()

void set_deployed(bool value)
Whether the control surface has been fully deployed.

float surface_area()
Surface area of the control surface in 𝑚2.

std::tuple<double, double, double> available_torque()
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel::reference_frame().

Decoupler

class Decoupler
A decoupler. Obtained by calling Part::decoupler()

158 Chapter 4. C++

kRPC, Release 0.3.5

Part part()
The part object for this decoupler.

Vessel decouple()
Fires the decoupler. Returns the new vessel created when the decoupler fires. Throws an exception if the
decoupler has already fired.

bool decoupled()
Whether the decoupler has fired.

float impulse()
The impulse that the decoupler imparts when it is fired, in Newton seconds.

Docking Port

class DockingPort
A docking port. Obtained by calling Part::docking_port()

Part part()
The part object for this docking port.

std::string name()

void set_name(std::string value)
The port name of the docking port. This is the name of the port that can be set in the right click menu,
when the Docking Port Alignment Indicator mod is installed. If this mod is not installed, returns the title
of the part (Part::title()).

DockingPortState state()
The current state of the docking port.

Part docked_part()
The part that this docking port is docked to. Returns NULL if this docking port is not docked to anything.

Vessel undock()
Undocks the docking port and returns the new Vessel that is created. This method can be called for
either docking port in a docked pair. Throws an exception if the docking port is not docked to anything.

Note: After undocking, the active vessel may change. See active_vessel().

float reengage_distance()
The distance a docking port must move away when it undocks before it becomes ready to dock with another
port, in meters.

bool has_shield()
Whether the docking port has a shield.

bool shielded()

void set_shielded(bool value)
The state of the docking ports shield, if it has one. Returns true if the docking port has a shield, and
the shield is closed. Otherwise returns false. When set to true, the shield is closed, and when set to
false the shield is opened. If the docking port does not have a shield, setting this attribute has no effect.

std::tuple<double, double, double> position(ReferenceFrame reference_frame)
The position of the docking port in the given reference frame.

Parameters

4.3. SpaceCenter API 159

http://forum.kerbalspaceprogram.com/index.php?/topic/40423-11-docking-port-alignment-indicator-version-621-beta-updated-04122016/

kRPC, Release 0.3.5

std::tuple<double, double, double> direction(ReferenceFrame reference_frame)
The direction that docking port points in, in the given reference frame.

Parameters

std::tuple<double, double, double, double> rotation(ReferenceFrame reference_frame)
The rotation of the docking port, in the given reference frame.

Parameters

ReferenceFrame reference_frame()
The reference frame that is fixed relative to this docking port, and oriented with the port.

•The origin is at the position of the docking port.

•The axes rotate with the docking port.

•The x-axis points out to the right side of the docking port.

•The y-axis points in the direction the docking port is facing.

•The z-axis points out of the bottom off the docking port.

Note: This reference frame is not necessarily equivalent to the reference frame for the part, returned by
Part::reference_frame().

Fig. 4.8: Docking port reference frame origin and axes

enum struct DockingPortState
The state of a docking port. See DockingPort::state().

enumerator ready
The docking port is ready to dock to another docking port.

160 Chapter 4. C++

kRPC, Release 0.3.5

Fig. 4.9: Inline docking port reference frame origin and axes

enumerator docked
The docking port is docked to another docking port, or docked to another part (from the VAB/SPH).

enumerator docking
The docking port is very close to another docking port, but has not docked. It is using magnetic force to
acquire a solid dock.

enumerator undocking
The docking port has just been undocked from another docking port, and is disabled until it moves away
by a sufficient distance (DockingPort::reengage_distance()).

enumerator shielded
The docking port has a shield, and the shield is closed.

enumerator moving
The docking ports shield is currently opening/closing.

Engine

class Engine
An engine, including ones of various types. For example liquid fuelled gimballed engines, solid rocket boosters
and jet engines. Obtained by calling Part::engine().

Note: For RCS thrusters Part::rcs().

Part part()
The part object for this engine.

bool active()

4.3. SpaceCenter API 161

kRPC, Release 0.3.5

void set_active(bool value)
Whether the engine is active. Setting this attribute may have no effect, depending on
Engine::can_shutdown() and Engine::can_restart().

float thrust()
The current amount of thrust being produced by the engine, in Newtons.

float available_thrust()
The amount of thrust, in Newtons, that would be produced by the engine when activated and with its
throttle set to 100%. Returns zero if the engine does not have any fuel. Takes the engine’s current
Engine::thrust_limit() and atmospheric conditions into account.

float max_thrust()
The amount of thrust, in Newtons, that would be produced by the engine when activated and fueled, with
its throttle and throttle limiter set to 100%.

float max_vacuum_thrust()
The maximum amount of thrust that can be produced by the engine in a vacuum, in Newtons. This is the
amount of thrust produced by the engine when activated, Engine::thrust_limit() is set to 100%,
the main vessel’s throttle is set to 100% and the engine is in a vacuum.

float thrust_limit()

void set_thrust_limit(float value)
The thrust limiter of the engine. A value between 0 and 1. Setting this attribute may have no effect, for
example the thrust limit for a solid rocket booster cannot be changed in flight.

std::vector<Thruster> thrusters()
The components of the engine that generate thrust.

Note: For example, this corresponds to the rocket nozzel on a solid rocket booster, or the in-
dividual nozzels on a RAPIER engine. The overall thrust produced by the engine, as reported by
Engine::available_thrust(), Engine::max_thrust() and others, is the sum of the thrust
generated by each thruster.

float specific_impulse()
The current specific impulse of the engine, in seconds. Returns zero if the engine is not active.

float vacuum_specific_impulse()
The vacuum specific impulse of the engine, in seconds.

float kerbin_sea_level_specific_impulse()
The specific impulse of the engine at sea level on Kerbin, in seconds.

std::vector<std::string> propellant_names()
The names of the propellants that the engine consumes.

std::map<std::string, float> propellant_ratios()
The ratio of resources that the engine consumes. A dictionary mapping resource names to the ratio at
which they are consumed by the engine.

Note: For example, if the ratios are 0.6 for LiquidFuel and 0.4 for Oxidizer, then for every 0.6 units of
LiquidFuel that the engine burns, it will burn 0.4 units of Oxidizer.

std::vector<Propellant> propellants()
The propellants that the engine consumes.

162 Chapter 4. C++

kRPC, Release 0.3.5

bool has_fuel()
Whether the engine has any fuel available.

Note: The engine must be activated for this property to update correctly.

float throttle()
The current throttle setting for the engine. A value between 0 and 1. This is not necessarily the same as
the vessel’s main throttle setting, as some engines take time to adjust their throttle (such as jet engines).

bool throttle_locked()
Whether the Control::throttle() affects the engine. For example, this is true for liquid fueled
rockets, and false for solid rocket boosters.

bool can_restart()
Whether the engine can be restarted once shutdown. If the engine cannot be shutdown, returns false.
For example, this is true for liquid fueled rockets and false for solid rocket boosters.

bool can_shutdown()
Whether the engine can be shutdown once activated. For example, this is true for liquid fueled rockets
and false for solid rocket boosters.

bool has_modes()
Whether the engine has multiple modes of operation.

std::string mode()

void set_mode(std::string value)
The name of the current engine mode.

std::map<std::string, Engine> modes()
The available modes for the engine. A dictionary mapping mode names to Engine objects.

void toggle_mode()
Toggle the current engine mode.

bool auto_mode_switch()

void set_auto_mode_switch(bool value)
Whether the engine will automatically switch modes.

bool gimballed()
Whether the engine is gimballed.

float gimbal_range()
The range over which the gimbal can move, in degrees. Returns 0 if the engine is not gimballed.

bool gimbal_locked()

void set_gimbal_locked(bool value)
Whether the engines gimbal is locked in place. Setting this attribute has no effect if the engine is not
gimballed.

float gimbal_limit()

void set_gimbal_limit(float value)
The gimbal limiter of the engine. A value between 0 and 1. Returns 0 if the gimbal is locked.

std::tuple<double, double, double> available_torque()
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel::reference_frame(). Returns zero if the engine is inactive,
or not gimballed.

4.3. SpaceCenter API 163

kRPC, Release 0.3.5

class Propellant
A propellant for an engine. Obtains by calling Engine::propellants().

std::string name()
The name of the propellant.

double current_amount()
The current amount of propellant.

double current_requirement()
The required amount of propellant.

double total_resource_available()
The total amount of the underlying resource currently reachable given resource flow rules.

double total_resource_capacity()
The total vehicle capacity for the underlying propellant resource, restricted by resource flow rules.

bool ignore_for_isp()
If this propellant should be ignored when calculating required mass flow given specific impulse.

bool ignore_for_thrust_curve()
If this propellant should be ignored for thrust curve calculations.

bool draw_stack_gauge()
If this propellant has a stack gauge or not.

bool is_deprived()
If this propellant is deprived.

float ratio()
The propellant ratio.

std::vector<Resource> connected_resources()
The reachable resources connected to this propellant.

Experiment

class Experiment
Obtained by calling Part::experiment().

Part part()
The part object for this experiment.

void run()
Run the experiment.

void transmit()
Transmit all experimental data contained by this part.

void dump()
Dump the experimental data contained by the experiment.

void reset()
Reset the experiment.

bool deployed()
Whether the experiment has been deployed.

bool rerunnable()
Whether the experiment can be re-run.

164 Chapter 4. C++

kRPC, Release 0.3.5

bool inoperable()
Whether the experiment is inoperable.

bool has_data()
Whether the experiment contains data.

std::vector<ScienceData> data()
The data contained in this experiment.

class ScienceData
Obtained by calling Experiment::data().

float data_amount()
Data amount.

float science_value()
Science value.

float transmit_value()
Transmit value.

Fairing

class Fairing
A fairing. Obtained by calling Part::fairing().

Part part()
The part object for this fairing.

void jettison()
Jettison the fairing. Has no effect if it has already been jettisoned.

bool jettisoned()
Whether the fairing has been jettisoned.

Intake

class Intake
An air intake. Obtained by calling Part::intake().

Part part()
The part object for this intake.

bool open()

void set_open(bool value)
Whether the intake is open.

float speed()
Speed of the flow into the intake, in 𝑚/𝑠.

float flow()
The rate of flow into the intake, in units of resource per second.

float area()
The area of the intake’s opening, in square meters.

4.3. SpaceCenter API 165

kRPC, Release 0.3.5

Landing Gear

class LandingGear
Landing gear with wheels. Obtained by calling Part::landing_gear().

Part part()
The part object for this landing gear.

LandingGearState state()
Gets the current state of the landing gear.

Note: Fixed landing gear are always deployed.

bool deployable()
Whether the landing gear is deployable.

bool deployed()

void set_deployed(bool value)
Whether the landing gear is deployed.

Note: Fixed landing gear are always deployed. Returns an error if you try to deploy fixed landing gear.

enum struct LandingGearState
The state of a landing gear. See LandingGear::state().

enumerator deployed
Landing gear is fully deployed.

enumerator retracted
Landing gear is fully retracted.

enumerator deploying
Landing gear is being deployed.

enumerator retracting
Landing gear is being retracted.

enumerator broken
Landing gear is broken.

Landing Leg

class LandingLeg
A landing leg. Obtained by calling Part::landing_leg().

Part part()
The part object for this landing leg.

LandingLegState state()
The current state of the landing leg.

bool deployed()

void set_deployed(bool value)
Whether the landing leg is deployed.

166 Chapter 4. C++

kRPC, Release 0.3.5

Note: Fixed landing legs are always deployed. Returns an error if you try to deploy fixed landing gear.

enum struct LandingLegState
The state of a landing leg. See LandingLeg::state().

enumerator deployed
Landing leg is fully deployed.

enumerator retracted
Landing leg is fully retracted.

enumerator deploying
Landing leg is being deployed.

enumerator retracting
Landing leg is being retracted.

enumerator broken
Landing leg is broken.

Launch Clamp

class LaunchClamp
A launch clamp. Obtained by calling Part::launch_clamp().

Part part()
The part object for this launch clamp.

void release()
Releases the docking clamp. Has no effect if the clamp has already been released.

Light

class Light
A light. Obtained by calling Part::light().

Part part()
The part object for this light.

bool active()

void set_active(bool value)
Whether the light is switched on.

std::tuple<float, float, float> color()

void set_color(std::tuple<float, float, float> value)
The color of the light, as an RGB triple.

float power_usage()
The current power usage, in units of charge per second.

Parachute

class Parachute
A parachute. Obtained by calling Part::parachute().

4.3. SpaceCenter API 167

kRPC, Release 0.3.5

Part part()
The part object for this parachute.

void deploy()
Deploys the parachute. This has no effect if the parachute has already been deployed.

bool deployed()
Whether the parachute has been deployed.

ParachuteState state()
The current state of the parachute.

float deploy_altitude()

void set_deploy_altitude(float value)
The altitude at which the parachute will full deploy, in meters.

float deploy_min_pressure()

void set_deploy_min_pressure(float value)
The minimum pressure at which the parachute will semi-deploy, in atmospheres.

enum struct ParachuteState
The state of a parachute. See Parachute::state().

enumerator stowed
The parachute is safely tucked away inside its housing.

enumerator active
The parachute is still stowed, but ready to semi-deploy.

enumerator semi_deployed
The parachute has been deployed and is providing some drag, but is not fully deployed yet.

enumerator deployed
The parachute is fully deployed.

enumerator cut
The parachute has been cut.

Radiator

class Radiator
A radiator. Obtained by calling Part::radiator().

Part part()
The part object for this radiator.

bool deployable()
Whether the radiator is deployable.

bool deployed()

void set_deployed(bool value)
For a deployable radiator, true if the radiator is extended. If the radiator is not deployable, this is always
true.

RadiatorState state()
The current state of the radiator.

Note: A fixed radiator is always RadiatorState::extended.

168 Chapter 4. C++

kRPC, Release 0.3.5

enum struct RadiatorState
The state of a radiator. RadiatorState

enumerator extended
Radiator is fully extended.

enumerator retracted
Radiator is fully retracted.

enumerator extending
Radiator is being extended.

enumerator retracting
Radiator is being retracted.

enumerator broken
Radiator is being broken.

Resource Converter

class ResourceConverter
A resource converter. Obtained by calling Part::resource_converter().

Part part()
The part object for this converter.

int32_t count()
The number of converters in the part.

std::string name(int32_t index)
The name of the specified converter.

Parameters

• index – Index of the converter.

bool active(int32_t index)
True if the specified converter is active.

Parameters

• index – Index of the converter.

void start(int32_t index)
Start the specified converter.

Parameters

• index – Index of the converter.

void stop(int32_t index)
Stop the specified converter.

Parameters

• index – Index of the converter.

ResourceConverterState state(int32_t index)
The state of the specified converter.

Parameters

• index – Index of the converter.

4.3. SpaceCenter API 169

kRPC, Release 0.3.5

std::string status_info(int32_t index)
Status information for the specified converter. This is the full status message shown in the in-game UI.

Parameters

• index – Index of the converter.

std::vector<std::string> inputs(int32_t index)
List of the names of resources consumed by the specified converter.

Parameters

• index – Index of the converter.

std::vector<std::string> outputs(int32_t index)
List of the names of resources produced by the specified converter.

Parameters

• index – Index of the converter.

enum struct ResourceConverterState
The state of a resource converter. See ResourceConverter::state().

enumerator running
Converter is running.

enumerator idle
Converter is idle.

enumerator missing_resource
Converter is missing a required resource.

enumerator storage_full
No available storage for output resource.

enumerator capacity
At preset resource capacity.

enumerator unknown
Unknown state. Possible with modified resource converters. In this case, check
ResourceConverter::status_info() for more information.

Resource Harvester

class ResourceHarvester
A resource harvester (drill). Obtained by calling Part::resource_harvester().

Part part()
The part object for this harvester.

ResourceHarvesterState state()
The state of the harvester.

bool deployed()

void set_deployed(bool value)
Whether the harvester is deployed.

bool active()

void set_active(bool value)
Whether the harvester is actively drilling.

170 Chapter 4. C++

kRPC, Release 0.3.5

float extraction_rate()
The rate at which the drill is extracting ore, in units per second.

float thermal_efficiency()
The thermal efficiency of the drill, as a percentage of its maximum.

float core_temperature()
The core temperature of the drill, in Kelvin.

float optimum_core_temperature()
The core temperature at which the drill will operate with peak efficiency, in Kelvin.

enum struct ResourceHarvesterState
The state of a resource harvester. See ResourceHarvester::state().

enumerator deploying
The drill is deploying.

enumerator deployed
The drill is deployed and ready.

enumerator retracting
The drill is retracting.

enumerator retracted
The drill is retracted.

enumerator active
The drill is running.

Reaction Wheel

class ReactionWheel
A reaction wheel. Obtained by calling Part::reaction_wheel().

Part part()
The part object for this reaction wheel.

bool active()

void set_active(bool value)
Whether the reaction wheel is active.

bool broken()
Whether the reaction wheel is broken.

std::tuple<double, double, double> available_torque()
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel::reference_frame(). Returns zero if the reaction wheel is
inactive or broken.

std::tuple<double, double, double> max_torque()
The maximum torque the reaction wheel can provide, is it active, in the pitch, roll and yaw
axes of the vessel, in Newton meters. These axes correspond to the coordinate axes of the
Vessel::reference_frame().

RCS

class RCS
An RCS block or thruster. Obtained by calling Part::rcs().

4.3. SpaceCenter API 171

kRPC, Release 0.3.5

Part part()
The part object for this RCS.

bool active()
Whether the RCS thrusters are active. An RCS thruster is inactive if the RCS action group is disabled
(Control::rcs()), the RCS thruster itself is not enabled (RCS::enabled()) or it is covered by a
fairing (Part::shielded()).

bool enabled()

void set_enabled(bool value)
Whether the RCS thrusters are enabled.

bool pitch_enabled()

void set_pitch_enabled(bool value)
Whether the RCS thruster will fire when pitch control input is given.

bool yaw_enabled()

void set_yaw_enabled(bool value)
Whether the RCS thruster will fire when yaw control input is given.

bool roll_enabled()

void set_roll_enabled(bool value)
Whether the RCS thruster will fire when roll control input is given.

bool forward_enabled()

void set_forward_enabled(bool value)
Whether the RCS thruster will fire when pitch control input is given.

bool up_enabled()

void set_up_enabled(bool value)
Whether the RCS thruster will fire when yaw control input is given.

bool right_enabled()

void set_right_enabled(bool value)
Whether the RCS thruster will fire when roll control input is given.

std::tuple<double, double, double> available_torque()
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel::reference_frame(). Returns zero if the RCS is inactive.

float max_thrust()
The maximum amount of thrust that can be produced by the RCS thrusters when active, in Newtons.

float max_vacuum_thrust()
The maximum amount of thrust that can be produced by the RCS thrusters when active in a vacuum, in
Newtons.

std::vector<Thruster> thrusters()
A list of thrusters, one of each nozzel in the RCS part.

float specific_impulse()
The current specific impulse of the RCS, in seconds. Returns zero if the RCS is not active.

float vacuum_specific_impulse()
The vacuum specific impulse of the RCS, in seconds.

float kerbin_sea_level_specific_impulse()
The specific impulse of the RCS at sea level on Kerbin, in seconds.

172 Chapter 4. C++

kRPC, Release 0.3.5

std::vector<std::string> propellants()
The names of resources that the RCS consumes.

std::map<std::string, float> propellant_ratios()
The ratios of resources that the RCS consumes. A dictionary mapping resource names to the ratios at
which they are consumed by the RCS.

bool has_fuel()
Whether the RCS has fuel available.

Note: The RCS thruster must be activated for this property to update correctly.

Sensor

class Sensor
A sensor, such as a thermometer. Obtained by calling Part::sensor().

Part part()
The part object for this sensor.

bool active()

void set_active(bool value)
Whether the sensor is active.

std::string value()
The current value of the sensor.

float power_usage()
The current power usage of the sensor, in units of charge per second.

Solar Panel

class SolarPanel
A solar panel. Obtained by calling Part::solar_panel().

Part part()
The part object for this solar panel.

bool deployed()

void set_deployed(bool value)
Whether the solar panel is extended.

SolarPanelState state()
The current state of the solar panel.

float energy_flow()
The current amount of energy being generated by the solar panel, in units of charge per second.

float sun_exposure()
The current amount of sunlight that is incident on the solar panel, as a percentage. A value between 0 and
1.

enum struct SolarPanelState
The state of a solar panel. See SolarPanel::state().

4.3. SpaceCenter API 173

kRPC, Release 0.3.5

enumerator extended
Solar panel is fully extended.

enumerator retracted
Solar panel is fully retracted.

enumerator extending
Solar panel is being extended.

enumerator retracting
Solar panel is being retracted.

enumerator broken
Solar panel is broken.

Thruster

class Thruster
The component of an Engine or RCS part that generates thrust. Can obtained by calling
Engine::thrusters() or RCS::thrusters().

Note: Engines can consist of multiple thrusters. For example, the S3 KS-25x4 “Mammoth” has four rocket
nozzels, and so consists of four thrusters.

Part part()
The Part that contains this thruster.

std::tuple<double, double, double> thrust_position(ReferenceFrame reference_frame)
The position at which the thruster generates thrust, in the given reference frame. For gimballed engines,
this takes into account the current rotation of the gimbal.

Parameters

std::tuple<double, double, double> thrust_direction(ReferenceFrame reference_frame)
The direction of the force generated by the thruster, in the given reference frame. This is opposite to the
direction in which the thruster expels propellant. For gimballed engines, this takes into account the current
rotation of the gimbal.

Parameters

ReferenceFrame thrust_reference_frame()
A reference frame that is fixed relative to the thruster and orientated with its thrust direction
(Thruster::thrust_direction()). For gimballed engines, this takes into account the current
rotation of the gimbal.

•The origin is at the position of thrust for this thruster (Thruster::thrust_position()).

•The axes rotate with the thrust direction. This is the direction in which the thruster expels propellant,
including any gimballing.

•The y-axis points along the thrust direction.

•The x-axis and z-axis are perpendicular to the thrust direction.

bool gimballed()
Whether the thruster is gimballed.

std::tuple<double, double, double> gimbal_position(ReferenceFrame reference_frame)
Position around which the gimbal pivots.

174 Chapter 4. C++

kRPC, Release 0.3.5

Parameters

std::tuple<double, double, double> gimbal_angle()
The current gimbal angle in the pitch, roll and yaw axes.

std::tuple<double, double, double> initial_thrust_position(ReferenceFrame refer-
ence_frame)

The position at which the thruster generates thrust, when the engine is in its initial position (no gimballing),
in the given reference frame.

Parameters

Note: This position can move when the gimbal rotates. This is because the thrust position and gimbal
position are not necessarily the same.

std::tuple<double, double, double> initial_thrust_direction(ReferenceFrame refer-
ence_frame)

The direction of the force generated by the thruster, when the engine is in its initial position (no gim-
balling), in the given reference frame. This is opposite to the direction in which the thruster expels propel-
lant.

Parameters

Trees of Parts

Vessels in KSP are comprised of a number of parts, connected to one another in a
tree structure. An example vessel is shown in Figure 1, and the corresponding tree of
parts in Figure 2. The craft file for this example can also be downloaded here.

Fig. 4.10: Figure 1 – Example parts making up a vessel.

Traversing the Tree

The tree of parts can be tra-
versed using the attributes
Parts::root(), Part::parent()
and Part::children().

The root of the tree is the same as the ves-
sels root part (part number 1 in the exam-
ple above) and can be obtained by calling
Parts::root(). A parts children can be
obtained by calling Part::children().
If the part does not have any children,
Part::children() returns an empty list.
A parts parent can be obtained by calling
Part::parent(). If the part does not have
a parent (as is the case for the root part),
Part::parent() returns NULL.

The following C++ example uses these at-
tributes to perform a depth-first traversal over
all of the parts in a vessel:

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>

4.3. SpaceCenter API 175

kRPC, Release 0.3.5

#include <stack>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect("");
SpaceCenter sc(&conn);
auto vessel = sc.active_vessel();

auto root = vessel.parts().root();
std::stack<std::pair<SpaceCenter::Part,int> > stack;
stack.push(std::pair<SpaceCenter::Part,int>(root, 0));
while (stack.size() > 0) {
auto part = stack.top().first;
auto depth = stack.top().second;
stack.pop();
std::cout << std::string(depth, ' ') << part.title() << std::endl;
auto children = part.children();
for (std::vector<SpaceCenter::Part>::iterator child = children.begin(); child != children.end(); child++) {

stack.push(std::pair<SpaceCenter::Part,int>(*child, depth+1));
}

}
}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1
TR-18A Stack Decoupler
FL-T400 Fuel Tank
LV-909 Liquid Fuel Engine
TR-18A Stack Decoupler
FL-T800 Fuel Tank
LV-909 Liquid Fuel Engine
TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

LT-1 Landing Struts
LT-1 Landing Struts

Mk16 Parachute

Attachment Modes

Parts can be attached to other parts either ra-
dially (on the side of the parent part) or axially
(on the end of the parent part, to form a stack).

176 Chapter 4. C++

kRPC, Release 0.3.5

For example, in the vessel pictured above, the
parachute (part 2) is axially connected to its
parent (the command pod – part 1), and the
landing leg (part 5) is radially connected to its
parent (the fuel tank – part 4).

Fig. 4.11: Figure 2 – Tree of parts for the vessel in Figure 1. Arrows
point from the parent part to the child part.

The root part of a vessel (for example the com-
mand pod – part 1) does not have a parent part,
so does not have an attachment mode. How-
ever, the part is consider to be axially attached
to nothing.

The following C++ example does a depth-first
traversal as before, but also prints out the at-
tachment mode used by the part:

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>
#include <stack>

using namespace krpc::services;

int main() {
auto conn = krpc::connect("");
SpaceCenter sc(&conn);
auto vessel = sc.active_vessel();

auto root = vessel.parts().root();
std::stack<std::pair<SpaceCenter::Part,int> > stack;
stack.push(std::pair<SpaceCenter::Part,int>(root, 0));
while (stack.size() > 0) {
auto part = stack.top().first;
auto depth = stack.top().second;
stack.pop();
std::string attach_mode;
if (part.axially_attached()) {

attach_mode = "axial";
} else { // radially_attached
attach_mode = "radial";

}
std::cout << std::string(depth, ' ') << part.title() << " - " << attach_mode << std::endl;
auto children = part.children();
for (auto child : children) {

stack.push(std::pair<SpaceCenter::Part,int>(child, depth+1));
}

}
}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1 - axial
TR-18A Stack Decoupler - axial
FL-T400 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TR-18A Stack Decoupler - axial
FL-T800 Fuel Tank - axial

4.3. SpaceCenter API 177

kRPC, Release 0.3.5

LV-909 Liquid Fuel Engine - axial
TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

LT-1 Landing Struts - radial
LT-1 Landing Struts - radial

Mk16 Parachute - axial

Fuel Lines

Fig. 4.12: Figure 5 – Fuel lines from the example
in Figure 1. Fuel flows from the parts highlighted
in green, into the part highlighted in blue.

Fig. 4.13: Figure 4 – A subset of the parts tree
from Figure 2 above.

Fuel lines are considered parts, and are included in the parts tree
(for example, as pictured in Figure 4). However, the parts tree
does not contain information about which parts fuel lines connect
to. The parent part of a fuel line is the part from which it will take
fuel (as shown in Figure 4) however the part that it will send fuel
to is not represented in the parts tree.

Figure 5 shows the fuel lines from the example vessel pictured
earlier. Fuel line part 15 (in red) takes fuel from a fuel tank (part
11 – in green) and feeds it into another fuel tank (part 9 – in blue).
The fuel line is therefore a child of part 11, but its connection to
part 9 is not represented in the tree.

The attributes Part::fuel_lines_from() and
Part::fuel_lines_to() can be used to discover
these connections. In the example in Figure 5, when
Part::fuel_lines_to() is called on fuel tank part

178 Chapter 4. C++

kRPC, Release 0.3.5

11, it will return a list of parts containing just fuel tank part 9 (the
blue part). When Part::fuel_lines_from() is called on
fuel tank part 9, it will return a list containing fuel tank parts 11
and 17 (the parts colored green).

Staging

Each part has two staging numbers associated with it: the stage in
which the part is activated and the stage in which the part is de-
coupled. These values can be obtained using Part::stage()
and Part::decouple_stage() respectively. For parts that
are not activated by staging, Part::stage() returns -1. For
parts that are never decoupled, Part::decouple_stage()
returns a value of -1.

Figure 6 shows an example staging sequence for a vessel. Figure
7 shows the stages in which each part of the vessel will be acti-
vated. Figure 8 shows the stages in which each part of the vessel
will be decoupled.

Fig. 4.14: Figure 6 – Example vessel from Figure 1 with a staging sequence.

4.3. SpaceCenter API 179

kRPC, Release 0.3.5

Fig. 4.15: Figure 7 – The stage in which each part is activated.

Fig. 4.16: Figure 8 – The stage in which each part is decou-
pled.

4.3.8 Resources

class Resources
Represents the col-
lection of resources
stored in a ves-
sel, stage or part.
Created by calling
Vessel::resources(),
Vessel::resources_in_decouple_stage()
or Part::resources().

std::vector<Resource> all()
All the individual resources that can be stored.

std::vector<Resource> with_resource(std::string name)
All the individual resources with the given name
that can be stored.

Parameters

std::vector<std::string> names()
A list of resource names that can be stored.

180 Chapter 4. C++

kRPC, Release 0.3.5

bool has_resource(std::string name)
Check whether the named resource can be stored.

Parameters

• name – The name of the resource.

float amount(std::string name)
Returns the amount of a resource that is currently
stored.

Parameters

• name – The name of the resource.

float max(std::string name)
Returns the amount of a resource that can be stored.

Parameters

• name – The name of the resource.

static float density(std::string name)
Returns the density of a resource, in kg/l.

Parameters

• name – The name of the resource.

static ResourceFlowMode flow_mode(std::string name)
Returns the flow mode of a resource.

Parameters

• name – The name of the resource.

bool enabled()

void set_enabled(bool value)
Whether use of all the resources are enabled.

Note: This is true if all of the resources are enabled.
If any of the resources are not enabled, this is false.

class Resource
An individual resource stored within a part. Created
using methods in the Resources class.

std::string name()
The name of the resource.

Part part()
The part containing the resource.

float amount()
The amount of the resource that is currently stored
in the part.

float max()
The total amount of the resource that can be stored
in the part.

4.3. SpaceCenter API 181

kRPC, Release 0.3.5

float density()
The density of the resource, in 𝑘𝑔/𝑙.

ResourceFlowMode flow_mode()
The flow mode of the resource.

bool enabled()

void set_enabled(bool value)
Whether use of this resource is enabled.

class ResourceTransfer
Transfer resources between parts.

static ResourceTransfer start(Part from_part, Part to_part, std::string resource, float max_amount)
Start transferring a resource transfer between a pair
of parts. The transfer will move at most max_amount
units of the resource, depending on how much of
the resource is available in the source part and how
much storage is available in the destination part.
Use ResourceTransfer::complete()
to check if the transfer is complete. Use
ResourceTransfer::amount() to see
how much of the resource has been transferred.

Parameters

• from_part – The part to transfer to.

• to_part – The part to transfer from.

• resource – The name of the resource to transfer.

• max_amount – The maximum amount of resource
to transfer.

float amount()
The amount of the resource that has been transferred.

bool complete()
Whether the transfer has completed.

enum struct ResourceFlowMode
The way in which a resource flows between parts.
See Resources::flow_mode().

enumerator vessel
The resource flows to any part in the vessel. For
example, electric charge.

enumerator stage
The resource flows from parts in the first stage,
followed by the second, and so on. For example,
mono-propellant.

enumerator adjacent
The resource flows between adjacent parts within
the vessel. For example, liquid fuel or oxidizer.

enumerator none
The resource does not flow. For example, solid fuel.

182 Chapter 4. C++

kRPC, Release 0.3.5

4.3.9 Node

class Node
Represents a maneuver node. Can be created using
Control::add_node().

float prograde()

void set_prograde(float value)
The magnitude of the maneuver nodes delta-v in the
prograde direction, in meters per second.

float normal()

void set_normal(float value)
The magnitude of the maneuver nodes delta-v in the
normal direction, in meters per second.

float radial()

void set_radial(float value)
The magnitude of the maneuver nodes delta-v in the
radial direction, in meters per second.

float delta_v()

void set_delta_v(float value)
The delta-v of the maneuver node, in meters per
second.

Note: Does not change when executing the maneu-
ver node. See Node::remaining_delta_v().

float remaining_delta_v()
Gets the remaining delta-v of the maneuver node, in
meters per second. Changes as the node is executed.
This is equivalent to the delta-v reported in-game.

std::tuple<double, double, double> burn_vector(ReferenceFrame reference_frame = None)
Returns a vector whose direction the direction of the
maneuver node burn, and whose magnitude is the
delta-v of the burn in m/s.

Parameters

Note: Does not change when ex-
ecuting the maneuver node. See
Node::remaining_burn_vector().

std::tuple<double, double, double> remaining_burn_vector(ReferenceFrame reference_frame =
None)

Returns a vector whose direction the direction of
the maneuver node burn, and whose magnitude is

4.3. SpaceCenter API 183

kRPC, Release 0.3.5

the delta-v of the burn in m/s. The direction and
magnitude change as the burn is executed.

Parameters

double ut()

void set_ut(double value)
The universal time at which the maneuver will occur,
in seconds.

double time_to()
The time until the maneuver node will be encoun-
tered, in seconds.

Orbit orbit()
The orbit that results from executing the maneuver
node.

void remove()
Removes the maneuver node.

ReferenceFrame reference_frame()
Gets the reference frame that is fixed relative to the
maneuver node’s burn.

•The origin is at the position of the maneuver node.

•The y-axis points in the direction of the burn.

•The x-axis and z-axis point in arbitrary but fixed di-
rections.

ReferenceFrame orbital_reference_frame()
Gets the reference frame that is fixed relative to
the maneuver node, and orientated with the orbital
prograde/normal/radial directions of the original
orbit at the maneuver node’s position.

•The origin is at the position of the maneuver node.

•The x-axis points in the orbital anti-radial direction
of the original orbit, at the position of the maneuver
node.

•The y-axis points in the orbital prograde direction
of the original orbit, at the position of the maneuver
node.

•The z-axis points in the orbital normal direction of
the original orbit, at the position of the maneuver
node.

std::tuple<double, double, double> position(ReferenceFrame reference_frame)
Returns the position vector of the maneuver node in
the given reference frame.

Parameters

std::tuple<double, double, double> direction(ReferenceFrame reference_frame)
Returns the unit direction vector of the maneuver
nodes burn in the given reference frame.

184 Chapter 4. C++

kRPC, Release 0.3.5

Parameters

4.3.10 ReferenceFrame

class ReferenceFrame
Represents a reference frame for positions, rotations
and velocities. Contains:

•The position of the origin.

•The directions of the x, y and z axes.

•The linear velocity of the frame.

•The angular velocity of the frame.

Note: This class does not contain any properties
or methods. It is only used as a parameter to other
functions.

4.3.11 AutoPilot

class AutoPilot
Provides basic auto-piloting utilities for a vessel.
Created by calling Vessel::auto_pilot().

Note: If a client engages the auto-pilot and then
closes its connection to the server, the auto-pilot will
be disengaged and its target reference frame, direc-
tion and roll reset to default.

void engage()
Engage the auto-pilot.

void disengage()
Disengage the auto-pilot.

void wait()
Blocks until the vessel is pointing in the target di-
rection and has the target roll (if set).

float error()
The error, in degrees, between the direction the
ship has been asked to point in and the direction
it is pointing in. Returns zero if the auto-pilot has
not been engaged and SAS is not enabled or is in
stability assist mode.

float pitch_error()
The error, in degrees, between the vessels current
and target pitch. Returns zero if the auto-pilot has
not been engaged.

4.3. SpaceCenter API 185

kRPC, Release 0.3.5

float heading_error()
The error, in degrees, between the vessels current
and target heading. Returns zero if the auto-pilot
has not been engaged.

float roll_error()
The error, in degrees, between the vessels current
and target roll. Returns zero if the auto-pilot has not
been engaged or no target roll is set.

ReferenceFrame reference_frame()

void set_reference_frame(ReferenceFrame value)
The reference frame for the target direction
(AutoPilot::target_direction()).

float target_pitch()

void set_target_pitch(float value)
The target pitch, in degrees, between -90° and +90°.

float target_heading()

void set_target_heading(float value)
The target heading, in degrees, between 0° and 360°.

float target_roll()

void set_target_roll(float value)
The target roll, in degrees. NaN if no target roll is
set.

std::tuple<double, double, double> target_direction()

void set_target_direction(std::tuple<double, double, double> value)
Direction vector corresponding to the target pitch
and heading.

void target_pitch_and_heading(float pitch, float heading)
Set target pitch and heading angles.

Parameters

• pitch – Target pitch angle, in degrees between -90°
and +90°.

• heading – Target heading angle, in degrees between
0° and 360°.

bool sas()

void set_sas(bool value)
The state of SAS.

Note: Equivalent to Control::sas()

186 Chapter 4. C++

kRPC, Release 0.3.5

SASMode sas_mode()

void set_sas_mode(SASMode value)
The current SASMode. These modes are equivalent
to the mode buttons to the left of the navball that
appear when SAS is enabled.

Note: Equivalent to Control::sas_mode()

double roll_threshold()

void set_roll_threshold(double value)
The threshold at which the autopilot will try to match
the target roll angle, if any. Defaults to 5 degrees.

std::tuple<double, double, double> stopping_time()

void set_stopping_time(std::tuple<double, double, double> value)
The maximum amount of time that the vessel should
need to come to a complete stop. This determines
the maximum angular velocity of the vessel. A
vector of three stopping times, in seconds, one for
each of the pitch, roll and yaw axes. Defaults to 0.5
seconds for each axis.

std::tuple<double, double, double> deceleration_time()

void set_deceleration_time(std::tuple<double, double, double> value)
The time the vessel should take to come to a stop
pointing in the target direction. This determines the
angular acceleration used to decelerate the vessel. A
vector of three times, in seconds, one for each of the
pitch, roll and yaw axes. Defaults to 5 seconds for
each axis.

std::tuple<double, double, double> attenuation_angle()

void set_attenuation_angle(std::tuple<double, double, double> value)
The angle at which the autopilot considers the vessel
to be pointing close to the target. This determines
the midpoint of the target velocity attenuation
function. A vector of three angles, in degrees, one
for each of the pitch, roll and yaw axes. Defaults to
1° for each axis.

bool auto_tune()

void set_auto_tune(bool value)
Whether the rotation rate controllers PID parameters
should be automatically tuned using the vessels
moment of inertia and available torque. Defaults

4.3. SpaceCenter API 187

kRPC, Release 0.3.5

to true. See AutoPilot::time_to_peak()
and AutoPilot::overshoot().

std::tuple<double, double, double> time_to_peak()

void set_time_to_peak(std::tuple<double, double, double> value)
The target time to peak used to autotune the PID
controllers. A vector of three times, in seconds, for
each of the pitch, roll and yaw axes. Defaults to 3
seconds for each axis.

std::tuple<double, double, double> overshoot()

void set_overshoot(std::tuple<double, double, double> value)
The target overshoot percentage used to autotune the
PID controllers. A vector of three values, between
0 and 1, for each of the pitch, roll and yaw axes.
Defaults to 0.01 for each axis.

std::tuple<double, double, double> pitch_pid_gains()

void set_pitch_pid_gains(std::tuple<double, double, double> value)
Gains for the pitch PID controller.

Note: When AutoPilot::auto_tune() is
true, these values are updated automatically, which
will overwrite any manual changes.

std::tuple<double, double, double> roll_pid_gains()

void set_roll_pid_gains(std::tuple<double, double, double> value)
Gains for the roll PID controller.

Note: When AutoPilot::auto_tune() is
true, these values are updated automatically, which
will overwrite any manual changes.

std::tuple<double, double, double> yaw_pid_gains()

void set_yaw_pid_gains(std::tuple<double, double, double> value)
Gains for the yaw PID controller.

Note: When AutoPilot::auto_tune() is
true, these values are updated automatically, which
will overwrite any manual changes.

188 Chapter 4. C++

kRPC, Release 0.3.5

4.3.12 Geometry Types

class Vector3
3-dimensional vectors are represented as a 3-tuple.
For example:

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect();
SpaceCenter sc(&conn);
std::tuple<double,double,double> v = sc.active_vessel().flight().prograde();
std::cout << std::get<0>(v) << " "

<< std::get<1>(v) << " "
<< std::get<2>(v) << std::endl;

}

class Quaternion
Quaternions (rotations in 3-dimensional space) are
encoded as a 4-tuple containing the x, y, z and w
components. For example:

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect();
SpaceCenter sc(&conn);
std::tuple<double,double,double,double> q = sc.active_vessel().flight().rotation();
std::cout << std::get<0>(q) << " "

<< std::get<1>(q) << " "
<< std::get<2>(q) << " "
<< std::get<3>(q) << std::endl;

}

4.3.13 Camera

class Camera
Controls the game’s camera. Obtained by calling
camera().

CameraMode mode()

void set_mode(CameraMode value)
The current mode of the camera.

float pitch()

4.3. SpaceCenter API 189

kRPC, Release 0.3.5

void set_pitch(float value)
The pitch of the camera, in degrees. A
value between Camera::min_pitch() and
Camera::max_pitch()

float heading()

void set_heading(float value)
The heading of the camera, in degrees.

float distance()

void set_distance(float value)
The distance from the camera to the subject. A
value between Camera::min_distance() and
Camera::max_distance().

float min_pitch()
The minimum pitch of the camera.

float max_pitch()
The maximum pitch of the camera.

float min_distance()
Minimum distance from the camera to the subject.

float max_distance()
Maximum distance from the camera to the subject.

float default_distance()
Default distance from the camera to the subject.

CelestialBody focussed_body()

void set_focussed_body(CelestialBody value)
In map mode, the celestial body that the camera
is focussed on. Returns NULL if the camera is not
focussed on a celestial body. Returns an error is the
camera is not in map mode.

Vessel focussed_vessel()

void set_focussed_vessel(Vessel value)
In map mode, the vessel that the camera is focussed
on. Returns NULL if the camera is not focussed on a
vessel. Returns an error is the camera is not in map
mode.

Node focussed_node()

void set_focussed_node(Node value)
In map mode, the maneuver node that the camera
is focussed on. Returns NULL if the camera is not
focussed on a maneuver node. Returns an error is
the camera is not in map mode.

190 Chapter 4. C++

kRPC, Release 0.3.5

enum struct CameraMode
See Camera::mode().

enumerator automatic
The camera is showing the active vessel, in “auto”
mode.

enumerator free
The camera is showing the active vessel, in “free”
mode.

enumerator chase
The camera is showing the active vessel, in “chase”
mode.

enumerator locked
The camera is showing the active vessel, in “locked”
mode.

enumerator orbital
The camera is showing the active vessel, in “orbital”
mode.

enumerator iva
The Intra-Vehicular Activity view is being shown.

enumerator map
The map view is being shown.

4.4 Drawing API

4.4.1 Drawing

class Drawing : public krpc::Service
Provides functionality for drawing objects in the
flight scene.

Drawing(krpc::Client *client)
Construct an instance of this service.

Line add_line(std::tuple<double, double, double> start, std::tuple<double, double, double> end,
SpaceCenter::ReferenceFrame reference_frame, bool visible = True)

Draw a line in the scene.

Parameters

• start – Position of the start of the line.

• end – Position of the end of the line.

• reference_frame – Reference frame that the posi-
tions are in.

• visible – Whether the line is visible.

Line add_direction(std::tuple<double, double, double> direction, SpaceCenter::ReferenceFrame
reference_frame, float length = 10.0, bool visible = True)

Draw a direction vector in the scene, from the center
of mass of the active vessel.

4.4. Drawing API 191

kRPC, Release 0.3.5

Parameters

• direction – Direction to draw the line in.

• reference_frame – Reference frame that the direc-
tion is in.

• length – The length of the line.

• visible – Whether the line is visible.

Polygon add_polygon(std::vector<std::tuple<double, double, double>> vertices, SpaceCen-
ter::ReferenceFrame reference_frame, bool visible = True)

Draw a polygon in the scene, defined by a list of
vertices.

Parameters

• vertices – Vertices of the polygon.

• reference_frame – Reference frame that the vertices
are in.

• visible – Whether the polygon is visible.

Text add_text(std::string text, SpaceCenter::ReferenceFrame reference_frame, std::tuple<double, dou-
ble, double> position, std::tuple<double, double, double, double> rotation, bool visible
= True)

Draw text in the scene.

Parameters

• text – The string to draw.

• reference_frame – Reference frame that the text po-
sition is in.

• position – Position of the text.

• rotation – Rotation of the text, as a quaternion.

• visible – Whether the text is visible.

void clear(bool client_only = False)
Remove all objects being drawn.

Parameters

• client_only – If true, only remove objects created by
the calling client.

4.4.2 Line

class Line
A line. Created using add_line().

std::tuple<double, double, double> start()

void set_start(std::tuple<double, double, double> value)
Start position of the line.

std::tuple<double, double, double> end()

192 Chapter 4. C++

kRPC, Release 0.3.5

void set_end(std::tuple<double, double, double> value)
End position of the line.

SpaceCenter::ReferenceFrame reference_frame()

void set_reference_frame(SpaceCenter::ReferenceFrame value)
Reference frame for the positions of the object.

bool visible()

void set_visible(bool value)
Whether the object is visible.

std::tuple<double, double, double> color()

void set_color(std::tuple<double, double, double> value)
Set the color

std::string material()

void set_material(std::string value)
Material used to render the object. Creates the ma-
terial from a shader with the given name.

float thickness()

void set_thickness(float value)
Set the thickness

void remove()
Remove the object.

4.4.3 Polygon

class Polygon
A polygon. Created using add_polygon().

std::vector<std::tuple<double, double, double>> vertices()

void set_vertices(std::vector<std::tuple<double, double, double>> value)
Vertices for the polygon.

SpaceCenter::ReferenceFrame reference_frame()

void set_reference_frame(SpaceCenter::ReferenceFrame value)
Reference frame for the positions of the object.

bool visible()

void set_visible(bool value)
Whether the object is visible.

void remove()
Remove the object.

4.4. Drawing API 193

kRPC, Release 0.3.5

std::tuple<double, double, double> color()

void set_color(std::tuple<double, double, double> value)
Set the color

std::string material()

void set_material(std::string value)
Material used to render the object. Creates the ma-
terial from a shader with the given name.

float thickness()

void set_thickness(float value)
Set the thickness

4.4.4 Text

class Text
Text. Created using add_text().

std::tuple<double, double, double> position()

void set_position(std::tuple<double, double, double> value)
Position of the text.

std::tuple<double, double, double, double> rotation()

void set_rotation(std::tuple<double, double, double, double> value)
Rotation of the text as a quaternion.

SpaceCenter::ReferenceFrame reference_frame()

void set_reference_frame(SpaceCenter::ReferenceFrame value)
Reference frame for the positions of the object.

bool visible()

void set_visible(bool value)
Whether the object is visible.

void remove()
Remove the object.

std::string content()

void set_content(std::string value)
The text string

std::string font()

void set_font(std::string value)
Name of the font

194 Chapter 4. C++

kRPC, Release 0.3.5

std::vector<std::string> available_fonts()
A list of all available fonts.

int32_t size()

void set_size(int32_t value)
Font size.

float character_size()

void set_character_size(float value)
Character size.

UI::FontStyle style()

void set_style(UI::FontStyle value)
Font style.

std::tuple<double, double, double> color()

void set_color(std::tuple<double, double, double> value)
Set the color

std::string material()

void set_material(std::string value)
Material used to render the object. Creates the ma-
terial from a shader with the given name.

UI::TextAlignment alignment()

void set_alignment(UI::TextAlignment value)
Alignment.

float line_spacing()

void set_line_spacing(float value)
Line spacing.

UI::TextAnchor anchor()

void set_anchor(UI::TextAnchor value)
Anchor.

4.5 InfernalRobotics API

Provides RPCs to interact with the InfernalRobotics
mod. Provides the following classes:

4.5. InfernalRobotics API 195

http://forum.kerbalspaceprogram.com/index.php?/topic/104535-105-magic-smoke-industries-infernal-robotics-0214/

kRPC, Release 0.3.5

4.5.1 InfernalRobotics

class InfernalRobotics : public krpc::Service
This service provides functionality to interact with
Infernal Robotics.

InfernalRobotics(krpc::Client *client)
Construct an instance of this service.

std::vector<ServoGroup> servo_groups(SpaceCenter::Vessel vessel)
A list of all the servo groups in the given vessel.

Parameters

ServoGroup servo_group_with_name(SpaceCenter::Vessel vessel, std::string name)
Returns the servo group in the given vessel with
the given name, or NULL if none exists. If multiple
servo groups have the same name, only one of them
is returned.

Parameters

• vessel – Vessel to check.

• name – Name of servo group to find.

Servo servo_with_name(SpaceCenter::Vessel vessel, std::string name)
Returns the servo in the given vessel with the given
name or NULL if none exists. If multiple servos
have the same name, only one of them is returned.

Parameters

• vessel – Vessel to check.

• name – Name of the servo to find.

4.5.2 ServoGroup

class ServoGroup
A group of servos, obtained by
calling servo_groups() or
servo_group_with_name(). Represents
the “Servo Groups” in the InfernalRobotics UI.

std::string name()

void set_name(std::string value)
The name of the group.

std::string forward_key()

void set_forward_key(std::string value)
The key assigned to be the “forward” key for the
group.

std::string reverse_key()

196 Chapter 4. C++

http://forum.kerbalspaceprogram.com/index.php?/topic/104535-105-magic-smoke-industries-infernal-robotics-0214/

kRPC, Release 0.3.5

void set_reverse_key(std::string value)
The key assigned to be the “reverse” key for the
group.

float speed()

void set_speed(float value)
The speed multiplier for the group.

bool expanded()

void set_expanded(bool value)
Whether the group is expanded in the Infernal-
Robotics UI.

std::vector<Servo> servos()
The servos that are in the group.

Servo servo_with_name(std::string name)
Returns the servo with the given name from this
group, or NULL if none exists.

Parameters

• name – Name of servo to find.

std::vector<SpaceCenter::Part> parts()
The parts containing the servos in the group.

void move_right()
Moves all of the servos in the group to the right.

void move_left()
Moves all of the servos in the group to the left.

void move_center()
Moves all of the servos in the group to the center.

void move_next_preset()
Moves all of the servos in the group to the next
preset.

void move_prev_preset()
Moves all of the servos in the group to the previous
preset.

void stop()
Stops the servos in the group.

4.5.3 Servo

class Servo
Represents a servo. Obtained us-
ing ServoGroup::servos(),
ServoGroup::servo_with_name() or
servo_with_name().

std::string name()

4.5. InfernalRobotics API 197

kRPC, Release 0.3.5

void set_name(std::string value)
The name of the servo.

SpaceCenter::Part part()
The part containing the servo.

void set_highlight(bool value)
Whether the servo should be highlighted in-game.

float position()
The position of the servo.

float min_config_position()
The minimum position of the servo, specified by the
part configuration.

float max_config_position()
The maximum position of the servo, specified by
the part configuration.

float min_position()

void set_min_position(float value)
The minimum position of the servo, specified by the
in-game tweak menu.

float max_position()

void set_max_position(float value)
The maximum position of the servo, specified by
the in-game tweak menu.

float config_speed()
The speed multiplier of the servo, specified by the
part configuration.

float speed()

void set_speed(float value)
The speed multiplier of the servo, specified by the
in-game tweak menu.

float current_speed()

void set_current_speed(float value)
The current speed at which the servo is moving.

float acceleration()

void set_acceleration(float value)
The current speed multiplier set in the UI.

bool is_moving()
Whether the servo is moving.

bool is_free_moving()
Whether the servo is freely moving.

198 Chapter 4. C++

kRPC, Release 0.3.5

bool is_locked()

void set_is_locked(bool value)
Whether the servo is locked.

bool is_axis_inverted()

void set_is_axis_inverted(bool value)
Whether the servos axis is inverted.

void move_right()
Moves the servo to the right.

void move_left()
Moves the servo to the left.

void move_center()
Moves the servo to the center.

void move_next_preset()
Moves the servo to the next preset.

void move_prev_preset()
Moves the servo to the previous preset.

void move_to(float position, float speed)
Moves the servo to position and sets the speed mul-
tiplier to speed.

Parameters

• position – The position to move the servo to.

• speed – Speed multiplier for the movement.

void stop()
Stops the servo.

4.5.4 Example

The following example gets the control group named
“MyGroup”, prints out the names and positions of
all of the servos in the group, then moves all of the
servos to the right for 1 second.

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <krpc/services/infernal_robotics.hpp>
#include <iostream>
#include <vector>

using namespace krpc::services;

int main() {
auto conn = krpc::connect("InfernalRobotics Example");
SpaceCenter space_center(&conn);
InfernalRobotics infernal_robotics(&conn);

InfernalRobotics::ServoGroup group = infernal_robotics.servo_group_with_name(space_center.active_vessel(), "MyGroup");

4.5. InfernalRobotics API 199

kRPC, Release 0.3.5

if (group == InfernalRobotics::ServoGroup())
std::cout << "Group not found" << std::endl;

std::vector<InfernalRobotics::Servo> servos = group.servos();
for (auto servo : servos)
std::cout << servo.name() << " " << servo.position() << std::endl;

group.move_right();
sleep(1);
group.stop();

}

4.6 Kerbal Alarm Clock API

Provides RPCs to interact with the Kerbal Alarm
Clock mod. Provides the following classes:

4.6.1 KerbalAlarmClock

class KerbalAlarmClock : public krpc::Service
This service provides functionality to interact with
Kerbal Alarm Clock.

KerbalAlarmClock(krpc::Client *client)
Construct an instance of this service.

std::vector<Alarm> alarms()
A list of all the alarms.

Alarm alarm_with_name(std::string name)
Get the alarm with the given name, or NULL if no
alarms have that name. If more than one alarm has
the name, only returns one of them.

Parameters

• name – Name of the alarm to search for.

std::vector<Alarm> alarms_with_type(AlarmType type)
Get a list of alarms of the specified type.

Parameters

• type – Type of alarm to return.

Alarm create_alarm(AlarmType type, std::string name, double ut)
Create a new alarm and return it.

Parameters

• type – Type of the new alarm.

• name – Name of the new alarm.

• ut – Time at which the new alarm should trigger.

200 Chapter 4. C++

http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/
http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/
http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/

kRPC, Release 0.3.5

4.6.2 Alarm

class Alarm
Represents an alarm. Obtained by call-
ing alarms(), alarm_with_name() or
alarms_with_type().

AlarmAction action()

void set_action(AlarmAction value)
The action that the alarm triggers.

double margin()

void set_margin(double value)
The number of seconds before the event that the
alarm will fire.

double time()

void set_time(double value)
The time at which the alarm will fire.

AlarmType type()
The type of the alarm.

std::string id()
The unique identifier for the alarm.

std::string name()

void set_name(std::string value)
The short name of the alarm.

std::string notes()

void set_notes(std::string value)
The long description of the alarm.

double remaining()
The number of seconds until the alarm will fire.

bool repeat()

void set_repeat(bool value)
Whether the alarm will be repeated after it has fired.

double repeat_period()

void set_repeat_period(double value)
The time delay to automatically create an alarm
after it has fired.

SpaceCenter::Vessel vessel()

4.6. Kerbal Alarm Clock API 201

kRPC, Release 0.3.5

void set_vessel(SpaceCenter::Vessel value)
The vessel that the alarm is attached to.

SpaceCenter::CelestialBody xfer_origin_body()

void set_xfer_origin_body(SpaceCenter::CelestialBody value)
The celestial body the vessel is departing from.

SpaceCenter::CelestialBody xfer_target_body()

void set_xfer_target_body(SpaceCenter::CelestialBody value)
The celestial body the vessel is arriving at.

void remove()
Removes the alarm.

4.6.3 AlarmType

enum struct AlarmType
The type of an alarm.

enumerator raw
An alarm for a specific date/time or a specific period
in the future.

enumerator maneuver
An alarm based on the next maneuver node on the
current ships flight path. This node will be stored
and can be restored when you come back to the ship.

enumerator maneuver_auto
See AlarmType::maneuver.

enumerator apoapsis
An alarm for furthest part of the orbit from the
planet.

enumerator periapsis
An alarm for nearest part of the orbit from the planet.

enumerator ascending_node
Ascending node for the targeted object, or equatorial
ascending node.

enumerator descending_node
Descending node for the targeted object, or equato-
rial descending node.

enumerator closest
An alarm based on the closest approach of this ves-
sel to the targeted vessel, some number of orbits
into the future.

enumerator contract
An alarm based on the expiry or deadline of con-
tracts in career modes.

enumerator contract_auto
See AlarmType::contract.

202 Chapter 4. C++

kRPC, Release 0.3.5

enumerator crew
An alarm that is attached to a crew member.

enumerator distance
An alarm that is triggered when a selected target
comes within a chosen distance.

enumerator earth_time
An alarm based on the time in the “Earth” alternative
Universe (aka the Real World).

enumerator launch_rendevous
An alarm that fires as your landed craft passes under
the orbit of your target.

enumerator soi_change
An alarm manually based on when the next SOI
point is on the flight path or set to continually
monitor the active flight path and add alarms as it
detects SOI changes.

enumerator soi_change_auto
See AlarmType::soi_change.

enumerator transfer
An alarm based on Interplanetary Transfer Phase
Angles, i.e. when should I launch to planet X?
Based on Kosmo Not’s post and used in Olex’s
Calculator.

enumerator transfer_modelled
See AlarmType::transfer.

4.6.4 AlarmAction

enum struct AlarmAction
The action performed by an alarm when it fires.

enumerator do_nothing
Don’t do anything at all...

enumerator do_nothing_delete_when_passed
Don’t do anything, and delete the alarm.

enumerator kill_warp
Drop out of time warp.

enumerator kill_warp_only
Drop out of time warp.

enumerator message_only
Display a message.

enumerator pause_game
Pause the game.

4.6. Kerbal Alarm Clock API 203

kRPC, Release 0.3.5

4.6.5 Example

The following example creates a new alarm for the
active vessel. The alarm is set to trigger after 10 sec-
onds have passed, and display a message.

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <krpc/services/kerbal_alarm_clock.hpp>
#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect("Kerbal Alarm Clock Example");
SpaceCenter sc(&conn);
KerbalAlarmClock kac(&conn);

auto alarm = kac.create_alarm(KerbalAlarmClock::AlarmType::raw,
"My New Alarm",
sc.ut()+10);

alarm.set_notes("10 seconds have now passed since the alarm was created.");
alarm.set_action(KerbalAlarmClock::AlarmAction::message_only);

}

4.7 RemoteTech API

4.7.1 RemoteTech

class RemoteTech : public krpc::Service
This service provides functionality to interact with
RemoteTech.

RemoteTech(krpc::Client *client)
Construct an instance of this service.

std::vector<std::string> ground_stations()
The names of the ground stations.

Comms comms(SpaceCenter::Vessel vessel)
Get a communications object, representing the com-
munication capability of a particular vessel.

Parameters

Antenna antenna(SpaceCenter::Part part)
Get the antenna object for a particular part.

Parameters

4.7.2 Comms

class Comms
Communications for a vessel.

204 Chapter 4. C++

http://forum.kerbalspaceprogram.com/index.php?/topic/75245-11-remotetech-v1610-2016-04-12/

kRPC, Release 0.3.5

SpaceCenter::Vessel vessel()
Get the vessel.

bool has_local_control()
Whether the vessel can be controlled locally.

bool has_flight_computer()
Whether the vessel has a flight computer on board.

bool has_connection()
Whether the vessel has any connection.

bool has_connection_to_ground_station()
Whether the vessel has a connection to a ground
station.

double signal_delay()
The shortest signal delay to the vessel, in seconds.

double signal_delay_to_ground_station()
The signal delay between the vessel and the closest
ground station, in seconds.

double signal_delay_to_vessel(SpaceCenter::Vessel other)
The signal delay between the this vessel and another
vessel, in seconds.

Parameters

std::vector<Antenna> antennas()
The antennas for this vessel.

4.7.3 Antenna

class Antenna
A RemoteTech antenna. Obtained by calling
Comms::antennas() or antenna().

SpaceCenter::Part part()
Get the part containing this antenna.

bool has_connection()
Whether the antenna has a connection.

Target target()

void set_target(Target value)
The object that the antenna is targetting. This prop-
erty can be used to set the target to Target::none
or Target::active_vessel. To set the
target to a celestial body, ground station or
vessel see Antenna::target_body(),
Antenna::target_ground_station() and
Antenna::target_vessel().

SpaceCenter::CelestialBody target_body()

void set_target_body(SpaceCenter::CelestialBody value)
The celestial body the antenna is targetting.

4.7. RemoteTech API 205

kRPC, Release 0.3.5

std::string target_ground_station()

void set_target_ground_station(std::string value)
The ground station the antenna is targetting.

SpaceCenter::Vessel target_vessel()

void set_target_vessel(SpaceCenter::Vessel value)
The vessel the antenna is targetting.

enum struct Target
The type of object an antenna is targetting. See
Antenna::target().

enumerator active_vessel
The active vessel.

enumerator celestial_body
A celestial body.

enumerator ground_station
A ground station.

enumerator vessel
A specific vessel.

enumerator none
No target.

4.8 User Interface API

4.8.1 UI

class UI : public krpc::Service
Provides functionality for drawing and interacting
with in-game user interface elements.

UI(krpc::Client *client)
Construct an instance of this service.

Canvas stock_canvas()
The stock UI canvas.

Canvas add_canvas()
Add a new canvas.

Note: If you want to add UI elements to KSPs stock
UI canvas, use stock_canvas().

void message(std::string content, float duration = 1.0, MessagePosition position = 1)
Display a message on the screen.

Parameters

• content – Message content.

206 Chapter 4. C++

kRPC, Release 0.3.5

• duration – Duration before the message disappears,
in seconds.

• position – Position to display the message.

Note: The message appears just like a stock mes-
sage, for example quicksave or quickload messages.

void clear(bool client_only = False)
Remove all user interface elements.

Parameters

• client_only – If true, only remove objects created by
the calling client.

enum struct MessagePosition
Message position.

enumerator top_left
Top left.

enumerator top_center
Top center.

enumerator top_right
Top right.

enumerator bottom_center
Bottom center.

4.8.2 Canvas

class Canvas
A canvas for user interface elements. See
stock_canvas() and add_canvas().

RectTransform rect_transform()
The rect transform for the canvas.

bool visible()

void set_visible(bool value)
Whether the UI object is visible.

Panel add_panel(bool visible = True)
Create a new container for user interface elements.

Parameters

• visible – Whether the panel is visible.

Text add_text(std::string content, bool visible = True)
Add text to the canvas.

Parameters

• content – The text.

4.8. User Interface API 207

kRPC, Release 0.3.5

• visible – Whether the text is visible.

InputField add_input_field(bool visible = True)
Add an input field to the canvas.

Parameters

• visible – Whether the input field is visible.

Button add_button(std::string content, bool visible = True)
Add a button to the canvas.

Parameters

• content – The label for the button.

• visible – Whether the button is visible.

void remove()
Remove the UI object.

4.8.3 Panel

class Panel
A container for user interface elements. See
Canvas::add_panel().

RectTransform rect_transform()
The rect transform for the panel.

bool visible()

void set_visible(bool value)
Whether the UI object is visible.

Panel add_panel(bool visible = True)
Create a panel within this panel.

Parameters

• visible – Whether the new panel is visible.

Text add_text(std::string content, bool visible = True)
Add text to the panel.

Parameters

• content – The text.

• visible – Whether the text is visible.

InputField add_input_field(bool visible = True)
Add an input field to the panel.

Parameters

• visible – Whether the input field is visible.

Button add_button(std::string content, bool visible = True)
Add a button to the panel.

Parameters

• content – The label for the button.

208 Chapter 4. C++

kRPC, Release 0.3.5

• visible – Whether the button is visible.

void remove()
Remove the UI object.

4.8.4 Text

class Text
A text label. See Panel::add_text().

RectTransform rect_transform()
The rect transform for the text.

bool visible()

void set_visible(bool value)
Whether the UI object is visible.

std::string content()

void set_content(std::string value)
The text string

std::string font()

void set_font(std::string value)
Name of the font

std::vector<std::string> available_fonts()
A list of all available fonts.

int32_t size()

void set_size(int32_t value)
Font size.

FontStyle style()

void set_style(FontStyle value)
Font style.

std::tuple<double, double, double> color()

void set_color(std::tuple<double, double, double> value)
Set the color

TextAnchor alignment()

void set_alignment(TextAnchor value)
Alignment.

float line_spacing()

void set_line_spacing(float value)
Line spacing.

4.8. User Interface API 209

kRPC, Release 0.3.5

void remove()
Remove the UI object.

enum struct FontStyle
Font style.

enumerator normal
Normal.

enumerator bold
Bold.

enumerator italic
Italic.

enumerator bold_and_italic
Bold and italic.

enum struct TextAlignment
Text alignment.

enumerator left
Left aligned.

enumerator right
Right aligned.

enumerator center
Center aligned.

enum struct TextAnchor
Text alignment.

enumerator lower_center
Lower center.

enumerator lower_left
Lower left.

enumerator lower_right
Lower right.

enumerator middle_center
Middle center.

enumerator middle_left
Middle left.

enumerator middle_right
Middle right.

enumerator upper_center
Upper center.

enumerator upper_left
Upper left.

enumerator upper_right
Upper right.

210 Chapter 4. C++

kRPC, Release 0.3.5

4.8.5 Button

class Button
A text label. See Panel::add_button().

RectTransform rect_transform()
The rect transform for the text.

bool visible()

void set_visible(bool value)
Whether the UI object is visible.

Text text()
The text for the button.

bool clicked()

void set_clicked(bool value)
Whether the button has been clicked.

Note: This property is set to true when the user
clicks the button. A client script should reset the
property to false in order to detect subsequent but-
ton presses.

void remove()
Remove the UI object.

4.8.6 InputField

class InputField
An input field. See
Panel::add_input_field().

RectTransform rect_transform()
The rect transform for the input field.

bool visible()

void set_visible(bool value)
Whether the UI object is visible.

std::string value()

void set_value(std::string value)
The value of the input field.

Text text()
The text component of the input field.

Note: Use InputField::value() to get and
set the value in the field. This object can be used to

4.8. User Interface API 211

kRPC, Release 0.3.5

alter the style of the input field’s text.

bool changed()

void set_changed(bool value)
Whether the input field has been changed.

Note: This property is set to true when the user
modifies the value of the input field. A client script
should reset the property to false in order to detect
subsequent changes.

void remove()
Remove the UI object.

4.8.7 Rect Transform

class RectTransform
A Unity engine Rect Transform for a UI object. See
the Unity manual for more details.

std::tuple<double, double> position()

void set_position(std::tuple<double, double> value)
Position of the rectangles pivot point relative to the
anchors.

std::tuple<double, double, double> local_position()

void set_local_position(std::tuple<double, double, double> value)
Position of the rectangles pivot point relative to the
anchors.

std::tuple<double, double> size()

void set_size(std::tuple<double, double> value)
Width and height of the rectangle.

std::tuple<double, double> upper_right()

void set_upper_right(std::tuple<double, double> value)
Position of the rectangles upper right corner relative
to the anchors.

std::tuple<double, double> lower_left()

void set_lower_left(std::tuple<double, double> value)
Position of the rectangles lower left corner relative
to the anchors.

212 Chapter 4. C++

http://docs.unity3d.com/Manual/class-RectTransform.html

kRPC, Release 0.3.5

void set_anchor(std::tuple<double, double> value)
Set the minimum and maximum anchor points as a
fraction of the size of the parent rectangle.

std::tuple<double, double> anchor_max()

void set_anchor_max(std::tuple<double, double> value)
The anchor point for the lower left corner of the
rectangle defined as a fraction of the size of the
parent rectangle.

std::tuple<double, double> anchor_min()

void set_anchor_min(std::tuple<double, double> value)
The anchor point for the upper right corner of the
rectangle defined as a fraction of the size of the
parent rectangle.

std::tuple<double, double> pivot()

void set_pivot(std::tuple<double, double> value)
Location of the pivot point around which the rect-
angle rotates, defined as a fraction of the size of the
rectangle itself.

std::tuple<double, double, double, double> rotation()

void set_rotation(std::tuple<double, double, double, double> value)
Rotation, as a quaternion, of the object around its
pivot point.

std::tuple<double, double, double> scale()

void set_scale(std::tuple<double, double, double> value)
Scale factor applied to the object in the x, y and z
dimensions.

4.8. User Interface API 213

kRPC, Release 0.3.5

214 Chapter 4. C++

CHAPTER

FIVE

JAVA

5.1 Java Client

This client provides functionality to interact with a kRPC server from programs written in Java. A jar containing the
krpc.client package can be downloaded from GitHub. It requires Java version 1.7.

5.1.1 Using the Library

The kRPC client library depends on the protobuf and javatuples libraries. A prebuilt jar for protobuf is available via
Maven. Note that you need protobuf version 3. Version 2 is not compatible with kRPC.

The following example program connects to the server, queries it for its version and prints it out:

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.KRPC;

public class Basic {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
KRPC krpc = KRPC.newInstance(connection);
System.out.println("Connected to kRPC version " + krpc.getStatus().getVersion());

}
}

To compile this program using javac on the command line, save the source as Example.java and run the following:

javac -cp krpc-java-0.2.3.jar:protobuf-java-3.0.0-beta-2.jar:javatuples-1.2.jar Example.java

You may need to change the paths to the JAR files.

5.1.2 Connecting to the Server

To connect to a server, use the Connection.newInstance() function. This returns a connection object through
which you can interact with the server. When called without any arguments, it will connect to the local machine on
the default port numbers. You can specify different connection settings, including a descriptive name for the client, as
follows:

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;

215

https://github.com/krpc/krpc/releases/download/v0.3.5/krpc-java-0.3.5.jar
https://github.com/google/protobuf/tree/master/java
http://www.javatuples.org
http://search.maven.org/#search\T1\textbar {}ga\T1\textbar {}1\T1\textbar {}g%3A%22com.google.protobuf%22%20a%3A%22protobuf-java%22

kRPC, Release 0.3.5

import krpc.client.services.KRPC;

public class Connecting {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance("Remote example", "my.domain.name", 1000, 1001);
System.out.println(KRPC.newInstance(connection).getStatus().getVersion());

}
}

5.1.3 Interacting with the Server

Interaction with the server is performed via a connection object. Functionality for services are defined in the packages
krpc.client.services.*. Before a service can be used it must first be instantiated. The following example
connects to the server, instantiates the SpaceCenter service, and outputs the name of the active vessel:

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Vessel;

public class Interacting {
public static void main (String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance("Vessel Name");
SpaceCenter spaceCenter = SpaceCenter.newInstance(connection);
Vessel vessel = spaceCenter.getActiveVessel();
System.out.println(vessel.getName());

}
}

5.1.4 Streaming Data from the Server

A stream repeatedly executes a function on the server, with a fixed set of argument values. It provides a more efficient
way of repeatedly getting the result of a function, avoiding the network overhead of having to invoke it directly.

For example, consider the following loop that continuously prints out the position of the active vessel. This loop incurs
significant communication overheads, as the vessel.position() function is called repeatedly.

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.KRPC;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Vessel;
import krpc.client.services.SpaceCenter.ReferenceFrame;

public class Streaming {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
SpaceCenter spaceCenter = SpaceCenter.newInstance(connection);
Vessel vessel = spaceCenter.getActiveVessel();
ReferenceFrame refframe = vessel.getOrbit().getBody().getReferenceFrame();
while (true)

System.out.println(vessel.position(refframe));
}

}

216 Chapter 5. Java

kRPC, Release 0.3.5

The following code achieves the same thing, but is far more efficient. It calls Connection.addStream once at
the start of the program to create a stream, and then repeatedly gets the position from the stream.

import java.io.IOException;
import org.javatuples.Triplet;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.Stream;
import krpc.client.StreamException;
import krpc.client.services.KRPC;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Vessel;
import krpc.client.services.SpaceCenter.ReferenceFrame;

public class Streaming2 {
public static void main(String[] args) throws IOException, RPCException, StreamException {

Connection connection = Connection.newInstance();
SpaceCenter spaceCenter = SpaceCenter.newInstance(connection);
Vessel vessel = spaceCenter.getActiveVessel();
ReferenceFrame refframe = vessel.getOrbit().getBody().getReferenceFrame();
Stream<Triplet<Double,Double,Double>> vessel_stream = connection.addStream(vessel, "position", refframe);
while (true)

System.out.println(vessel_stream.get());
}

}

Streams are created by calling Connection.addStream and passing it information about which method to stream.
The example above passes a remote object, the name of the method to call, followed by the arguments to pass to the
method (if any). The most recent value for the stream can be obtained by calling Stream.get.

Streams can also be added for static methods as follows:

Stream<Double> time_stream = connection.addStream(SpaceCenter.class, "getUt");

A stream can be removed by calling Stream.remove(). All of a clients streams are automatically stopped when it
disconnects.

5.1.5 Client API Reference

class Connection

This class provides the interface for communicating with the server.

static Connection newInstance()

static Connection newInstance(String name)

static Connection newInstance(String name, String address)

static Connection newInstance(String name, String address, int rpcPort, int streamPort)

static Connection newInstance(String name, java.net.InetAddress address)

static Connection newInstance(String name, java.net.InetAddress address, int rpcPort, int
streamPort)

Create a connection to the server, using the given connection details.
Parameters

• name (String) – A descriptive name for the connection. This is passed to the
server and appears, for example, in the client connection dialog on the in-game
server window.

5.1. Java Client 217

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/net/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/net/InetAddress.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/net/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/net/InetAddress.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

• address (String) – The address of the server to connect to. Can either be
a hostname, an IP address as a string or a java.net.InetAddress object.
Defaults to “127.0.0.1”.

• rpc_port (int) – The port number of the RPC Server. Defaults to 50000.
• stream_port (int) – The port number of the Stream Server. Defaults to 50001.

void close()
Close the connection.

Stream<T> addStream(Class<?> clazz, String method, Object... args)
Create a stream for a static method call to the given class.

Stream<T> addStream(RemoteObject instance, String method, Object... args)
Create a stream for a method call to the given remote object.

class Stream<T>
A stream object.

T get()
Get the most recent value for the stream.

void remove()
Remove the stream from the server.

abstract class RemoteObject
The abstract base class for all remote objects.

5.2 KRPC API

public class KRPC
Main kRPC service, used by clients to interact with basic server functionality.

krpc.schema.KRPC.Status getStatus()
Returns some information about the server, such as the version.

krpc.schema.KRPC.Services getServices()
Returns information on all services, procedures, classes, properties etc. provided by the server. Can be
used by client libraries to automatically create functionality such as stubs.

GameScene getCurrentGameScene()
Get the current game scene.

int addStream(krpc.schema.KRPC.Request request)
Add a streaming request and return its identifier.

Parameters

• request (krpc.schema.KRPC.Request) –

Note: Do not call this method from client code. Use streams provided by the Java client library.

void removeStream(int id)
Remove a streaming request.

Parameters

• id (int) –

218 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/net/InetAddress.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

kRPC, Release 0.3.5

Note: Do not call this method from client code. Use streams provided by the Java client library.

public enum GameScene
The game scene. See getCurrentGameScene().

public GameScene SPACE_CENTER
The game scene showing the Kerbal Space Center buildings.

public GameScene FLIGHT
The game scene showing a vessel in flight (or on the launchpad/runway).

public GameScene TRACKING_STATION
The tracking station.

public GameScene EDITOR_VAB
The Vehicle Assembly Building.

public GameScene EDITOR_SPH
The Space Plane Hangar.

5.3 SpaceCenter API

5.3.1 SpaceCenter

public class SpaceCenter
Provides functionality to interact with Kerbal Space Program. This includes controlling the active vessel, man-
aging its resources, planning maneuver nodes and auto-piloting.

Vessel getActiveVessel()

void setActiveVessel(Vessel value)
The currently active vessel.

java.util.List<Vessel> getVessels()
A list of all the vessels in the game.

java.util.Map<String, CelestialBody> getBodies()
A dictionary of all celestial bodies (planets, moons, etc.) in the game, keyed by the name of the body.

CelestialBody getTargetBody()

void setTargetBody(CelestialBody value)
The currently targeted celestial body.

Vessel getTargetVessel()

void setTargetVessel(Vessel value)
The currently targeted vessel.

DockingPort getTargetDockingPort()

void setTargetDockingPort(DockingPort value)
The currently targeted docking port.

void clearTarget()
Clears the current target.

java.util.List<String> launchableVessels(String craftDirectory)
Returns a list of vessels from the given craftDirectory that can be launched.

5.3. SpaceCenter API 219

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

Parameters

• craftDirectory (String) – Name of the directory in the current saves “Ships” di-
rectory. For example "VAB" or "SPH".

void launchVessel(String craftDirectory, String name, String launchSite)
Launch a vessel.

Parameters

• craftDirectory (String) – Name of the directory in the current saves “Ships” di-
rectory, that contains the craft file. For example "VAB" or "SPH".

• name (String) – Name of the vessel to launch. This is the name of the ”.craft” file in
the save directory, without the ”.craft” file extension.

• launchSite (String) – Name of the launch site. For example "LaunchPad" or
"Runway".

void launchVesselFromVAB(String name)
Launch a new vessel from the VAB onto the launchpad.

Parameters

• name (String) – Name of the vessel to launch.

Note: This is equivalent to calling launchVessel(String, String, String) with the craft
directory set to “VAB” and the launch site set to “LaunchPad”.

void launchVesselFromSPH(String name)
Launch a new vessel from the SPH onto the runway.

Parameters

• name (String) – Name of the vessel to launch.

Note: This is equivalent to calling launchVessel(String, String, String) with the craft
directory set to “SPH” and the launch site set to “Runway”.

void save(String name)
Save the game with a given name. This will create a save file called name.sfs in the folder of the current
save game.

Parameters

• name (String) –

void load(String name)
Load the game with the given name. This will create a load a save file called name.sfs from the folder
of the current save game.

Parameters

• name (String) –

void quicksave()
Save a quicksave.

Note: This is the same as calling save(String) with the name “quicksave”.

220 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

void quickload()
Load a quicksave.

Note: This is the same as calling load(String) with the name “quicksave”.

Camera getCamera()
An object that can be used to control the camera.

double getUT()
The current universal time in seconds.

float getG()
The value of the gravitational constant G in 𝑁(𝑚/𝑘𝑔)2.

WarpMode getWarpMode()
The current time warp mode. Returns WarpMode.NONE if time warp is not active, WarpMode.RAILS
if regular “on-rails” time warp is active, or WarpMode.PHYSICS if physical time warp is active.

float getWarpRate()
The current warp rate. This is the rate at which time is passing for either on-rails or physical time warp.
For example, a value of 10 means time is passing 10x faster than normal. Returns 1 if time warp is not
active.

float getWarpFactor()
The current warp factor. This is the index of the rate at which time is passing for either regular “on-rails”
or physical time warp. Returns 0 if time warp is not active. When in on-rails time warp, this is equal to
getRailsWarpFactor(), and in physics time warp, this is equal to getPhysicsWarpFactor().

int getRailsWarpFactor()

void setRailsWarpFactor(int value)
The time warp rate, using regular “on-rails” time warp. A value between 0 and 7 inclusive. 0 means no
time warp. Returns 0 if physical time warp is active. If requested time warp factor cannot be set, it will be
set to the next lowest possible value. For example, if the vessel is too close to a planet. See the KSP wiki
for details.

int getPhysicsWarpFactor()

void setPhysicsWarpFactor(int value)
The physical time warp rate. A value between 0 and 3 inclusive. 0 means no time warp. Returns 0 if
regular “on-rails” time warp is active.

boolean canRailsWarpAt(int factor)
Returns true if regular “on-rails” time warp can be used, at the specified warp factor. The maximum
time warp rate is limited by various things, including how close the active vessel is to a planet. See the
KSP wiki for details.

Parameters

• factor (int) – The warp factor to check.

int getMaximumRailsWarpFactor()
The current maximum regular “on-rails” warp factor that can be set. A value between 0 and 7 inclusive.
See the KSP wiki for details.

void warpTo(double ut, float maxRailsRate, float maxPhysicsRate)
Uses time acceleration to warp forward to a time in the future, specified by universal time ut. This call
blocks until the desired time is reached. Uses regular “on-rails” or physical time warp as appropriate. For
example, physical time warp is used when the active vessel is traveling through an atmosphere. When

5.3. SpaceCenter API 221

https://en.wikipedia.org/wiki/Gravitational_constant
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.3.5

using regular “on-rails” time warp, the warp rate is limited by maxRailsRate, and when using physical
time warp, the warp rate is limited by maxPhysicsRate.

Parameters

• ut (double) – The universal time to warp to, in seconds.

• maxRailsRate (float) – The maximum warp rate in regular “on-rails” time warp.

• maxPhysicsRate (float) – The maximum warp rate in physical time warp.

Returns When the time warp is complete.

org.javatuples.Triplet<Double, Double, Double> transformPosition(org.javatuples.Triplet<Double,
Double, Double> position,
ReferenceFrame from,
ReferenceFrame to)

Converts a position vector from one reference frame to another.

Parameters

• position (org.javatuples.Triplet<Double,Double,Double>) – Posi-
tion vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the position vector is in.

• to (ReferenceFrame) – The reference frame to covert the position vector to.

Returns The corresponding position vector in reference frame to.

org.javatuples.Triplet<Double, Double, Double> transformDirection(org.javatuples.Triplet<Double,
Double, Double> direc-
tion, ReferenceFrame from,
ReferenceFrame to)

Converts a direction vector from one reference frame to another.

Parameters

• direction (org.javatuples.Triplet<Double,Double,Double>) – Di-
rection vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the direction vector is in.

• to (ReferenceFrame) – The reference frame to covert the direction vector to.

Returns The corresponding direction vector in reference frame to.

org.javatuples.Quartet<Double, Double, Double, Double> transformRotation(org.javatuples.Quartet<Double,
Double, Double,
Double> rotation,
ReferenceFrame
from, Reference-
Frame to)

Converts a rotation from one reference frame to another.

Parameters

• rotation (org.javatuples.Quartet<Double,Double,Double,Double>)
– Rotation in reference frame from.

• from (ReferenceFrame) – The reference frame that the rotation is in.

• to (ReferenceFrame) – The corresponding rotation in reference frame to.

Returns The corresponding rotation in reference frame to.

222 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet\T1\textless {}Double,Double,Double,Double\T1\textgreater {}.html

kRPC, Release 0.3.5

org.javatuples.Triplet<Double, Double, Double> transformVelocity(org.javatuples.Triplet<Double,
Double, Double> position,
org.javatuples.Triplet<Double,
Double, Double> velocity,
ReferenceFrame from,
ReferenceFrame to)

Converts a velocity vector (acting at the specified position vector) from one reference frame to another.
The position vector is required to take the relative angular velocity of the reference frames into account.

Parameters

• position (org.javatuples.Triplet<Double,Double,Double>) – Posi-
tion vector in reference frame from.

• velocity (org.javatuples.Triplet<Double,Double,Double>) – Veloc-
ity vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the position and velocity vectors
are in.

• to (ReferenceFrame) – The reference frame to covert the velocity vector to.

Returns The corresponding velocity in reference frame to.

boolean getFARAvailable()
Whether Ferram Aerospace Research is installed.

public enum WarpMode
The time warp mode. Returned by WarpMode

public WarpMode RAILS
Time warp is active, and in regular “on-rails” mode.

public WarpMode PHYSICS
Time warp is active, and in physical time warp mode.

public WarpMode NONE
Time warp is not active.

5.3.2 Vessel

public class Vessel
These objects are used to interact with vessels in KSP. This includes getting orbital and flight data, manipulating
control inputs and managing resources. Created using getActiveVessel() or getVessels().

String getName()

void setName(String value)
The name of the vessel.

VesselType getType()

void setType(VesselType value)
The type of the vessel.

VesselSituation getSituation()
The situation the vessel is in.

boolean getRecoverable()
Whether the vessel is recoverable.

5.3. SpaceCenter API 223

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

void recover()
Recover the vessel.

double getMET()
The mission elapsed time in seconds.

Flight flight(ReferenceFrame referenceFrame)
Returns a Flight object that can be used to get flight telemetry for the vessel, in the specified reference
frame.

Parameters

• referenceFrame (ReferenceFrame) – Reference frame. Defaults to the vessel’s
surface reference frame (Vessel.getSurfaceReferenceFrame()).

Note: When this is called with no arguments, the vessel’s surface reference frame is used. This reference
frame moves with the vessel, therefore velocities and speeds returned by the flight object will be zero. See
the reference frames tutorial for examples of getting the orbital speed and surface speed of a vessel.

Orbit getOrbit()
The current orbit of the vessel.

Control getControl()
Returns a Control object that can be used to manipulate the vessel’s control inputs. For example, its
pitch/yaw/roll controls, RCS and thrust.

AutoPilot getAutoPilot()
An AutoPilot object, that can be used to perform simple auto-piloting of the vessel.

Resources getResources()
A Resources object, that can used to get information about resources stored in the vessel.

Resources resourcesInDecoupleStage(int stage, boolean cumulative)
Returns a Resources object, that can used to get information about resources stored in a given stage.

Parameters

• stage (int) – Get resources for parts that are decoupled in this stage.

• cumulative (boolean) – When false, returns the resources for parts decoupled in
just the given stage. When true returns the resources decoupled in the given stage and
all subsequent stages combined.

Note: For details on stage numbering, see the discussion on Staging.

Parts getParts()
A Parts object, that can used to interact with the parts that make up this vessel.

float getMass()
The total mass of the vessel, including resources, in kg.

float getDryMass()
The total mass of the vessel, excluding resources, in kg.

float getThrust()
The total thrust currently being produced by the vessel’s engines, in Newtons. This is computed by sum-
ming Engine.getThrust() for every engine in the vessel.

224 Chapter 5. Java

kRPC, Release 0.3.5

float getAvailableThrust()
Gets the total available thrust that can be produced by the vessel’s active engines, in Newtons. This is
computed by summing Engine.getAvailableThrust() for every active engine in the vessel.

float getMaxThrust()
The total maximum thrust that can be produced by the vessel’s active engines, in Newtons. This is com-
puted by summing Engine.getMaxThrust() for every active engine.

float getMaxVacuumThrust()
The total maximum thrust that can be produced by the vessel’s active engines when the vessel is in a
vacuum, in Newtons. This is computed by summing Engine.getMaxVacuumThrust() for every
active engine.

float getSpecificImpulse()
The combined specific impulse of all active engines, in seconds. This is computed using the formula
described here.

float getVacuumSpecificImpulse()
The combined vacuum specific impulse of all active engines, in seconds. This is computed using the
formula described here.

float getKerbinSeaLevelSpecificImpulse()
The combined specific impulse of all active engines at sea level on Kerbin, in seconds. This is computed
using the formula described here.

org.javatuples.Triplet<Double, Double, Double> getMomentOfInertia()
The moment of inertia of the vessel around its center of mass in 𝑘𝑔.𝑚2. The inertia values are
around the pitch, roll and yaw directions respectively. This corresponds to the vessels reference frame
(Vessel.getReferenceFrame()).

java.util.List<Double> getInertiaTensor()
The inertia tensor of the vessel around its center of mass, in the vessels reference frame
(Vessel.getReferenceFrame()). Returns the 3x3 matrix as a list of elements, in row-major order.

org.javatuples.Triplet<Double, Double, Double> getAvailableTorque()
The maximum torque that the vessel generate. Includes contributions from reaction wheels, RCS, gim-
balled engines and aerodynamic control surfaces. Returns the torques in 𝑁.𝑚 around each of the coordi-
nate axes of the vessels reference frame (Vessel.getReferenceFrame()). These axes are equiva-
lent to the pitch, roll and yaw axes of the vessel.

org.javatuples.Triplet<Double, Double, Double> getAvailableReactionWheelTorque()
The maximum torque that the currently active and powered reaction wheels can generate. Re-
turns the torques in 𝑁.𝑚 around each of the coordinate axes of the vessels reference frame
(Vessel.getReferenceFrame()). These axes are equivalent to the pitch, roll and yaw axes of
the vessel.

org.javatuples.Triplet<Double, Double, Double> getAvailableRCSTorque()
The maximum torque that the currently active RCS thrusters can generate. Returns the torques in 𝑁.𝑚
around each of the coordinate axes of the vessels reference frame (Vessel.getReferenceFrame()).
These axes are equivalent to the pitch, roll and yaw axes of the vessel.

org.javatuples.Triplet<Double, Double, Double> getAvailableEngineTorque()
The maximum torque that the currently active and gimballed engines can generate. Re-
turns the torques in 𝑁.𝑚 around each of the coordinate axes of the vessels reference frame
(Vessel.getReferenceFrame()). These axes are equivalent to the pitch, roll and yaw axes of
the vessel.

org.javatuples.Triplet<Double, Double, Double> getAvailableControlSurfaceTorque()
The maximum torque that the aerodynamic control surfaces can generate. Returns the torques in 𝑁.𝑚

5.3. SpaceCenter API 225

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

around each of the coordinate axes of the vessels reference frame (Vessel.getReferenceFrame()).
These axes are equivalent to the pitch, roll and yaw axes of the vessel.

ReferenceFrame getReferenceFrame()
The reference frame that is fixed relative to the vessel, and orientated with the vessel.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel.

•The x-axis points out to the right of the vessel.

•The y-axis points in the forward direction of the vessel.

•The z-axis points out of the bottom off the vessel.

Fig. 5.1: Vessel reference frame origin and axes for the Aeris 3A aircraft

ReferenceFrame getOrbitalReferenceFrame()
The reference frame that is fixed relative to the vessel, and orientated with the vessels orbital pro-
grade/normal/radial directions.

•The origin is at the center of mass of the vessel.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Note: Be careful not to confuse this with ‘orbit’ mode on the navball.

ReferenceFrame getSurfaceReferenceFrame()
The reference frame that is fixed relative to the vessel, and orientated with the surface of the body being
orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the north and up directions on the surface of the body.

226 Chapter 5. Java

kRPC, Release 0.3.5

Fig. 5.2: Vessel reference frame origin and axes for the Kerbal-X rocket

5.3. SpaceCenter API 227

kRPC, Release 0.3.5

Fig. 5.3: Vessel orbital reference frame origin and axes

•The x-axis points in the zenith direction (upwards, normal to the body being orbited, from the center
of the body towards the center of mass of the vessel).

•The y-axis points northwards towards the astronomical horizon (north, and tangential to the surface
of the body – the direction in which a compass would point when on the surface).

•The z-axis points eastwards towards the astronomical horizon (east, and tangential to the surface of
the body – east on a compass when on the surface).

Note: Be careful not to confuse this with ‘surface’ mode on the navball.

ReferenceFrame getSurfaceVelocityReferenceFrame()
The reference frame that is fixed relative to the vessel, and orientated with the velocity vector of the vessel
relative to the surface of the body being orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel’s velocity vector.

•The y-axis points in the direction of the vessel’s velocity vector, relative to the surface of the body
being orbited.

•The z-axis is in the plane of the astronomical horizon.

•The x-axis is orthogonal to the other two axes.

org.javatuples.Triplet<Double, Double, Double> position(ReferenceFrame referenceFrame)
Returns the position vector of the center of mass of the vessel in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> velocity(ReferenceFrame referenceFrame)
Returns the velocity vector of the center of mass of the vessel in the given reference frame.

228 Chapter 5. Java

https://en.wikipedia.org/wiki/Zenith
https://en.wikipedia.org/wiki/Horizon
https://en.wikipedia.org/wiki/Horizon
https://en.wikipedia.org/wiki/Horizon
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

Fig. 5.4: Vessel surface reference frame origin and axes

Fig. 5.5: Vessel surface velocity reference frame origin and axes

5.3. SpaceCenter API 229

kRPC, Release 0.3.5

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Quartet<Double, Double, Double, Double> rotation(ReferenceFrame reference-
Frame)

Returns the rotation of the center of mass of the vessel in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> direction(ReferenceFrame referenceFrame)
Returns the direction in which the vessel is pointing, as a unit vector, in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> angularVelocity(ReferenceFrame reference-
Frame)

Returns the angular velocity of the vessel in the given reference frame. The magnitude of the returned
vector is the rotational speed in radians per second, and the direction of the vector indicates the axis of
rotation (using the right hand rule).

Parameters

• referenceFrame (ReferenceFrame) –

public enum VesselType
The type of a vessel. See Vessel.getType().

public VesselType SHIP
Ship.

public VesselType STATION
Station.

public VesselType LANDER
Lander.

public VesselType PROBE
Probe.

public VesselType ROVER
Rover.

public VesselType BASE
Base.

public VesselType DEBRIS
Debris.

public enum VesselSituation
The situation a vessel is in. See Vessel.getSituation().

public VesselSituation DOCKED
Vessel is docked to another.

public VesselSituation ESCAPING
Escaping.

public VesselSituation FLYING
Vessel is flying through an atmosphere.

230 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

public VesselSituation LANDED
Vessel is landed on the surface of a body.

public VesselSituation ORBITING
Vessel is orbiting a body.

public VesselSituation PRE_LAUNCH
Vessel is awaiting launch.

public VesselSituation SPLASHED
Vessel has splashed down in an ocean.

public VesselSituation SUB_ORBITAL
Vessel is on a sub-orbital trajectory.

5.3.3 CelestialBody

public class CelestialBody
Represents a celestial body (such as a planet or moon). See getBodies().

String getName()
The name of the body.

java.util.List<CelestialBody> getSatellites()
A list of celestial bodies that are in orbit around this celestial body.

Orbit getOrbit()
The orbit of the body.

float getMass()
The mass of the body, in kilograms.

float getGravitationalParameter()
The standard gravitational parameter of the body in 𝑚3𝑠−2.

float getSurfaceGravity()
The acceleration due to gravity at sea level (mean altitude) on the body, in 𝑚/𝑠2.

float getRotationalPeriod()
The sidereal rotational period of the body, in seconds.

float getRotationalSpeed()
The rotational speed of the body, in radians per second.

float getEquatorialRadius()
The equatorial radius of the body, in meters.

double surfaceHeight(double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water this
is equal to 0.

Parameters

• latitude (double) – Latitude in degrees

• longitude (double) – Longitude in degrees

double bedrockHeight(double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water, this
is the height of the sea-bed and is therefore a negative value.

Parameters

5.3. SpaceCenter API 231

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
https://en.wikipedia.org/wiki/Standard_gravitational_parameter

kRPC, Release 0.3.5

• latitude (double) – Latitude in degrees

• longitude (double) – Longitude in degrees

org.javatuples.Triplet<Double, Double, Double> mSLPosition(double latitude, double longitude,
ReferenceFrame referenceFrame)

The position at mean sea level at the given latitude and longitude, in the given reference frame.

Parameters

• latitude (double) – Latitude in degrees

• longitude (double) – Longitude in degrees

• referenceFrame (ReferenceFrame) – Reference frame for the returned position
vector

org.javatuples.Triplet<Double, Double, Double> surfacePosition(double latitude, double lon-
gitude, ReferenceFrame refer-
enceFrame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position of the surface of the water.

Parameters

• latitude (double) – Latitude in degrees

• longitude (double) – Longitude in degrees

• referenceFrame (ReferenceFrame) – Reference frame for the returned position
vector

org.javatuples.Triplet<Double, Double, Double> bedrockPosition(double latitude, double lon-
gitude, ReferenceFrame refer-
enceFrame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position at the bottom of the sea-bed.

Parameters

• latitude (double) – Latitude in degrees

• longitude (double) – Longitude in degrees

• referenceFrame (ReferenceFrame) – Reference frame for the returned position
vector

float getSphereOfInfluence()
The radius of the sphere of influence of the body, in meters.

boolean getHasAtmosphere()
true if the body has an atmosphere.

float getAtmosphereDepth()
The depth of the atmosphere, in meters.

boolean getHasAtmosphericOxygen()
true if there is oxygen in the atmosphere, required for air-breathing engines.

ReferenceFrame getReferenceFrame()
The reference frame that is fixed relative to the celestial body.

•The origin is at the center of the body.

•The axes rotate with the body.

232 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

•The x-axis points from the center of the body towards the intersection of the prime meridian and
equator (the position at 0° longitude, 0° latitude).

•The y-axis points from the center of the body towards the north pole.

•The z-axis points from the center of the body towards the equator at 90°E longitude.

Fig. 5.6: Celestial body reference frame origin and axes. The equator is shown in blue, and the prime meridian in red.

ReferenceFrame getNonRotatingReferenceFrame()
The reference frame that is fixed relative to this celestial body, and orientated in a fixed direction (it does
not rotate with the body).

•The origin is at the center of the body.

•The axes do not rotate.

•The x-axis points in an arbitrary direction through the equator.

•The y-axis points from the center of the body towards the north pole.

•The z-axis points in an arbitrary direction through the equator.

ReferenceFrame getOrbitalReferenceFrame()
Gets the reference frame that is fixed relative to this celestial body, but orientated with the body’s orbital
prograde/normal/radial directions.

•The origin is at the center of the body.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

org.javatuples.Triplet<Double, Double, Double> position(ReferenceFrame referenceFrame)
Returns the position vector of the center of the body in the specified reference frame.

Parameters

5.3. SpaceCenter API 233

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> velocity(ReferenceFrame referenceFrame)
Returns the velocity vector of the body in the specified reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Quartet<Double, Double, Double, Double> rotation(ReferenceFrame reference-
Frame)

Returns the rotation of the body in the specified reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> direction(ReferenceFrame referenceFrame)
Returns the direction in which the north pole of the celestial body is pointing, as a unit vector, in the
specified reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> angularVelocity(ReferenceFrame reference-
Frame)

Returns the angular velocity of the body in the specified reference frame. The magnitude of the vector is
the rotational speed of the body, in radians per second, and the direction of the vector indicates the axis of
rotation, using the right-hand rule.

Parameters

• referenceFrame (ReferenceFrame) –

5.3.4 Flight

public class Flight
Used to get flight telemetry for a vessel, by calling Vessel.flight(ReferenceFrame). All of the
information returned by this class is given in the reference frame passed to that method. Obtained by calling
Vessel.flight(ReferenceFrame).

Note: To get orbital information, such as the apoapsis or inclination, see Orbit.

float getGForce()
The current G force acting on the vessel in 𝑚/𝑠2.

double getMeanAltitude()
The altitude above sea level, in meters. Measured from the center of mass of the vessel.

double getSurfaceAltitude()
The altitude above the surface of the body or sea level, whichever is closer, in meters. Measured from the
center of mass of the vessel.

double getBedrockAltitude()
The altitude above the surface of the body, in meters. When over water, this is the altitude above the sea
floor. Measured from the center of mass of the vessel.

double getElevation()
The elevation of the terrain under the vessel, in meters. This is the height of the terrain above sea level,
and is negative when the vessel is over the sea.

234 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

double getLatitude()
The latitude of the vessel for the body being orbited, in degrees.

double getLongitude()
The longitude of the vessel for the body being orbited, in degrees.

org.javatuples.Triplet<Double, Double, Double> getVelocity()
The velocity vector of the vessel. The magnitude of the vector is the speed of the vessel in meters per
second. The direction of the vector is the direction of the vessels motion.

double getSpeed()
The speed of the vessel in meters per second.

double getHorizontalSpeed()
The horizontal speed of the vessel in meters per second.

double getVerticalSpeed()
The vertical speed of the vessel in meters per second.

org.javatuples.Triplet<Double, Double, Double> getCenterOfMass()
The position of the center of mass of the vessel.

org.javatuples.Quartet<Double, Double, Double, Double> getRotation()
The rotation of the vessel.

org.javatuples.Triplet<Double, Double, Double> getDirection()
The direction vector that the vessel is pointing in.

float getPitch()
The pitch angle of the vessel relative to the horizon, in degrees. A value between -90° and +90°.

float getHeading()
The heading angle of the vessel relative to north, in degrees. A value between 0° and 360°.

float getRoll()
The roll angle of the vessel relative to the horizon, in degrees. A value between -180° and +180°.

org.javatuples.Triplet<Double, Double, Double> getPrograde()
The unit direction vector pointing in the prograde direction.

org.javatuples.Triplet<Double, Double, Double> getRetrograde()
The unit direction vector pointing in the retrograde direction.

org.javatuples.Triplet<Double, Double, Double> getNormal()
The unit direction vector pointing in the normal direction.

org.javatuples.Triplet<Double, Double, Double> getAntiNormal()
The unit direction vector pointing in the anti-normal direction.

org.javatuples.Triplet<Double, Double, Double> getRadial()
The unit direction vector pointing in the radial direction.

org.javatuples.Triplet<Double, Double, Double> getAntiRadial()
The unit direction vector pointing in the anti-radial direction.

float getAtmosphereDensity()
The current density of the atmosphere around the vessel, in 𝑘𝑔/𝑚3.

float getDynamicPressure()
The dynamic pressure acting on the vessel, in Pascals. This is a measure of the strength of the aerodynamic
forces. It is equal to 1

2 .air density.velocity2. It is commonly denoted as 𝑄.

5.3. SpaceCenter API 235

https://en.wikipedia.org/wiki/Latitude
https://en.wikipedia.org/wiki/Longitude
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float getStaticPressure()
The static atmospheric pressure acting on the vessel, in Pascals.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

org.javatuples.Triplet<Double, Double, Double> getAerodynamicForce()
The total aerodynamic forces acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

org.javatuples.Triplet<Double, Double, Double> getLift()
The aerodynamic lift currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

org.javatuples.Triplet<Double, Double, Double> getDrag()
The aerodynamic drag currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

float getSpeedOfSound()
The speed of sound, in the atmosphere around the vessel, in 𝑚/𝑠.

Note: Not available when Ferram Aerospace Research is installed.

float getMach()
The speed of the vessel, in multiples of the speed of sound.

Note: Not available when Ferram Aerospace Research is installed.

float getEquivalentAirSpeed()
The equivalent air speed of the vessel, in 𝑚/𝑠.

Note: Not available when Ferram Aerospace Research is installed.

236 Chapter 5. Java

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
https://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
https://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Equivalent_airspeed
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

float getTerminalVelocity()
An estimate of the current terminal velocity of the vessel, in 𝑚/𝑠. This is the speed at which the drag
forces cancel out the force of gravity.

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float getAngleOfAttack()
Gets the pitch angle between the orientation of the vessel and its velocity vector, in degrees.

float getSideslipAngle()
Gets the yaw angle between the orientation of the vessel and its velocity vector, in degrees.

float getTotalAirTemperature()
The total air temperature of the atmosphere around the vessel, in Kelvin. This temperature includes the
Flight.getStaticAirTemperature() and the vessel’s kinetic energy.

float getStaticAirTemperature()
The static (ambient) temperature of the atmosphere around the vessel, in Kelvin.

float getStallFraction()
Gets the current amount of stall, between 0 and 1. A value greater than 0.005 indicates a minor stall and a
value greater than 0.5 indicates a large-scale stall.

Note: Requires Ferram Aerospace Research.

float getDragCoefficient()
Gets the coefficient of drag. This is the amount of drag produced by the vessel. It depends on air speed,
air density and wing area.

Note: Requires Ferram Aerospace Research.

float getLiftCoefficient()
Gets the coefficient of lift. This is the amount of lift produced by the vessel, and depends on air speed, air
density and wing area.

Note: Requires Ferram Aerospace Research.

float getBallisticCoefficient()
Gets the ballistic coefficient.

Note: Requires Ferram Aerospace Research.

float getThrustSpecificFuelConsumption()
Gets the thrust specific fuel consumption for the jet engines on the vessel. This is a measure of the
efficiency of the engines, with a lower value indicating a more efficient vessel. This value is the number of
Newtons of fuel that are burned, per hour, to product one newton of thrust.

Note: Requires Ferram Aerospace Research.

5.3. SpaceCenter API 237

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Total_air_temperature
https://en.wikipedia.org/wiki/Total_air_temperature
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Ballistic_coefficient
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

5.3.5 Orbit

public class Orbit
Describes an orbit. For example, the orbit of a vessel, obtained by calling Vessel.getOrbit(), or a celestial
body, obtained by calling CelestialBody.getOrbit().

CelestialBody getBody()
The celestial body (e.g. planet or moon) around which the object is orbiting.

double getApoapsis()
Gets the apoapsis of the orbit, in meters, from the center of mass of the body being orbited.

Note: For the apoapsis altitude reported on the in-game map view, use
Orbit.getApoapsisAltitude().

double getPeriapsis()
The periapsis of the orbit, in meters, from the center of mass of the body being orbited.

Note: For the periapsis altitude reported on the in-game map view, use
Orbit.getPeriapsisAltitude().

double getApoapsisAltitude()
The apoapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to Orbit.getApoapsis() minus the equatorial radius of the body.

double getPeriapsisAltitude()
The periapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to Orbit.getPeriapsis() minus the equatorial radius of the body.

double getSemiMajorAxis()
The semi-major axis of the orbit, in meters.

double getSemiMinorAxis()
The semi-minor axis of the orbit, in meters.

double getRadius()
The current radius of the orbit, in meters. This is the distance between the center of mass of the object in
orbit, and the center of mass of the body around which it is orbiting.

Note: This value will change over time if the orbit is elliptical.

double getSpeed()
The current orbital speed of the object in meters per second.

Note: This value will change over time if the orbit is elliptical.

double getPeriod()
The orbital period, in seconds.

238 Chapter 5. Java

kRPC, Release 0.3.5

double getTimeToApoapsis()
The time until the object reaches apoapsis, in seconds.

double getTimeToPeriapsis()
The time until the object reaches periapsis, in seconds.

double getEccentricity()
The eccentricity of the orbit.

double getInclination()
The inclination of the orbit, in radians.

double getLongitudeOfAscendingNode()
The longitude of the ascending node, in radians.

double getArgumentOfPeriapsis()
The argument of periapsis, in radians.

double getMeanAnomalyAtEpoch()
The mean anomaly at epoch.

double getEpoch()
The time since the epoch (the point at which the mean anomaly at epoch was measured, in seconds.

double getMeanAnomaly()
The mean anomaly.

double getEccentricAnomaly()
The eccentric anomaly.

org.javatuples.Triplet<Double, Double, Double> referencePlaneNormal(ReferenceFrame refer-
enceFrame)

The unit direction vector that is normal to the orbits reference plane, in the given reference frame. The
reference plane is the plane from which the orbits inclination is measured.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> referencePlaneDirection(ReferenceFrame
referenceFrame)

The unit direction vector from which the orbits longitude of ascending node is measured, in the given
reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

double getTimeToSOIChange()
The time until the object changes sphere of influence, in seconds. Returns NaN if the object is not going
to change sphere of influence.

Orbit getNextOrbit()
If the object is going to change sphere of influence in the future, returns the new orbit after the change.
Otherwise returns null.

5.3.6 Control

public class Control
Used to manipulate the controls of a vessel. This includes adjusting the throttle, enabling/disabling sys-
tems such as SAS and RCS, or altering the direction in which the vessel is pointing. Obtained by calling
Vessel.getControl().

5.3. SpaceCenter API 239

https://en.wikipedia.org/wiki/Orbital_eccentricity
https://en.wikipedia.org/wiki/Orbital_inclination
https://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
https://en.wikipedia.org/wiki/Argument_of_periapsis
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Eccentric_anomaly
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

Note: Control inputs (such as pitch, yaw and roll) are zeroed when all clients that have set one or more of these
inputs are no longer connected.

boolean getSAS()

void setSAS(boolean value)
The state of SAS.

Note: Equivalent to AutoPilot.getSAS()

SASMode getSASMode()

void setSASMode(SASMode value)
The current SASMode. These modes are equivalent to the mode buttons to the left of the navball that
appear when SAS is enabled.

Note: Equivalent to AutoPilot.getSASMode()

SpeedMode getSpeedMode()

void setSpeedMode(SpeedMode value)
The current SpeedMode of the navball. This is the mode displayed next to the speed at the top of the
navball.

boolean getRCS()

void setRCS(boolean value)
The state of RCS.

boolean getGear()

void setGear(boolean value)
The state of the landing gear/legs.

boolean getLights()

void setLights(boolean value)
The state of the lights.

boolean getBrakes()

void setBrakes(boolean value)
The state of the wheel brakes.

boolean getAbort()

void setAbort(boolean value)
The state of the abort action group.

float getThrottle()

void setThrottle(float value)
The state of the throttle. A value between 0 and 1.

float getPitch()

void setPitch(float value)
The state of the pitch control. A value between -1 and 1. Equivalent to the w and s keys.

240 Chapter 5. Java

kRPC, Release 0.3.5

float getYaw()

void setYaw(float value)
The state of the yaw control. A value between -1 and 1. Equivalent to the a and d keys.

float getRoll()

void setRoll(float value)
The state of the roll control. A value between -1 and 1. Equivalent to the q and e keys.

float getForward()

void setForward(float value)
The state of the forward translational control. A value between -1 and 1. Equivalent to the h and n keys.

float getUp()

void setUp(float value)
The state of the up translational control. A value between -1 and 1. Equivalent to the i and k keys.

float getRight()

void setRight(float value)
The state of the right translational control. A value between -1 and 1. Equivalent to the j and l keys.

float getWheelThrottle()

void setWheelThrottle(float value)
The state of the wheel throttle. A value between -1 and 1. A value of 1 rotates the wheels forwards, a value
of -1 rotates the wheels backwards.

float getWheelSteering()

void setWheelSteering(float value)
The state of the wheel steering. A value between -1 and 1. A value of 1 steers to the left, and a value of -1
steers to the right.

int getCurrentStage()
The current stage of the vessel. Corresponds to the stage number in the in-game UI.

java.util.List<Vessel> activateNextStage()
Activates the next stage. Equivalent to pressing the space bar in-game.

Returns A list of vessel objects that are jettisoned from the active vessel.

boolean getActionGroup(int group)
Returns true if the given action group is enabled.

Parameters

• group (int) – A number between 0 and 9 inclusive.

void setActionGroup(int group, boolean state)
Sets the state of the given action group (a value between 0 and 9 inclusive).

Parameters

• group (int) – A number between 0 and 9 inclusive.

• state (boolean) –

void toggleActionGroup(int group)
Toggles the state of the given action group.

Parameters

• group (int) – A number between 0 and 9 inclusive.

5.3. SpaceCenter API 241

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.3.5

Node addNode(double ut, float prograde, float normal, float radial)
Creates a maneuver node at the given universal time, and returns a Node object that can be used to modify
it. Optionally sets the magnitude of the delta-v for the maneuver node in the prograde, normal and radial
directions.

Parameters

• ut (double) – Universal time of the maneuver node.

• prograde (float) – Delta-v in the prograde direction.

• normal (float) – Delta-v in the normal direction.

• radial (float) – Delta-v in the radial direction.

java.util.List<Node> getNodes()
Returns a list of all existing maneuver nodes, ordered by time from first to last.

void removeNodes()
Remove all maneuver nodes.

public enum SASMode
The behavior of the SAS auto-pilot. See AutoPilot.getSASMode().

public SASMode STABILITY_ASSIST
Stability assist mode. Dampen out any rotation.

public SASMode MANEUVER
Point in the burn direction of the next maneuver node.

public SASMode PROGRADE
Point in the prograde direction.

public SASMode RETROGRADE
Point in the retrograde direction.

public SASMode NORMAL
Point in the orbit normal direction.

public SASMode ANTI_NORMAL
Point in the orbit anti-normal direction.

public SASMode RADIAL
Point in the orbit radial direction.

public SASMode ANTI_RADIAL
Point in the orbit anti-radial direction.

public SASMode TARGET
Point in the direction of the current target.

public SASMode ANTI_TARGET
Point away from the current target.

public enum SpeedMode
The mode of the speed reported in the navball. See Control.getSpeedMode().

public SpeedMode ORBIT
Speed is relative to the vessel’s orbit.

public SpeedMode SURFACE
Speed is relative to the surface of the body being orbited.

public SpeedMode TARGET
Speed is relative to the current target.

242 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.3.5

5.3.7 Parts

The following classes allow interaction with a vessels individual parts.

• Parts
• Part
• Module
• Specific Types of Part

– Cargo Bay
– Control Surface
– Decoupler
– Docking Port
– Engine
– Experiment
– Fairing
– Intake
– Landing Gear
– Landing Leg
– Launch Clamp
– Light
– Parachute
– Radiator
– Resource Converter
– Resource Harvester
– Reaction Wheel
– RCS
– Sensor
– Solar Panel
– Thruster

• Trees of Parts
– Traversing the Tree
– Attachment Modes

• Fuel Lines
• Staging

Parts

public class Parts
Instances of this class are used to interact with the parts of a vessel. An instance can be obtained by calling
Vessel.getParts().

java.util.List<Part> getAll()
A list of all of the vessels parts.

Part getRoot()
The vessels root part.

Note: See the discussion on Trees of Parts.

Part getControlling()

5.3. SpaceCenter API 243

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.3.5

void setControlling(Part value)
The part from which the vessel is controlled.

java.util.List<Part> withName(String name)
A list of parts whose Part.getName() is name.

Parameters

• name (String) –

java.util.List<Part> withTitle(String title)
A list of all parts whose Part.getTitle() is title.

Parameters

• title (String) –

java.util.List<Part> withModule(String moduleName)
A list of all parts that contain a Module whose Module.getName() is moduleName.

Parameters

• moduleName (String) –

java.util.List<Part> inStage(int stage)
A list of all parts that are activated in the given stage.

Parameters

• stage (int) –

Note: See the discussion on Staging.

java.util.List<Part> inDecoupleStage(int stage)
A list of all parts that are decoupled in the given stage.

Parameters

• stage (int) –

Note: See the discussion on Staging.

java.util.List<Module> modulesWithName(String moduleName)
A list of modules (combined across all parts in the vessel) whose Module.getName() is moduleName.

Parameters

• moduleName (String) –

java.util.List<CargoBay> getCargoBays()
A list of all cargo bays in the vessel.

java.util.List<ControlSurface> getControlSurfaces()
A list of all control surfaces in the vessel.

java.util.List<Decoupler> getDecouplers()
A list of all decouplers in the vessel.

java.util.List<DockingPort> getDockingPorts()
A list of all docking ports in the vessel.

244 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.3.5

DockingPort dockingPortWithName(String name)
The first docking port in the vessel with the given port name, as returned by
DockingPort.getName(). Returns null if there are no such docking ports.

Parameters

• name (String) –

java.util.List<Engine> getEngines()
A list of all engines in the vessel.

Note: This includes any part that generates thrust. This covers many different types of engine, including
liquid fuel rockets, solid rocket boosters, jet engines and RCS thrusters.

java.util.List<Experiment> getExperiments()
A list of all science experiments in the vessel.

java.util.List<Fairing> getFairings()
A list of all fairings in the vessel.

java.util.List<Intake> getIntakes()
A list of all intakes in the vessel.

java.util.List<LandingGear> getLandingGear()
A list of all landing gear attached to the vessel.

java.util.List<LandingLeg> getLandingLegs()
A list of all landing legs attached to the vessel.

java.util.List<LaunchClamp> getLaunchClamps()
A list of all launch clamps attached to the vessel.

java.util.List<Light> getLights()
A list of all lights in the vessel.

java.util.List<Parachute> getParachutes()
A list of all parachutes in the vessel.

java.util.List<Radiator> getRadiators()
A list of all radiators in the vessel.

java.util.List<RCS> getRCS()
A list of all RCS blocks/thrusters in the vessel.

java.util.List<ReactionWheel> getReactionWheels()
A list of all reaction wheels in the vessel.

java.util.List<ResourceConverter> getResourceConverters()
A list of all resource converters in the vessel.

java.util.List<ResourceHarvester> getResourceHarvesters()
A list of all resource harvesters in the vessel.

java.util.List<Sensor> getSensors()
A list of all sensors in the vessel.

java.util.List<SolarPanel> getSolarPanels()
A list of all solar panels in the vessel.

5.3. SpaceCenter API 245

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.3.5

Part

public class Part
Represents an individual part. Vessels are made up of multiple parts. Instances of this class can be obtained by
several methods in Parts.

String getName()
Internal name of the part, as used in part cfg files. For example “Mark1-2Pod”.

String getTitle()
Title of the part, as shown when the part is right clicked in-game. For example “Mk1-2 Command Pod”.

double getCost()
The cost of the part, in units of funds.

Vessel getVessel()
The vessel that contains this part.

Part getParent()
The parts parent. Returns null if the part does not have a parent. This, in combination with
Part.getChildren(), can be used to traverse the vessels parts tree.

Note: See the discussion on Trees of Parts.

java.util.List<Part> getChildren()
The parts children. Returns an empty list if the part has no children. This, in combination with
Part.getParent(), can be used to traverse the vessels parts tree.

Note: See the discussion on Trees of Parts.

boolean getAxiallyAttached()
Whether the part is axially attached to its parent, i.e. on the top or bottom of its parent. If the part has no
parent, returns false.

Note: See the discussion on Attachment Modes.

boolean getRadiallyAttached()
Whether the part is radially attached to its parent, i.e. on the side of its parent. If the part has no parent,
returns false.

Note: See the discussion on Attachment Modes.

int getStage()
The stage in which this part will be activated. Returns -1 if the part is not activated by staging.

Note: See the discussion on Staging.

int getDecoupleStage()
The stage in which this part will be decoupled. Returns -1 if the part is never decoupled from the vessel.

246 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.3.5

Note: See the discussion on Staging.

boolean getMassless()
Whether the part is massless.

double getMass()
The current mass of the part, including resources it contains, in kilograms. Returns zero if the part is
massless.

double getDryMass()
The mass of the part, not including any resources it contains, in kilograms. Returns zero if the part is
massless.

boolean getShielded()
Whether the part is shielded from the exterior of the vessel, for example by a fairing.

float getDynamicPressure()
The dynamic pressure acting on the part, in Pascals.

double getImpactTolerance()
The impact tolerance of the part, in meters per second.

double getTemperature()
Temperature of the part, in Kelvin.

double getSkinTemperature()
Temperature of the skin of the part, in Kelvin.

double getMaxTemperature()
Maximum temperature that the part can survive, in Kelvin.

double getMaxSkinTemperature()
Maximum temperature that the skin of the part can survive, in Kelvin.

float getThermalMass()
A measure of how much energy it takes to increase the internal temperature of the part, in Joules per
Kelvin.

float getThermalSkinMass()
A measure of how much energy it takes to increase the skin temperature of the part, in Joules per Kelvin.

float getThermalResourceMass()
A measure of how much energy it takes to increase the temperature of the resources contained in the part,
in Joules per Kelvin.

float getThermalConductionFlux()
The rate at which heat energy is conducting into or out of the part via contact with other parts. Measured
in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy, and
negative means it is losing heat energy.

float getThermalConvectionFlux()
The rate at which heat energy is convecting into or out of the part from the surrounding atmosphere.
Measured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat
energy, and negative means it is losing heat energy.

float getThermalRadiationFlux()
The rate at which heat energy is radiating into or out of the part from the surrounding environment. Mea-
sured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy,
and negative means it is losing heat energy.

5.3. SpaceCenter API 247

http://wiki.kerbalspaceprogram.com/wiki/Massless_part

kRPC, Release 0.3.5

float getThermalInternalFlux()
The rate at which heat energy is begin generated by the part. For example, some engines generate heat by
combusting fuel. Measured in energy per unit time, or power, in Watts. A positive value means the part is
gaining heat energy, and negative means it is losing heat energy.

float getThermalSkinToInternalFlux()
The rate at which heat energy is transferring between the part’s skin and its internals. Measured in energy
per unit time, or power, in Watts. A positive value means the part’s internals are gaining heat energy, and
negative means its skin is gaining heat energy.

Resources getResources()
A Resources object for the part.

boolean getCrossfeed()
Whether this part is crossfeed capable.

boolean getIsFuelLine()
Whether this part is a fuel line.

java.util.List<Part> getFuelLinesFrom()
The parts that are connected to this part via fuel lines, where the direction of the fuel line is into this part.

Note: See the discussion on Fuel Lines.

java.util.List<Part> getFuelLinesTo()
The parts that are connected to this part via fuel lines, where the direction of the fuel line is out of this part.

Note: See the discussion on Fuel Lines.

java.util.List<Module> getModules()
The modules for this part.

CargoBay getCargoBay()
A CargoBay if the part is a cargo bay, otherwise null.

ControlSurface getControlSurface()
A ControlSurface if the part is an aerodynamic control surface, otherwise null.

Decoupler getDecoupler()
A Decoupler if the part is a decoupler, otherwise null.

DockingPort getDockingPort()
A DockingPort if the part is a docking port, otherwise null.

Engine getEngine()
An Engine if the part is an engine, otherwise null.

Experiment getExperiment()
An Experiment if the part is a science experiment, otherwise null.

Fairing getFairing()
A Fairing if the part is a fairing, otherwise null.

Intake getIntake()
An Intake if the part is an intake, otherwise null.

248 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.3.5

Note: This includes any part that generates thrust. This covers many different types of engine, including
liquid fuel rockets, solid rocket boosters and jet engines. For RCS thrusters see RCS.

LandingGear getLandingGear()
A LandingGear if the part is a landing gear, otherwise null.

LandingLeg getLandingLeg()
A LandingLeg if the part is a landing leg, otherwise null.

LaunchClamp getLaunchClamp()
A LaunchClamp if the part is a launch clamp, otherwise null.

Light getLight()
A Light if the part is a light, otherwise null.

Parachute getParachute()
A Parachute if the part is a parachute, otherwise null.

Radiator getRadiator()
A Radiator if the part is a radiator, otherwise null.

RCS getRCS()
A RCS if the part is an RCS block/thruster, otherwise null.

ReactionWheel getReactionWheel()
A ReactionWheel if the part is a reaction wheel, otherwise null.

ResourceConverter getResourceConverter()
A ResourceConverter if the part is a resource converter, otherwise null.

ResourceHarvester getResourceHarvester()
A ResourceHarvester if the part is a resource harvester, otherwise null.

Sensor getSensor()
A Sensor if the part is a sensor, otherwise null.

SolarPanel getSolarPanel()
A SolarPanel if the part is a solar panel, otherwise null.

org.javatuples.Triplet<Double, Double, Double> position(ReferenceFrame referenceFrame)
The position of the part in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

Note: This is a fixed position in the part, defined by the parts model. It s not necessarily the same as the
parts center of mass. Use Part.centerOfMass(ReferenceFrame) to get the parts center of mass.

org.javatuples.Triplet<Double, Double, Double> centerOfMass(ReferenceFrame referenceFrame)
The position of the parts center of mass in the given reference frame. If the part is physicsless, this is
equivalent to Part.position(ReferenceFrame).

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> direction(ReferenceFrame referenceFrame)
The direction of the part in the given reference frame.

5.3. SpaceCenter API 249

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> velocity(ReferenceFrame referenceFrame)
The velocity of the part in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Quartet<Double, Double, Double, Double> rotation(ReferenceFrame reference-
Frame)

The rotation of the part in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> getMomentOfInertia()
The moment of inertia of the part in 𝑘𝑔.𝑚2 around its center of mass in the parts reference frame
(ReferenceFrame).

java.util.List<Double> getInertiaTensor()
The inertia tensor of the part in the parts reference frame (ReferenceFrame). Returns the 3x3 matrix
as a list of elements, in row-major order.

ReferenceFrame getReferenceFrame()
The reference frame that is fixed relative to this part, and centered on a fixed position within the part,
defined by the parts model.

•The origin is at the position of the part, as returned by Part.position(ReferenceFrame).

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by DockingPort.getReferenceFrame().

ReferenceFrame getCenterOfMassReferenceFrame()
The reference frame that is fixed relative to this part, and centered on its center of mass.

•The origin is at the center of mass of the part, as returned by
Part.centerOfMass(ReferenceFrame).

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by DockingPort.getReferenceFrame().

Module

public class Module
This can be used to interact with a specific part module. This includes part modules in stock KSP, and those
added by mods. In KSP, each part has zero or more PartModules associated with it. Each one contains some of

250 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation#MODULES

kRPC, Release 0.3.5

Fig. 5.7: Mk1 Command Pod reference frame origin and axes

the functionality of the part. For example, an engine has a “ModuleEngines” part module that contains all the
functionality of an engine.

String getName()
Name of the PartModule. For example, “ModuleEngines”.

Part getPart()
The part that contains this module.

java.util.Map<String, String> getFields()
The modules field names and their associated values, as a dictionary. These are the values visible in the
right-click menu of the part.

boolean hasField(String name)
Returns true if the module has a field with the given name.

Parameters

• name (String) – Name of the field.

String getField(String name)
Returns the value of a field.

Parameters

• name (String) – Name of the field.

void setFieldInt(String name, int value)
Set the value of a field to the given integer number.

Parameters

• name (String) – Name of the field.

• value (int) – Value to set.

5.3. SpaceCenter API 251

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

void setFieldFloat(String name, float value)
Set the value of a field to the given floating point number.

Parameters

• name (String) – Name of the field.

• value (float) – Value to set.

void setFieldString(String name, String value)
Set the value of a field to the given string.

Parameters

• name (String) – Name of the field.

• value (String) – Value to set.

void resetField(String name)
Set the value of a field to its original value.

Parameters

• name (String) – Name of the field.

java.util.List<String> getEvents()
A list of the names of all of the modules events. Events are the clickable buttons visible in the right-click
menu of the part.

boolean hasEvent(String name)
true if the module has an event with the given name.

Parameters

• name (String) –

void triggerEvent(String name)
Trigger the named event. Equivalent to clicking the button in the right-click menu of the part.

Parameters

• name (String) –

java.util.List<String> getActions()
A list of all the names of the modules actions. These are the parts actions that can be assigned to action
groups in the in-game editor.

boolean hasAction(String name)
true if the part has an action with the given name.

Parameters

• name (String) –

void setAction(String name, boolean value)
Set the value of an action with the given name.

Parameters

• name (String) –

• value (boolean) –

252 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

Specific Types of Part

The following classes provide functionality for specific types of part.

• Cargo Bay
• Control Surface
• Decoupler
• Docking Port
• Engine
• Experiment
• Fairing
• Intake
• Landing Gear
• Landing Leg
• Launch Clamp
• Light
• Parachute
• Radiator
• Resource Converter
• Resource Harvester
• Reaction Wheel
• RCS
• Sensor
• Solar Panel
• Thruster

Cargo Bay

public class CargoBay
A cargo bay. Obtained by calling Part.getCargoBay().

Part getPart()
The part object for this cargo bay.

CargoBayState getState()
The state of the cargo bay.

boolean getOpen()

void setOpen(boolean value)
Whether the cargo bay is open.

public enum CargoBayState
The state of a cargo bay. See CargoBay.getState().

public CargoBayState OPEN
Cargo bay is fully open.

public CargoBayState CLOSED
Cargo bay closed and locked.

public CargoBayState OPENING
Cargo bay is opening.

public CargoBayState CLOSING
Cargo bay is closing.

5.3. SpaceCenter API 253

kRPC, Release 0.3.5

Control Surface

public class ControlSurface
An aerodynamic control surface. Obtained by calling Part.getControlSurface().

Part getPart()
The part object for this control surface.

boolean getPitchEnabled()

void setPitchEnabled(boolean value)
Whether the control surface has pitch control enabled.

boolean getYawEnabled()

void setYawEnabled(boolean value)
Whether the control surface has yaw control enabled.

boolean getRollEnabled()

void setRollEnabled(boolean value)
Whether the control surface has roll control enabled.

boolean getInverted()

void setInverted(boolean value)
Whether the control surface movement is inverted.

boolean getDeployed()

void setDeployed(boolean value)
Whether the control surface has been fully deployed.

float getSurfaceArea()
Surface area of the control surface in 𝑚2.

org.javatuples.Triplet<Double, Double, Double> getAvailableTorque()
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel.getReferenceFrame().

Decoupler

public class Decoupler
A decoupler. Obtained by calling Part.getDecoupler()

Part getPart()
The part object for this decoupler.

Vessel decouple()
Fires the decoupler. Returns the new vessel created when the decoupler fires. Throws an exception if the
decoupler has already fired.

boolean getDecoupled()
Whether the decoupler has fired.

float getImpulse()
The impulse that the decoupler imparts when it is fired, in Newton seconds.

254 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

Docking Port

public class DockingPort
A docking port. Obtained by calling Part.getDockingPort()

Part getPart()
The part object for this docking port.

String getName()

void setName(String value)
The port name of the docking port. This is the name of the port that can be set in the right click menu,
when the Docking Port Alignment Indicator mod is installed. If this mod is not installed, returns the title
of the part (Part.getTitle()).

DockingPortState getState()
The current state of the docking port.

Part getDockedPart()
The part that this docking port is docked to. Returns null if this docking port is not docked to anything.

Vessel undock()
Undocks the docking port and returns the new Vessel that is created. This method can be called for
either docking port in a docked pair. Throws an exception if the docking port is not docked to anything.

Note: After undocking, the active vessel may change. See getActiveVessel().

float getReengageDistance()
The distance a docking port must move away when it undocks before it becomes ready to dock with another
port, in meters.

boolean getHasShield()
Whether the docking port has a shield.

boolean getShielded()

void setShielded(boolean value)
The state of the docking ports shield, if it has one. Returns true if the docking port has a shield, and
the shield is closed. Otherwise returns false. When set to true, the shield is closed, and when set to
false the shield is opened. If the docking port does not have a shield, setting this attribute has no effect.

org.javatuples.Triplet<Double, Double, Double> position(ReferenceFrame referenceFrame)
The position of the docking port in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> direction(ReferenceFrame referenceFrame)
The direction that docking port points in, in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Quartet<Double, Double, Double, Double> rotation(ReferenceFrame reference-
Frame)

The rotation of the docking port, in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

5.3. SpaceCenter API 255

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://forum.kerbalspaceprogram.com/index.php?/topic/40423-11-docking-port-alignment-indicator-version-621-beta-updated-04122016/
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

ReferenceFrame getReferenceFrame()
The reference frame that is fixed relative to this docking port, and oriented with the port.

•The origin is at the position of the docking port.

•The axes rotate with the docking port.

•The x-axis points out to the right side of the docking port.

•The y-axis points in the direction the docking port is facing.

•The z-axis points out of the bottom off the docking port.

Note: This reference frame is not necessarily equivalent to the reference frame for the part, returned by
Part.getReferenceFrame().

Fig. 5.8: Docking port reference frame origin and axes

public enum DockingPortState
The state of a docking port. See DockingPort.getState().

public DockingPortState READY
The docking port is ready to dock to another docking port.

public DockingPortState DOCKED
The docking port is docked to another docking port, or docked to another part (from the VAB/SPH).

public DockingPortState DOCKING
The docking port is very close to another docking port, but has not docked. It is using magnetic force to
acquire a solid dock.

public DockingPortState UNDOCKING
The docking port has just been undocked from another docking port, and is disabled until it moves away

256 Chapter 5. Java

kRPC, Release 0.3.5

Fig. 5.9: Inline docking port reference frame origin and axes

by a sufficient distance (DockingPort.getReengageDistance()).

public DockingPortState SHIELDED
The docking port has a shield, and the shield is closed.

public DockingPortState MOVING
The docking ports shield is currently opening/closing.

Engine

public class Engine
An engine, including ones of various types. For example liquid fuelled gimballed engines, solid rocket boosters
and jet engines. Obtained by calling Part.getEngine().

Note: For RCS thrusters Part.getRCS().

Part getPart()
The part object for this engine.

boolean getActive()

void setActive(boolean value)
Whether the engine is active. Setting this attribute may have no effect, depending on
Engine.getCanShutdown() and Engine.getCanRestart().

float getThrust()
The current amount of thrust being produced by the engine, in Newtons.

float getAvailableThrust()
The amount of thrust, in Newtons, that would be produced by the engine when activated and with its

5.3. SpaceCenter API 257

kRPC, Release 0.3.5

throttle set to 100%. Returns zero if the engine does not have any fuel. Takes the engine’s current
Engine.getThrustLimit() and atmospheric conditions into account.

float getMaxThrust()
The amount of thrust, in Newtons, that would be produced by the engine when activated and fueled, with
its throttle and throttle limiter set to 100%.

float getMaxVacuumThrust()
The maximum amount of thrust that can be produced by the engine in a vacuum, in Newtons. This is
the amount of thrust produced by the engine when activated, Engine.getThrustLimit() is set to
100%, the main vessel’s throttle is set to 100% and the engine is in a vacuum.

float getThrustLimit()

void setThrustLimit(float value)
The thrust limiter of the engine. A value between 0 and 1. Setting this attribute may have no effect, for
example the thrust limit for a solid rocket booster cannot be changed in flight.

java.util.List<Thruster> getThrusters()
The components of the engine that generate thrust.

Note: For example, this corresponds to the rocket nozzel on a solid rocket booster, or the in-
dividual nozzels on a RAPIER engine. The overall thrust produced by the engine, as reported by
Engine.getAvailableThrust(), Engine.getMaxThrust() and others, is the sum of the
thrust generated by each thruster.

float getSpecificImpulse()
The current specific impulse of the engine, in seconds. Returns zero if the engine is not active.

float getVacuumSpecificImpulse()
The vacuum specific impulse of the engine, in seconds.

float getKerbinSeaLevelSpecificImpulse()
The specific impulse of the engine at sea level on Kerbin, in seconds.

java.util.List<String> getPropellantNames()
The names of the propellants that the engine consumes.

java.util.Map<String, Single> getPropellantRatios()
The ratio of resources that the engine consumes. A dictionary mapping resource names to the ratio at
which they are consumed by the engine.

Note: For example, if the ratios are 0.6 for LiquidFuel and 0.4 for Oxidizer, then for every 0.6 units of
LiquidFuel that the engine burns, it will burn 0.4 units of Oxidizer.

java.util.List<Propellant> getPropellants()
The propellants that the engine consumes.

boolean getHasFuel()
Whether the engine has any fuel available.

Note: The engine must be activated for this property to update correctly.

float getThrottle()
The current throttle setting for the engine. A value between 0 and 1. This is not necessarily the same as
the vessel’s main throttle setting, as some engines take time to adjust their throttle (such as jet engines).

258 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.3.5

boolean getThrottleLocked()
Whether the Control.getThrottle() affects the engine. For example, this is true for liquid fueled
rockets, and false for solid rocket boosters.

boolean getCanRestart()
Whether the engine can be restarted once shutdown. If the engine cannot be shutdown, returns false.
For example, this is true for liquid fueled rockets and false for solid rocket boosters.

boolean getCanShutdown()
Whether the engine can be shutdown once activated. For example, this is true for liquid fueled rockets
and false for solid rocket boosters.

boolean getHasModes()
Whether the engine has multiple modes of operation.

String getMode()

void setMode(String value)
The name of the current engine mode.

java.util.Map<String, Engine> getModes()
The available modes for the engine. A dictionary mapping mode names to Engine objects.

void toggleMode()
Toggle the current engine mode.

boolean getAutoModeSwitch()

void setAutoModeSwitch(boolean value)
Whether the engine will automatically switch modes.

boolean getGimballed()
Whether the engine is gimballed.

float getGimbalRange()
The range over which the gimbal can move, in degrees. Returns 0 if the engine is not gimballed.

boolean getGimbalLocked()

void setGimbalLocked(boolean value)
Whether the engines gimbal is locked in place. Setting this attribute has no effect if the engine is not
gimballed.

float getGimbalLimit()

void setGimbalLimit(float value)
The gimbal limiter of the engine. A value between 0 and 1. Returns 0 if the gimbal is locked.

org.javatuples.Triplet<Double, Double, Double> getAvailableTorque()
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel.getReferenceFrame(). Returns zero if the engine is inactive,
or not gimballed.

public class Propellant
A propellant for an engine. Obtains by calling Engine.getPropellants().

String getName()
The name of the propellant.

double getCurrentAmount()
The current amount of propellant.

double getCurrentRequirement()
The required amount of propellant.

5.3. SpaceCenter API 259

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

double getTotalResourceAvailable()
The total amount of the underlying resource currently reachable given resource flow rules.

double getTotalResourceCapacity()
The total vehicle capacity for the underlying propellant resource, restricted by resource flow rules.

boolean getIgnoreForIsp()
If this propellant should be ignored when calculating required mass flow given specific impulse.

boolean getIgnoreForThrustCurve()
If this propellant should be ignored for thrust curve calculations.

boolean getDrawStackGauge()
If this propellant has a stack gauge or not.

boolean getIsDeprived()
If this propellant is deprived.

float getRatio()
The propellant ratio.

java.util.List<Resource> getConnectedResources()
The reachable resources connected to this propellant.

Experiment

public class Experiment
Obtained by calling Part.getExperiment().

Part getPart()
The part object for this experiment.

void run()
Run the experiment.

void transmit()
Transmit all experimental data contained by this part.

void dump()
Dump the experimental data contained by the experiment.

void reset()
Reset the experiment.

boolean getDeployed()
Whether the experiment has been deployed.

boolean getRerunnable()
Whether the experiment can be re-run.

boolean getInoperable()
Whether the experiment is inoperable.

boolean getHasData()
Whether the experiment contains data.

java.util.List<ScienceData> getData()
The data contained in this experiment.

public class ScienceData
Obtained by calling Experiment.getData().

260 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.3.5

float getDataAmount()
Data amount.

float getScienceValue()
Science value.

float getTransmitValue()
Transmit value.

Fairing

public class Fairing
A fairing. Obtained by calling Part.getFairing().

Part getPart()
The part object for this fairing.

void jettison()
Jettison the fairing. Has no effect if it has already been jettisoned.

boolean getJettisoned()
Whether the fairing has been jettisoned.

Intake

public class Intake
An air intake. Obtained by calling Part.getIntake().

Part getPart()
The part object for this intake.

boolean getOpen()

void setOpen(boolean value)
Whether the intake is open.

float getSpeed()
Speed of the flow into the intake, in 𝑚/𝑠.

float getFlow()
The rate of flow into the intake, in units of resource per second.

float getArea()
The area of the intake’s opening, in square meters.

Landing Gear

public class LandingGear
Landing gear with wheels. Obtained by calling Part.getLandingGear().

Part getPart()
The part object for this landing gear.

LandingGearState getState()
Gets the current state of the landing gear.

5.3. SpaceCenter API 261

kRPC, Release 0.3.5

Note: Fixed landing gear are always deployed.

boolean getDeployable()
Whether the landing gear is deployable.

boolean getDeployed()

void setDeployed(boolean value)
Whether the landing gear is deployed.

Note: Fixed landing gear are always deployed. Returns an error if you try to deploy fixed landing gear.

public enum LandingGearState
The state of a landing gear. See LandingGear.getState().

public LandingGearState DEPLOYED
Landing gear is fully deployed.

public LandingGearState RETRACTED
Landing gear is fully retracted.

public LandingGearState DEPLOYING
Landing gear is being deployed.

public LandingGearState RETRACTING
Landing gear is being retracted.

public LandingGearState BROKEN
Landing gear is broken.

Landing Leg

public class LandingLeg
A landing leg. Obtained by calling Part.getLandingLeg().

Part getPart()
The part object for this landing leg.

LandingLegState getState()
The current state of the landing leg.

boolean getDeployed()

void setDeployed(boolean value)
Whether the landing leg is deployed.

Note: Fixed landing legs are always deployed. Returns an error if you try to deploy fixed landing gear.

public enum LandingLegState
The state of a landing leg. See LandingLeg.getState().

public LandingLegState DEPLOYED
Landing leg is fully deployed.

public LandingLegState RETRACTED
Landing leg is fully retracted.

262 Chapter 5. Java

kRPC, Release 0.3.5

public LandingLegState DEPLOYING
Landing leg is being deployed.

public LandingLegState RETRACTING
Landing leg is being retracted.

public LandingLegState BROKEN
Landing leg is broken.

Launch Clamp

public class LaunchClamp
A launch clamp. Obtained by calling Part.getLaunchClamp().

Part getPart()
The part object for this launch clamp.

void release()
Releases the docking clamp. Has no effect if the clamp has already been released.

Light

public class Light
A light. Obtained by calling Part.getLight().

Part getPart()
The part object for this light.

boolean getActive()

void setActive(boolean value)
Whether the light is switched on.

org.javatuples.Triplet<Single, Single, Single> getColor()

void setColor(org.javatuples.Triplet<Single, Single, Single> value)
The color of the light, as an RGB triple.

float getPowerUsage()
The current power usage, in units of charge per second.

Parachute

public class Parachute
A parachute. Obtained by calling Part.getParachute().

Part getPart()
The part object for this parachute.

void deploy()
Deploys the parachute. This has no effect if the parachute has already been deployed.

boolean getDeployed()
Whether the parachute has been deployed.

ParachuteState getState()
The current state of the parachute.

float getDeployAltitude()

5.3. SpaceCenter API 263

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html

kRPC, Release 0.3.5

void setDeployAltitude(float value)
The altitude at which the parachute will full deploy, in meters.

float getDeployMinPressure()

void setDeployMinPressure(float value)
The minimum pressure at which the parachute will semi-deploy, in atmospheres.

public enum ParachuteState
The state of a parachute. See Parachute.getState().

public ParachuteState STOWED
The parachute is safely tucked away inside its housing.

public ParachuteState ACTIVE
The parachute is still stowed, but ready to semi-deploy.

public ParachuteState SEMI_DEPLOYED
The parachute has been deployed and is providing some drag, but is not fully deployed yet.

public ParachuteState DEPLOYED
The parachute is fully deployed.

public ParachuteState CUT
The parachute has been cut.

Radiator

public class Radiator
A radiator. Obtained by calling Part.getRadiator().

Part getPart()
The part object for this radiator.

boolean getDeployable()
Whether the radiator is deployable.

boolean getDeployed()

void setDeployed(boolean value)
For a deployable radiator, true if the radiator is extended. If the radiator is not deployable, this is always
true.

RadiatorState getState()
The current state of the radiator.

Note: A fixed radiator is always RadiatorState.EXTENDED.

public enum RadiatorState
The state of a radiator. RadiatorState

public RadiatorState EXTENDED
Radiator is fully extended.

public RadiatorState RETRACTED
Radiator is fully retracted.

public RadiatorState EXTENDING
Radiator is being extended.

264 Chapter 5. Java

kRPC, Release 0.3.5

public RadiatorState RETRACTING
Radiator is being retracted.

public RadiatorState BROKEN
Radiator is being broken.

Resource Converter

public class ResourceConverter
A resource converter. Obtained by calling Part.getResourceConverter().

Part getPart()
The part object for this converter.

int getCount()
The number of converters in the part.

String name(int index)
The name of the specified converter.

Parameters

• index (int) – Index of the converter.

boolean active(int index)
True if the specified converter is active.

Parameters

• index (int) – Index of the converter.

void start(int index)
Start the specified converter.

Parameters

• index (int) – Index of the converter.

void stop(int index)
Stop the specified converter.

Parameters

• index (int) – Index of the converter.

ResourceConverterState state(int index)
The state of the specified converter.

Parameters

• index (int) – Index of the converter.

String statusInfo(int index)
Status information for the specified converter. This is the full status message shown in the in-game UI.

Parameters

• index (int) – Index of the converter.

java.util.List<String> inputs(int index)
List of the names of resources consumed by the specified converter.

Parameters

• index (int) – Index of the converter.

5.3. SpaceCenter API 265

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

java.util.List<String> outputs(int index)
List of the names of resources produced by the specified converter.

Parameters

• index (int) – Index of the converter.

public enum ResourceConverterState
The state of a resource converter. See ResourceConverter.state(int).

public ResourceConverterState RUNNING
Converter is running.

public ResourceConverterState IDLE
Converter is idle.

public ResourceConverterState MISSING_RESOURCE
Converter is missing a required resource.

public ResourceConverterState STORAGE_FULL
No available storage for output resource.

public ResourceConverterState CAPACITY
At preset resource capacity.

public ResourceConverterState UNKNOWN
Unknown state. Possible with modified resource converters. In this case, check
ResourceConverter.statusInfo(int) for more information.

Resource Harvester

public class ResourceHarvester
A resource harvester (drill). Obtained by calling Part.getResourceHarvester().

Part getPart()
The part object for this harvester.

ResourceHarvesterState getState()
The state of the harvester.

boolean getDeployed()

void setDeployed(boolean value)
Whether the harvester is deployed.

boolean getActive()

void setActive(boolean value)
Whether the harvester is actively drilling.

float getExtractionRate()
The rate at which the drill is extracting ore, in units per second.

float getThermalEfficiency()
The thermal efficiency of the drill, as a percentage of its maximum.

float getCoreTemperature()
The core temperature of the drill, in Kelvin.

float getOptimumCoreTemperature()
The core temperature at which the drill will operate with peak efficiency, in Kelvin.

266 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

public enum ResourceHarvesterState
The state of a resource harvester. See ResourceHarvester.getState().

public ResourceHarvesterState DEPLOYING
The drill is deploying.

public ResourceHarvesterState DEPLOYED
The drill is deployed and ready.

public ResourceHarvesterState RETRACTING
The drill is retracting.

public ResourceHarvesterState RETRACTED
The drill is retracted.

public ResourceHarvesterState ACTIVE
The drill is running.

Reaction Wheel

public class ReactionWheel
A reaction wheel. Obtained by calling Part.getReactionWheel().

Part getPart()
The part object for this reaction wheel.

boolean getActive()

void setActive(boolean value)
Whether the reaction wheel is active.

boolean getBroken()
Whether the reaction wheel is broken.

org.javatuples.Triplet<Double, Double, Double> getAvailableTorque()
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel.getReferenceFrame(). Returns zero if the reaction wheel is
inactive or broken.

org.javatuples.Triplet<Double, Double, Double> getMaxTorque()
The maximum torque the reaction wheel can provide, is it active, in the pitch, roll and yaw
axes of the vessel, in Newton meters. These axes correspond to the coordinate axes of the
Vessel.getReferenceFrame().

RCS

public class RCS
An RCS block or thruster. Obtained by calling Part.getRCS().

Part getPart()
The part object for this RCS.

boolean getActive()
Whether the RCS thrusters are active. An RCS thruster is inactive if the RCS action group is disabled
(Control.getRCS()), the RCS thruster itself is not enabled (RCS.getEnabled()) or it is covered
by a fairing (Part.getShielded()).

boolean getEnabled()

5.3. SpaceCenter API 267

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

void setEnabled(boolean value)
Whether the RCS thrusters are enabled.

boolean getPitchEnabled()

void setPitchEnabled(boolean value)
Whether the RCS thruster will fire when pitch control input is given.

boolean getYawEnabled()

void setYawEnabled(boolean value)
Whether the RCS thruster will fire when yaw control input is given.

boolean getRollEnabled()

void setRollEnabled(boolean value)
Whether the RCS thruster will fire when roll control input is given.

boolean getForwardEnabled()

void setForwardEnabled(boolean value)
Whether the RCS thruster will fire when pitch control input is given.

boolean getUpEnabled()

void setUpEnabled(boolean value)
Whether the RCS thruster will fire when yaw control input is given.

boolean getRightEnabled()

void setRightEnabled(boolean value)
Whether the RCS thruster will fire when roll control input is given.

org.javatuples.Triplet<Double, Double, Double> getAvailableTorque()
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel.getReferenceFrame(). Returns zero if the RCS is inactive.

float getMaxThrust()
The maximum amount of thrust that can be produced by the RCS thrusters when active, in Newtons.

float getMaxVacuumThrust()
The maximum amount of thrust that can be produced by the RCS thrusters when active in a vacuum, in
Newtons.

java.util.List<Thruster> getThrusters()
A list of thrusters, one of each nozzel in the RCS part.

float getSpecificImpulse()
The current specific impulse of the RCS, in seconds. Returns zero if the RCS is not active.

float getVacuumSpecificImpulse()
The vacuum specific impulse of the RCS, in seconds.

float getKerbinSeaLevelSpecificImpulse()
The specific impulse of the RCS at sea level on Kerbin, in seconds.

java.util.List<String> getPropellants()
The names of resources that the RCS consumes.

java.util.Map<String, Single> getPropellantRatios()
The ratios of resources that the RCS consumes. A dictionary mapping resource names to the ratios at
which they are consumed by the RCS.

268 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

boolean getHasFuel()
Whether the RCS has fuel available.

Note: The RCS thruster must be activated for this property to update correctly.

Sensor

public class Sensor
A sensor, such as a thermometer. Obtained by calling Part.getSensor().

Part getPart()
The part object for this sensor.

boolean getActive()

void setActive(boolean value)
Whether the sensor is active.

String getValue()
The current value of the sensor.

float getPowerUsage()
The current power usage of the sensor, in units of charge per second.

Solar Panel

public class SolarPanel
A solar panel. Obtained by calling Part.getSolarPanel().

Part getPart()
The part object for this solar panel.

boolean getDeployed()

void setDeployed(boolean value)
Whether the solar panel is extended.

SolarPanelState getState()
The current state of the solar panel.

float getEnergyFlow()
The current amount of energy being generated by the solar panel, in units of charge per second.

float getSunExposure()
The current amount of sunlight that is incident on the solar panel, as a percentage. A value between 0 and
1.

public enum SolarPanelState
The state of a solar panel. See SolarPanel.getState().

public SolarPanelState EXTENDED
Solar panel is fully extended.

public SolarPanelState RETRACTED
Solar panel is fully retracted.

public SolarPanelState EXTENDING
Solar panel is being extended.

5.3. SpaceCenter API 269

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

public SolarPanelState RETRACTING
Solar panel is being retracted.

public SolarPanelState BROKEN
Solar panel is broken.

Thruster

public class Thruster
The component of an Engine or RCS part that generates thrust. Can obtained by calling
Engine.getThrusters() or RCS.getThrusters().

Note: Engines can consist of multiple thrusters. For example, the S3 KS-25x4 “Mammoth” has four rocket
nozzels, and so consists of four thrusters.

Part getPart()
The Part that contains this thruster.

org.javatuples.Triplet<Double, Double, Double> thrustPosition(ReferenceFrame reference-
Frame)

The position at which the thruster generates thrust, in the given reference frame. For gimballed engines,
this takes into account the current rotation of the gimbal.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> thrustDirection(ReferenceFrame reference-
Frame)

The direction of the force generated by the thruster, in the given reference frame. This is opposite to the
direction in which the thruster expels propellant. For gimballed engines, this takes into account the current
rotation of the gimbal.

Parameters

• referenceFrame (ReferenceFrame) –

ReferenceFrame getThrustReferenceFrame()
A reference frame that is fixed relative to the thruster and orientated with its thrust direction
(Thruster.thrustDirection(ReferenceFrame)). For gimballed engines, this takes into ac-
count the current rotation of the gimbal.

•The origin is at the position of thrust for this thruster
(Thruster.thrustPosition(ReferenceFrame)).

•The axes rotate with the thrust direction. This is the direction in which the thruster expels propellant,
including any gimballing.

•The y-axis points along the thrust direction.

•The x-axis and z-axis are perpendicular to the thrust direction.

boolean getGimballed()
Whether the thruster is gimballed.

org.javatuples.Triplet<Double, Double, Double> gimbalPosition(ReferenceFrame reference-
Frame)

Position around which the gimbal pivots.

Parameters

270 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> getGimbalAngle()
The current gimbal angle in the pitch, roll and yaw axes.

org.javatuples.Triplet<Double, Double, Double> initialThrustPosition(ReferenceFrame refer-
enceFrame)

The position at which the thruster generates thrust, when the engine is in its initial position (no gimballing),
in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

Note: This position can move when the gimbal rotates. This is because the thrust position and gimbal
position are not necessarily the same.

org.javatuples.Triplet<Double, Double, Double> initialThrustDirection(ReferenceFrame ref-
erenceFrame)

The direction of the force generated by the thruster, when the engine is in its initial position (no gim-
balling), in the given reference frame. This is opposite to the direction in which the thruster expels propel-
lant.

Parameters

• referenceFrame (ReferenceFrame) –

Trees of Parts

Vessels in KSP are comprised of a number of parts, connected to one another in a
tree structure. An example vessel is shown in Figure 1, and the corresponding tree of
parts in Figure 2. The craft file for this example can also be downloaded here.

Fig. 5.10: Figure 1 – Example parts making up a vessel.

Traversing the Tree

The tree of parts can be traversed us-
ing the attributes Parts.getRoot(),
Part.getParent() and
Part.getChildren().

The root of the tree is the same as the
vessels root part (part number 1 in
the example above) and can be ob-
tained by calling Parts.getRoot().
A parts children can be obtained by
calling Part.getChildren(). If
the part does not have any children,
Part.getChildren() returns an empty
list. A parts parent can be obtained by calling
Part.getParent(). If the part does not
have a parent (as is the case for the root part),
Part.getParent() returns null.

The following Java example uses these at-
tributes to perform a depth-first traversal over

5.3. SpaceCenter API 271

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

all of the parts in a vessel:

import java.io.IOException;
import java.util.ArrayDeque;
import java.util.Deque;
import org.javatuples.Pair;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Part;
import krpc.client.services.SpaceCenter.Vessel;

public class TreeTraversal {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
Vessel vessel = SpaceCenter.newInstance(connection).getActiveVessel();
Part root = vessel.getParts().getRoot();
Deque<Pair<Part, Integer>> stack = new ArrayDeque<Pair<Part, Integer>>();
stack.push(new Pair<Part, Integer>(root, 0));
while (stack.size() > 0) {

Pair<Part, Integer> item = stack.pop();
Part part = item.getValue0();
int depth = item.getValue1();
String prefix = "";
for (int i = 0; i < depth; i++)

prefix += " ";
System.out.println(prefix + part.getTitle());
for (Part child : part.getChildren())

stack.push(new Pair<Part, Integer>(child, depth + 1));
}

}
}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1
TR-18A Stack Decoupler
FL-T400 Fuel Tank
LV-909 Liquid Fuel Engine
TR-18A Stack Decoupler
FL-T800 Fuel Tank
LV-909 Liquid Fuel Engine
TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

LT-1 Landing Struts
LT-1 Landing Struts

Mk16 Parachute

272 Chapter 5. Java

kRPC, Release 0.3.5

Attachment Modes

Parts can be attached to other parts either ra-
dially (on the side of the parent part) or axially
(on the end of the parent part, to form a stack).

For example, in the vessel pictured above, the
parachute (part 2) is axially connected to its
parent (the command pod – part 1), and the
landing leg (part 5) is radially connected to its

parent (the fuel tank – part 4).

Fig. 5.11: Figure 2 – Tree of parts for the vessel in Figure 1. Arrows
point from the parent part to the child part.

The root part of a vessel (for example the com-
mand pod – part 1) does not have a parent part,
so does not have an attachment mode. How-
ever, the part is consider to be axially attached
to nothing.

The following Java example does a depth-first
traversal as before, but also prints out the at-
tachment mode used by the part:

import java.io.IOException;
import java.util.ArrayDeque;
import java.util.Deque;
import org.javatuples.Pair;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Part;
import krpc.client.services.SpaceCenter.Vessel;

public class AttachmentModes {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
Vessel vessel = SpaceCenter.newInstance(connection).getActiveVessel();
Part root = vessel.getParts().getRoot();
Deque<Pair<Part, Integer>> stack = new ArrayDeque<Pair<Part, Integer>>();
stack.push(new Pair<Part, Integer>(root, 0));
while (stack.size() > 0) {

Pair<Part, Integer> item = stack.pop();
Part part = item.getValue0();
int depth = item.getValue1();
String prefix = "";
for (int i = 0; i < depth; i++)

prefix += " ";
String attachMode = part.getAxiallyAttached() ? "axial" : "radial";
System.out.println(prefix + part.getTitle() + " - " + attachMode);
for (Part child : part.getChildren())

stack.push(new Pair<Part, Integer>(child, depth + 1));
}

}
}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

5.3. SpaceCenter API 273

kRPC, Release 0.3.5

Command Pod Mk1 - axial
TR-18A Stack Decoupler - axial
FL-T400 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TR-18A Stack Decoupler - axial
FL-T800 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

LT-1 Landing Struts - radial
LT-1 Landing Struts - radial

Mk16 Parachute - axial

Fuel Lines

Fig. 5.12: Figure 5 – Fuel lines from the example
in Figure 1. Fuel flows from the parts highlighted
in green, into the part highlighted in blue.

Fig. 5.13: Figure 4 – A subset of the parts tree
from Figure 2 above.

Fuel lines are considered parts, and are included in the parts tree
(for example, as pictured in Figure 4). However, the parts tree
does not contain information about which parts fuel lines connect
to. The parent part of a fuel line is the part from which it will take
fuel (as shown in Figure 4) however the part that it will send fuel
to is not represented in the parts tree.

Figure 5 shows the fuel lines from the example vessel pictured
earlier. Fuel line part 15 (in red) takes fuel from a fuel tank (part
11 – in green) and feeds it into another fuel tank (part 9 – in blue).
The fuel line is therefore a child of part 11, but its connection to
part 9 is not represented in the tree.

274 Chapter 5. Java

kRPC, Release 0.3.5

The attributes Part.getFuelLinesFrom() and
Part.getFuelLinesTo() can be used to discover
these connections. In the example in Figure 5, when
Part.getFuelLinesTo() is called on fuel tank part
11, it will return a list of parts containing just fuel tank part 9 (the
blue part). When Part.getFuelLinesFrom() is called on
fuel tank part 9, it will return a list containing fuel tank parts 11
and 17 (the parts colored green).

Staging

Each part has two staging numbers associated with it: the
stage in which the part is activated and the stage in which
the part is decoupled. These values can be obtained using
Part.getStage() and Part.getDecoupleStage()
respectively. For parts that are not activated by staging,
Part.getStage() returns -1. For parts that are never decou-
pled, Part.getDecoupleStage() returns a value of -1.

Figure 6 shows an example staging sequence for a vessel. Figure
7 shows the stages in which each part of the vessel will be acti-
vated. Figure 8 shows the stages in which each part of the vessel
will be decoupled.

Fig. 5.14: Figure 6 – Example vessel from Figure 1 with a staging sequence.

5.3. SpaceCenter API 275

kRPC, Release 0.3.5

Fig. 5.15: Figure 7 – The stage in which each part is activated.

Fig. 5.16: Figure 8 – The stage in which each part is decou-
pled.

5.3.8 Resources

public class Resources
Represents the col-
lection of resources
stored in a ves-
sel, stage or part.
Created by calling
Vessel.getResources(),
Vessel.resourcesInDecoupleStage(int,
boolean) or Part.getResources().

java.util.List<Resource> getAll()
All the individual resources that can be stored.

java.util.List<Resource> withResource(String name)
All the individual resources with the given name
that can be stored.

Parameters

• name (String) –

java.util.List<String> getNames()
A list of resource names that can be stored.

276 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

boolean hasResource(String name)
Check whether the named resource can be stored.

Parameters

• name (String) – The name of the resource.

float amount(String name)
Returns the amount of a resource that is currently
stored.

Parameters

• name (String) – The name of the resource.

float max(String name)
Returns the amount of a resource that can be stored.

Parameters

• name (String) – The name of the resource.

float density(String name)
Returns the density of a resource, in kg/l.

Parameters

• name (String) – The name of the resource.

ResourceFlowMode flowMode(String name)
Returns the flow mode of a resource.

Parameters

• name (String) – The name of the resource.

boolean getEnabled()

void setEnabled(boolean value)
Whether use of all the resources are enabled.

Note: This is true if all of the resources are enabled.
If any of the resources are not enabled, this is false.

public class Resource
An individual resource stored within a part. Created
using methods in the Resources class.

String getName()
The name of the resource.

Part getPart()
The part containing the resource.

float getAmount()
The amount of the resource that is currently stored
in the part.

float getMax()
The total amount of the resource that can be stored
in the part.

5.3. SpaceCenter API 277

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

float getDensity()
The density of the resource, in 𝑘𝑔/𝑙.

ResourceFlowMode getFlowMode()
The flow mode of the resource.

boolean getEnabled()

void setEnabled(boolean value)
Whether use of this resource is enabled.

public class ResourceTransfer
Transfer resources between parts.

ResourceTransfer start(Part fromPart, Part toPart, String resource, float maxAmount)
Start transferring a resource transfer between a pair
of parts. The transfer will move at most maxAmount
units of the resource, depending on how much of
the resource is available in the source part and how
much storage is available in the destination part.
Use ResourceTransfer.getComplete()
to check if the transfer is complete. Use
ResourceTransfer.getAmount() to
see how much of the resource has been transferred.

Parameters

• fromPart (Part) – The part to transfer to.

• toPart (Part) – The part to transfer from.

• resource (String) – The name of the resource
to transfer.

• maxAmount (float) – The maximum amount of
resource to transfer.

float getAmount()
The amount of the resource that has been transferred.

boolean getComplete()
Whether the transfer has completed.

public enum ResourceFlowMode
The way in which a resource flows between parts.
See Resources.flowMode(String).

public ResourceFlowMode VESSEL
The resource flows to any part in the vessel. For
example, electric charge.

public ResourceFlowMode STAGE
The resource flows from parts in the first stage,
followed by the second, and so on. For example,
mono-propellant.

public ResourceFlowMode ADJACENT
The resource flows between adjacent parts within
the vessel. For example, liquid fuel or oxidizer.

278 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

public ResourceFlowMode NONE
The resource does not flow. For example, solid fuel.

5.3.9 Node

public class Node
Represents a maneuver node. Can be created us-
ing Control.addNode(double, float,
float, float).

float getPrograde()

void setPrograde(float value)
The magnitude of the maneuver nodes delta-v in the
prograde direction, in meters per second.

float getNormal()

void setNormal(float value)
The magnitude of the maneuver nodes delta-v in the
normal direction, in meters per second.

float getRadial()

void setRadial(float value)
The magnitude of the maneuver nodes delta-v in the
radial direction, in meters per second.

float getDeltaV()

void setDeltaV(float value)
The delta-v of the maneuver node, in meters per
second.

Note: Does not change when executing the maneu-
ver node. See Node.getRemainingDeltaV().

float getRemainingDeltaV()
Gets the remaining delta-v of the maneuver node, in
meters per second. Changes as the node is executed.
This is equivalent to the delta-v reported in-game.

org.javatuples.Triplet<Double, Double, Double> burnVector(ReferenceFrame referenceFrame)
Returns a vector whose direction the direction of the
maneuver node burn, and whose magnitude is the
delta-v of the burn in m/s.

Parameters

• referenceFrame (ReferenceFrame) –

Note: Does not
change when exe-

5.3. SpaceCenter API 279

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

cuting the maneu-
ver node. See
Node.remainingBurnVector(ReferenceFrame).

org.javatuples.Triplet<Double, Double, Double> remainingBurnVector(ReferenceFrame refer-
enceFrame)

Returns a vector whose direction the direction of
the maneuver node burn, and whose magnitude is
the delta-v of the burn in m/s. The direction and
magnitude change as the burn is executed.

Parameters

• referenceFrame (ReferenceFrame) –

double getUT()

void setUT(double value)
The universal time at which the maneuver will occur,
in seconds.

double getTimeTo()
The time until the maneuver node will be encoun-
tered, in seconds.

Orbit getOrbit()
The orbit that results from executing the maneuver
node.

void remove()
Removes the maneuver node.

ReferenceFrame getReferenceFrame()
Gets the reference frame that is fixed relative to the
maneuver node’s burn.

•The origin is at the position of the maneuver node.

•The y-axis points in the direction of the burn.

•The x-axis and z-axis point in arbitrary but fixed di-
rections.

ReferenceFrame getOrbitalReferenceFrame()
Gets the reference frame that is fixed relative to
the maneuver node, and orientated with the orbital
prograde/normal/radial directions of the original
orbit at the maneuver node’s position.

•The origin is at the position of the maneuver node.

•The x-axis points in the orbital anti-radial direction
of the original orbit, at the position of the maneuver
node.

•The y-axis points in the orbital prograde direction
of the original orbit, at the position of the maneuver
node.

280 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

•The z-axis points in the orbital normal direction of
the original orbit, at the position of the maneuver
node.

org.javatuples.Triplet<Double, Double, Double> position(ReferenceFrame referenceFrame)
Returns the position vector of the maneuver node in
the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> direction(ReferenceFrame referenceFrame)
Returns the unit direction vector of the maneuver
nodes burn in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

5.3.10 ReferenceFrame

public class ReferenceFrame
Represents a reference frame for positions, rotations
and velocities. Contains:

•The position of the origin.

•The directions of the x, y and z axes.

•The linear velocity of the frame.

•The angular velocity of the frame.

Note: This class does not contain any properties
or methods. It is only used as a parameter to other
functions.

5.3.11 AutoPilot

public class AutoPilot
Provides basic auto-piloting utilities for a vessel.
Created by calling Vessel.getAutoPilot().

Note: If a client engages the auto-pilot and then
closes its connection to the server, the auto-pilot will
be disengaged and its target reference frame, direc-
tion and roll reset to default.

void engage()
Engage the auto-pilot.

void disengage()
Disengage the auto-pilot.

5.3. SpaceCenter API 281

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

void wait()
Blocks until the vessel is pointing in the target di-
rection and has the target roll (if set).

float getError()
The error, in degrees, between the direction the
ship has been asked to point in and the direction
it is pointing in. Returns zero if the auto-pilot has
not been engaged and SAS is not enabled or is in
stability assist mode.

float getPitchError()
The error, in degrees, between the vessels current
and target pitch. Returns zero if the auto-pilot has
not been engaged.

float getHeadingError()
The error, in degrees, between the vessels current
and target heading. Returns zero if the auto-pilot
has not been engaged.

float getRollError()
The error, in degrees, between the vessels current
and target roll. Returns zero if the auto-pilot has not
been engaged or no target roll is set.

ReferenceFrame getReferenceFrame()

void setReferenceFrame(ReferenceFrame value)
The reference frame for the target direction
(AutoPilot.getTargetDirection()).

float getTargetPitch()

void setTargetPitch(float value)
The target pitch, in degrees, between -90° and +90°.

float getTargetHeading()

void setTargetHeading(float value)
The target heading, in degrees, between 0° and 360°.

float getTargetRoll()

void setTargetRoll(float value)
The target roll, in degrees. NaN if no target roll is
set.

org.javatuples.Triplet<Double, Double, Double> getTargetDirection()

void setTargetDirection(org.javatuples.Triplet<Double, Double, Double> value)
Direction vector corresponding to the target pitch
and heading.

void targetPitchAndHeading(float pitch, float heading)
Set target pitch and heading angles.

282 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

Parameters

• pitch (float) – Target pitch angle, in degrees be-
tween -90° and +90°.

• heading (float) – Target heading angle, in de-
grees between 0° and 360°.

boolean getSAS()

void setSAS(boolean value)
The state of SAS.

Note: Equivalent to Control.getSAS()

SASMode getSASMode()

void setSASMode(SASMode value)
The current SASMode. These modes are equivalent
to the mode buttons to the left of the navball that
appear when SAS is enabled.

Note: Equivalent to Control.getSASMode()

double getRollThreshold()

void setRollThreshold(double value)
The threshold at which the autopilot will try to match
the target roll angle, if any. Defaults to 5 degrees.

org.javatuples.Triplet<Double, Double, Double> getStoppingTime()

void setStoppingTime(org.javatuples.Triplet<Double, Double, Double> value)
The maximum amount of time that the vessel should
need to come to a complete stop. This determines
the maximum angular velocity of the vessel. A
vector of three stopping times, in seconds, one for
each of the pitch, roll and yaw axes. Defaults to 0.5
seconds for each axis.

org.javatuples.Triplet<Double, Double, Double> getDecelerationTime()

void setDecelerationTime(org.javatuples.Triplet<Double, Double, Double> value)
The time the vessel should take to come to a stop
pointing in the target direction. This determines the
angular acceleration used to decelerate the vessel. A
vector of three times, in seconds, one for each of the
pitch, roll and yaw axes. Defaults to 5 seconds for
each axis.

org.javatuples.Triplet<Double, Double, Double> getAttenuationAngle()

5.3. SpaceCenter API 283

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

void setAttenuationAngle(org.javatuples.Triplet<Double, Double, Double> value)
The angle at which the autopilot considers the vessel
to be pointing close to the target. This determines
the midpoint of the target velocity attenuation
function. A vector of three angles, in degrees, one
for each of the pitch, roll and yaw axes. Defaults to
1° for each axis.

boolean getAutoTune()

void setAutoTune(boolean value)
Whether the rotation rate controllers PID parameters
should be automatically tuned using the vessels
moment of inertia and available torque. Defaults
to true. See AutoPilot.getTimeToPeak()
and AutoPilot.getOvershoot().

org.javatuples.Triplet<Double, Double, Double> getTimeToPeak()

void setTimeToPeak(org.javatuples.Triplet<Double, Double, Double> value)
The target time to peak used to autotune the PID
controllers. A vector of three times, in seconds, for
each of the pitch, roll and yaw axes. Defaults to 3
seconds for each axis.

org.javatuples.Triplet<Double, Double, Double> getOvershoot()

void setOvershoot(org.javatuples.Triplet<Double, Double, Double> value)
The target overshoot percentage used to autotune the
PID controllers. A vector of three values, between
0 and 1, for each of the pitch, roll and yaw axes.
Defaults to 0.01 for each axis.

org.javatuples.Triplet<Double, Double, Double> getPitchPIDGains()

void setPitchPIDGains(org.javatuples.Triplet<Double, Double, Double> value)
Gains for the pitch PID controller.

Note: When AutoPilot.getAutoTune() is
true, these values are updated automatically, which
will overwrite any manual changes.

org.javatuples.Triplet<Double, Double, Double> getRollPIDGains()

void setRollPIDGains(org.javatuples.Triplet<Double, Double, Double> value)
Gains for the roll PID controller.

Note: When AutoPilot.getAutoTune() is
true, these values are updated automatically, which
will overwrite any manual changes.

284 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

org.javatuples.Triplet<Double, Double, Double> getYawPIDGains()

void setYawPIDGains(org.javatuples.Triplet<Double, Double, Double> value)
Gains for the yaw PID controller.

Note: When AutoPilot.getAutoTune() is
true, these values are updated automatically, which
will overwrite any manual changes.

5.3.12 Geometry Types

3-dimensional vectors are represented as a 3-tuple.
For example:

import java.io.IOException;
import org.javatuples.Triplet;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Vessel;

public class Vector3 {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
Vessel vessel = SpaceCenter.newInstance(connection).getActiveVessel();
Triplet<Double, Double, Double> v = vessel.flight(null).getPrograde();
System.out.println(v.getValue0() + "," + v.getValue1() + "," + v.getValue2());

}
}

Quaternions (rotations in 3-dimensional space) are
encoded as a 4-tuple containing the x, y, z and w
components. For example:

import java.io.IOException;
import org.javatuples.Quartet;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Vessel;

public class Quaternion {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
Vessel vessel = SpaceCenter.newInstance(connection).getActiveVessel();
Quartet<Double, Double, Double, Double> q = vessel.flight(null).getRotation();
System.out.println(q.getValue0() + "," + q.getValue1() + "," + q.getValue2() + "," + q.getValue3());

}
}

5.3. SpaceCenter API 285

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

5.3.13 Camera

public class Camera
Controls the game’s camera. Obtained by calling
getCamera().

CameraMode getMode()

void setMode(CameraMode value)
The current mode of the camera.

float getPitch()

void setPitch(float value)
The pitch of the camera, in degrees. A value
between Camera.getMinPitch() and
Camera.getMaxPitch()

float getHeading()

void setHeading(float value)
The heading of the camera, in degrees.

float getDistance()

void setDistance(float value)
The distance from the camera to the subject. A
value between Camera.getMinDistance()
and Camera.getMaxDistance().

float getMinPitch()
The minimum pitch of the camera.

float getMaxPitch()
The maximum pitch of the camera.

float getMinDistance()
Minimum distance from the camera to the subject.

float getMaxDistance()
Maximum distance from the camera to the subject.

float getDefaultDistance()
Default distance from the camera to the subject.

CelestialBody getFocussedBody()

void setFocussedBody(CelestialBody value)
In map mode, the celestial body that the camera
is focussed on. Returns null if the camera is not
focussed on a celestial body. Returns an error is the
camera is not in map mode.

Vessel getFocussedVessel()

286 Chapter 5. Java

kRPC, Release 0.3.5

void setFocussedVessel(Vessel value)
In map mode, the vessel that the camera is focussed
on. Returns null if the camera is not focussed on a
vessel. Returns an error is the camera is not in map
mode.

Node getFocussedNode()

void setFocussedNode(Node value)
In map mode, the maneuver node that the camera
is focussed on. Returns null if the camera is not
focussed on a maneuver node. Returns an error is
the camera is not in map mode.

public enum CameraMode
See Camera.getMode().

public CameraMode AUTOMATIC
The camera is showing the active vessel, in “auto”
mode.

public CameraMode FREE
The camera is showing the active vessel, in “free”
mode.

public CameraMode CHASE
The camera is showing the active vessel, in “chase”
mode.

public CameraMode LOCKED
The camera is showing the active vessel, in “locked”
mode.

public CameraMode ORBITAL
The camera is showing the active vessel, in “orbital”
mode.

public CameraMode IVA
The Intra-Vehicular Activity view is being shown.

public CameraMode MAP
The map view is being shown.

5.4 Drawing API

5.4.1 Drawing

public class Drawing
Provides functionality for drawing objects in the
flight scene.

Line addLine(org.javatuples.Triplet<Double, Double, Double> start, org.javatuples.Triplet<Double,
Double, Double> end, SpaceCenter.ReferenceFrame referenceFrame, boolean visible)

Draw a line in the scene.

Parameters

5.4. Drawing API 287

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

• start (org.javatuples.Triplet<Double,Double,Double>)
– Position of the start of the line.

• end (org.javatuples.Triplet<Double,Double,Double>)
– Position of the end of the line.

• referenceFrame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the positions are in.

• visible (boolean) – Whether the line is visible.

Line addDirection(org.javatuples.Triplet<Double, Double, Double> direction, SpaceCen-
ter.ReferenceFrame referenceFrame, float length, boolean visible)

Draw a direction vector in the scene, from the center
of mass of the active vessel.

Parameters

• direction (org.javatuples.Triplet<Double,Double,Double>)
– Direction to draw the line in.

• referenceFrame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the direction is in.

• length (float) – The length of the line.

• visible (boolean) – Whether the line is visible.

Polygon addPolygon(java.util.List<org.javatuples.Triplet<Double, Double, Double>> vertices,
SpaceCenter.ReferenceFrame referenceFrame, boolean visible)

Draw a polygon in the scene, defined by a list of
vertices.

Parameters

• vertices (java.util.List<org.javatuples.Triplet<Double,Double,Double>>)
– Vertices of the polygon.

• referenceFrame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the vertices are in.

• visible (boolean) – Whether the polygon is
visible.

Text addText(String text, SpaceCenter.ReferenceFrame referenceFrame,
org.javatuples.Triplet<Double, Double, Double> position,
org.javatuples.Quartet<Double, Double, Double, Double> rotation, boolean visible)

Draw text in the scene.

Parameters

• text (String) – The string to draw.

• referenceFrame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the text position is in.

• position (org.javatuples.Triplet<Double,Double,Double>)
– Position of the text.

288 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/util/List\T1\textless {}org.javatuples.Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}\T1\textgreater {}.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html

kRPC, Release 0.3.5

• rotation (org.javatuples.Quartet<Double,Double,Double,Double>)
– Rotation of the text, as a quaternion.

• visible (boolean) – Whether the text is visible.

void clear(boolean clientOnly)
Remove all objects being drawn.

Parameters

• clientOnly (boolean) – If true, only remove
objects created by the calling client.

5.4.2 Line

public class Line
A line. Created
using addLine(org.javatuples.Triplet<Double,Double,Double>,
org.javatuples.Triplet<Double,Double,Double>,
SpaceCenter.ReferenceFrame,
boolean).

org.javatuples.Triplet<Double, Double, Double> getStart()

void setStart(org.javatuples.Triplet<Double, Double, Double> value)
Start position of the line.

org.javatuples.Triplet<Double, Double, Double> getEnd()

void setEnd(org.javatuples.Triplet<Double, Double, Double> value)
End position of the line.

SpaceCenter.ReferenceFrame getReferenceFrame()

void setReferenceFrame(SpaceCenter.ReferenceFrame value)
Reference frame for the positions of the object.

boolean getVisible()

void setVisible(boolean value)
Whether the object is visible.

org.javatuples.Triplet<Double, Double, Double> getColor()

void setColor(org.javatuples.Triplet<Double, Double, Double> value)
Set the color

String getMaterial()

void setMaterial(String value)
Material used to render the object. Creates the ma-
terial from a shader with the given name.

float getThickness()

5.4. Drawing API 289

http://www.javatuples.org/apidocs/org/javatuples/Quartet\T1\textless {}Double,Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

void setThickness(float value)
Set the thickness

void remove()
Remove the object.

5.4.3 Polygon

public class Polygon
A polygon. Cre-
ated using addPolygon(java.util.List<org.javatuples.Triplet<Double,Double,Double>>,
SpaceCenter.ReferenceFrame,
boolean).

java.util.List<org.javatuples.Triplet<Double, Double, Double>> getVertices()

void setVertices(java.util.List<org.javatuples.Triplet<Double, Double, Double>> value)
Vertices for the polygon.

SpaceCenter.ReferenceFrame getReferenceFrame()

void setReferenceFrame(SpaceCenter.ReferenceFrame value)
Reference frame for the positions of the object.

boolean getVisible()

void setVisible(boolean value)
Whether the object is visible.

void remove()
Remove the object.

org.javatuples.Triplet<Double, Double, Double> getColor()

void setColor(org.javatuples.Triplet<Double, Double, Double> value)
Set the color

String getMaterial()

void setMaterial(String value)
Material used to render the object. Creates the ma-
terial from a shader with the given name.

float getThickness()

void setThickness(float value)
Set the thickness

5.4.4 Text

public class Text
Text. Created us-
ing addText(String,

290 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

SpaceCenter.ReferenceFrame,
org.javatuples.Triplet<Double,Double,Double>,
org.javatuples.Quartet<Double,Double,Double,Double>,
boolean).

org.javatuples.Triplet<Double, Double, Double> getPosition()

void setPosition(org.javatuples.Triplet<Double, Double, Double> value)
Position of the text.

org.javatuples.Quartet<Double, Double, Double, Double> getRotation()

void setRotation(org.javatuples.Quartet<Double, Double, Double, Double> value)
Rotation of the text as a quaternion.

SpaceCenter.ReferenceFrame getReferenceFrame()

void setReferenceFrame(SpaceCenter.ReferenceFrame value)
Reference frame for the positions of the object.

boolean getVisible()

void setVisible(boolean value)
Whether the object is visible.

void remove()
Remove the object.

String getContent()

void setContent(String value)
The text string

String getFont()

void setFont(String value)
Name of the font

java.util.List<String> getAvailableFonts()
A list of all available fonts.

int getSize()

void setSize(int value)
Font size.

float getCharacterSize()

void setCharacterSize(float value)
Character size.

UI.FontStyle getStyle()

void setStyle(UI.FontStyle value)
Font style.

5.4. Drawing API 291

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

org.javatuples.Triplet<Double, Double, Double> getColor()

void setColor(org.javatuples.Triplet<Double, Double, Double> value)
Set the color

String getMaterial()

void setMaterial(String value)
Material used to render the object. Creates the ma-
terial from a shader with the given name.

UI.TextAlignment getAlignment()

void setAlignment(UI.TextAlignment value)
Alignment.

float getLineSpacing()

void setLineSpacing(float value)
Line spacing.

UI.TextAnchor getAnchor()

void setAnchor(UI.TextAnchor value)
Anchor.

5.5 InfernalRobotics API

Provides RPCs to interact with the InfernalRobotics
mod. Provides the following classes:

5.5.1 InfernalRobotics

public class InfernalRobotics
This service provides functionality to interact with
Infernal Robotics.

java.util.List<ServoGroup> servoGroups(SpaceCenter.Vessel vessel)
A list of all the servo groups in the given vessel.

Parameters

• vessel (SpaceCenter.Vessel) –

ServoGroup servoGroupWithName(SpaceCenter.Vessel vessel, String name)
Returns the servo group in the given vessel with
the given name, or null if none exists. If multiple
servo groups have the same name, only one of them
is returned.

Parameters

• vessel (SpaceCenter.Vessel) – Vessel to
check.

292 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://forum.kerbalspaceprogram.com/index.php?/topic/104535-105-magic-smoke-industries-infernal-robotics-0214/
http://forum.kerbalspaceprogram.com/index.php?/topic/104535-105-magic-smoke-industries-infernal-robotics-0214/
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

• name (String) – Name of servo group to find.

Servo servoWithName(SpaceCenter.Vessel vessel, String name)
Returns the servo in the given vessel with the given
name or null if none exists. If multiple servos
have the same name, only one of them is returned.

Parameters

• vessel (SpaceCenter.Vessel) – Vessel to
check.

• name (String) – Name of the servo to find.

5.5.2 ServoGroup

public class ServoGroup
A group of ser-
vos, obtained by calling
servoGroups(SpaceCenter.Vessel)
or servoGroupWithName(SpaceCenter.Vessel,
String). Represents the “Servo Groups” in the
InfernalRobotics UI.

String getName()

void setName(String value)
The name of the group.

String getForwardKey()

void setForwardKey(String value)
The key assigned to be the “forward” key for the
group.

String getReverseKey()

void setReverseKey(String value)
The key assigned to be the “reverse” key for the
group.

float getSpeed()

void setSpeed(float value)
The speed multiplier for the group.

boolean getExpanded()

void setExpanded(boolean value)
Whether the group is expanded in the Infernal-
Robotics UI.

java.util.List<Servo> getServos()
The servos that are in the group.

5.5. InfernalRobotics API 293

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.3.5

Servo servoWithName(String name)
Returns the servo with the given name from this
group, or null if none exists.

Parameters

• name (String) – Name of servo to find.

java.util.List<SpaceCenter.Part> getParts()
The parts containing the servos in the group.

void moveRight()
Moves all of the servos in the group to the right.

void moveLeft()
Moves all of the servos in the group to the left.

void moveCenter()
Moves all of the servos in the group to the center.

void moveNextPreset()
Moves all of the servos in the group to the next
preset.

void movePrevPreset()
Moves all of the servos in the group to the previous
preset.

void stop()
Stops the servos in the group.

5.5.3 Servo

public class Servo
Represents a servo. Obtained us-
ing ServoGroup.getServos(),
ServoGroup.servoWithName(String)
or servoWithName(SpaceCenter.Vessel,
String).

String getName()

void setName(String value)
The name of the servo.

SpaceCenter.Part getPart()
The part containing the servo.

void setHighlight(boolean value)
Whether the servo should be highlighted in-game.

float getPosition()
The position of the servo.

float getMinConfigPosition()
The minimum position of the servo, specified by the
part configuration.

294 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

float getMaxConfigPosition()
The maximum position of the servo, specified by
the part configuration.

float getMinPosition()

void setMinPosition(float value)
The minimum position of the servo, specified by the
in-game tweak menu.

float getMaxPosition()

void setMaxPosition(float value)
The maximum position of the servo, specified by
the in-game tweak menu.

float getConfigSpeed()
The speed multiplier of the servo, specified by the
part configuration.

float getSpeed()

void setSpeed(float value)
The speed multiplier of the servo, specified by the
in-game tweak menu.

float getCurrentSpeed()

void setCurrentSpeed(float value)
The current speed at which the servo is moving.

float getAcceleration()

void setAcceleration(float value)
The current speed multiplier set in the UI.

boolean getIsMoving()
Whether the servo is moving.

boolean getIsFreeMoving()
Whether the servo is freely moving.

boolean getIsLocked()

void setIsLocked(boolean value)
Whether the servo is locked.

boolean getIsAxisInverted()

void setIsAxisInverted(boolean value)
Whether the servos axis is inverted.

void moveRight()
Moves the servo to the right.

5.5. InfernalRobotics API 295

kRPC, Release 0.3.5

void moveLeft()
Moves the servo to the left.

void moveCenter()
Moves the servo to the center.

void moveNextPreset()
Moves the servo to the next preset.

void movePrevPreset()
Moves the servo to the previous preset.

void moveTo(float position, float speed)
Moves the servo to position and sets the speed mul-
tiplier to speed.

Parameters

• position (float) – The position to move the
servo to.

• speed (float) – Speed multiplier for the move-
ment.

void stop()
Stops the servo.

5.5.4 Example

The following example gets the control group named
“MyGroup”, prints out the names and positions of
all of the servos in the group, then moves all of the
servos to the right for 1 second.

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Vessel;
import krpc.client.services.InfernalRobotics;
import krpc.client.services.InfernalRobotics.ServoGroup;
import krpc.client.services.InfernalRobotics.Servo;

public class IR {
public static void main(String[] args) throws IOException, RPCException, InterruptedException {

Connection connection = Connection.newInstance("InfernalRobotics Example");
Vessel vessel = SpaceCenter.newInstance(connection).getActiveVessel();
InfernalRobotics ir = InfernalRobotics.newInstance(connection);

ServoGroup group = ir.servoGroupWithName(vessel, "MyGroup");
if (group == null) {

System.out.println("Group not found");
return;

}

for (Servo servo : group.getServos())
System.out.println(servo.getName() + " " + servo.getPosition());

group.moveRight();

296 Chapter 5. Java

kRPC, Release 0.3.5

Thread.sleep(1000);
group.stop();

}
}

5.6 Kerbal Alarm Clock API

Provides RPCs to interact with the Kerbal Alarm
Clock mod. Provides the following classes:

5.6.1 KerbalAlarmClock

public class KerbalAlarmClock
This service provides functionality to interact with
Kerbal Alarm Clock.

java.util.List<Alarm> getAlarms()
A list of all the alarms.

Alarm alarmWithName(String name)
Get the alarm with the given name, or null if no
alarms have that name. If more than one alarm has
the name, only returns one of them.

Parameters

• name (String) – Name of the alarm to search for.

java.util.List<Alarm> alarmsWithType(AlarmType type)
Get a list of alarms of the specified type.

Parameters

• type (AlarmType) – Type of alarm to return.

Alarm createAlarm(AlarmType type, String name, double ut)
Create a new alarm and return it.

Parameters

• type (AlarmType) – Type of the new alarm.

• name (String) – Name of the new alarm.

• ut (double) – Time at which the new alarm should
trigger.

5.6.2 Alarm

public class Alarm
Represents an alarm. Obtained by calling
getAlarms(), alarmWithName(String) or
alarmsWithType(AlarmType).

AlarmAction getAction()

5.6. Kerbal Alarm Clock API 297

http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/
http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/
http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

void setAction(AlarmAction value)
The action that the alarm triggers.

double getMargin()

void setMargin(double value)
The number of seconds before the event that the
alarm will fire.

double getTime()

void setTime(double value)
The time at which the alarm will fire.

AlarmType getType()
The type of the alarm.

String getID()
The unique identifier for the alarm.

String getName()

void setName(String value)
The short name of the alarm.

String getNotes()

void setNotes(String value)
The long description of the alarm.

double getRemaining()
The number of seconds until the alarm will fire.

boolean getRepeat()

void setRepeat(boolean value)
Whether the alarm will be repeated after it has fired.

double getRepeatPeriod()

void setRepeatPeriod(double value)
The time delay to automatically create an alarm
after it has fired.

SpaceCenter.Vessel getVessel()

void setVessel(SpaceCenter.Vessel value)
The vessel that the alarm is attached to.

SpaceCenter.CelestialBody getXferOriginBody()

void setXferOriginBody(SpaceCenter.CelestialBody value)
The celestial body the vessel is departing from.

SpaceCenter.CelestialBody getXferTargetBody()

298 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

void setXferTargetBody(SpaceCenter.CelestialBody value)
The celestial body the vessel is arriving at.

void remove()
Removes the alarm.

5.6.3 AlarmType

public enum AlarmType
The type of an alarm.

public AlarmType RAW
An alarm for a specific date/time or a specific period
in the future.

public AlarmType MANEUVER
An alarm based on the next maneuver node on the
current ships flight path. This node will be stored
and can be restored when you come back to the ship.

public AlarmType MANEUVER_AUTO
See AlarmType.MANEUVER.

public AlarmType APOAPSIS
An alarm for furthest part of the orbit from the
planet.

public AlarmType PERIAPSIS
An alarm for nearest part of the orbit from the planet.

public AlarmType ASCENDING_NODE
Ascending node for the targeted object, or equatorial
ascending node.

public AlarmType DESCENDING_NODE
Descending node for the targeted object, or equato-
rial descending node.

public AlarmType CLOSEST
An alarm based on the closest approach of this ves-
sel to the targeted vessel, some number of orbits
into the future.

public AlarmType CONTRACT
An alarm based on the expiry or deadline of con-
tracts in career modes.

public AlarmType CONTRACT_AUTO
See AlarmType.CONTRACT.

public AlarmType CREW
An alarm that is attached to a crew member.

public AlarmType DISTANCE
An alarm that is triggered when a selected target
comes within a chosen distance.

public AlarmType EARTH_TIME
An alarm based on the time in the “Earth” alternative
Universe (aka the Real World).

5.6. Kerbal Alarm Clock API 299

kRPC, Release 0.3.5

public AlarmType LAUNCH_RENDEVOUS
An alarm that fires as your landed craft passes under
the orbit of your target.

public AlarmType SOI_CHANGE
An alarm manually based on when the next SOI
point is on the flight path or set to continually
monitor the active flight path and add alarms as it
detects SOI changes.

public AlarmType SOI_CHANGE_AUTO
See AlarmType.SOI_CHANGE.

public AlarmType TRANSFER
An alarm based on Interplanetary Transfer Phase
Angles, i.e. when should I launch to planet X?
Based on Kosmo Not’s post and used in Olex’s
Calculator.

public AlarmType TRANSFER_MODELLED
See AlarmType.TRANSFER.

5.6.4 AlarmAction

public enum AlarmAction
The action performed by an alarm when it fires.

public AlarmAction DO_NOTHING
Don’t do anything at all...

public AlarmAction DO_NOTHING_DELETE_WHEN_PASSED
Don’t do anything, and delete the alarm.

public AlarmAction KILL_WARP
Drop out of time warp.

public AlarmAction KILL_WARP_ONLY
Drop out of time warp.

public AlarmAction MESSAGE_ONLY
Display a message.

public AlarmAction PAUSE_GAME
Pause the game.

5.6.5 Example

The following example creates a new alarm for the
active vessel. The alarm is set to trigger after 10 sec-
onds have passed, and display a message.

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.KerbalAlarmClock;
import krpc.client.services.KerbalAlarmClock.Alarm;
import krpc.client.services.KerbalAlarmClock.AlarmAction;

300 Chapter 5. Java

kRPC, Release 0.3.5

import krpc.client.services.KerbalAlarmClock.AlarmType;

public class KAC {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance("Kerbal Alarm Clock Example", "10.0.2.2");
KerbalAlarmClock kac = KerbalAlarmClock.newInstance(connection);
Alarm alarm = kac.createAlarm(AlarmType.RAW, "My New Alarm", SpaceCenter.newInstance(connection).getUT() + 10);
alarm.setNotes("10 seconds have now passed since the alarm was created.");
alarm.setAction(AlarmAction.MESSAGE_ONLY);

}
}

5.7 RemoteTech API

5.7.1 RemoteTech

public class RemoteTech
This service provides functionality to interact with
RemoteTech.

java.util.List<String> getGroundStations()
The names of the ground stations.

Comms comms(SpaceCenter.Vessel vessel)
Get a communications object, representing the com-
munication capability of a particular vessel.

Parameters

• vessel (SpaceCenter.Vessel) –

Antenna antenna(SpaceCenter.Part part)
Get the antenna object for a particular part.

Parameters

• part (SpaceCenter.Part) –

5.7.2 Comms

public class Comms
Communications for a vessel.

SpaceCenter.Vessel getVessel()
Get the vessel.

boolean getHasLocalControl()
Whether the vessel can be controlled locally.

boolean getHasFlightComputer()
Whether the vessel has a flight computer on board.

boolean getHasConnection()
Whether the vessel has any connection.

5.7. RemoteTech API 301

http://forum.kerbalspaceprogram.com/index.php?/topic/75245-11-remotetech-v1610-2016-04-12/
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

boolean getHasConnectionToGroundStation()
Whether the vessel has a connection to a ground
station.

double getSignalDelay()
The shortest signal delay to the vessel, in seconds.

double getSignalDelayToGroundStation()
The signal delay between the vessel and the closest
ground station, in seconds.

double signalDelayToVessel(SpaceCenter.Vessel other)
The signal delay between the this vessel and another
vessel, in seconds.

Parameters

• other (SpaceCenter.Vessel) –

java.util.List<Antenna> getAntennas()
The antennas for this vessel.

5.7.3 Antenna

public class Antenna
A RemoteTech antenna. Obtained by
calling Comms.getAntennas() or
antenna(SpaceCenter.Part).

SpaceCenter.Part getPart()
Get the part containing this antenna.

boolean getHasConnection()
Whether the antenna has a connection.

Target getTarget()

void setTarget(Target value)
The object that the antenna is targetting. This prop-
erty can be used to set the target to Target.NONE
or Target.ACTIVE_VESSEL. To set the
target to a celestial body, ground station or
vessel see Antenna.getTargetBody(),
Antenna.getTargetGroundStation() and
Antenna.getTargetVessel().

SpaceCenter.CelestialBody getTargetBody()

void setTargetBody(SpaceCenter.CelestialBody value)
The celestial body the antenna is targetting.

String getTargetGroundStation()

void setTargetGroundStation(String value)
The ground station the antenna is targetting.

SpaceCenter.Vessel getTargetVessel()

302 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

void setTargetVessel(SpaceCenter.Vessel value)
The vessel the antenna is targetting.

public enum Target
The type of object an antenna is targetting. See
Antenna.getTarget().

public Target ACTIVE_VESSEL
The active vessel.

public Target CELESTIAL_BODY
A celestial body.

public Target GROUND_STATION
A ground station.

public Target VESSEL
A specific vessel.

public Target NONE
No target.

5.8 User Interface API

5.8.1 UI

public class UI
Provides functionality for drawing and interacting
with in-game user interface elements.

Canvas getStockCanvas()
The stock UI canvas.

Canvas addCanvas()
Add a new canvas.

Note: If you want to add UI elements to KSPs stock
UI canvas, use getStockCanvas().

void message(String content, float duration, MessagePosition position)
Display a message on the screen.

Parameters

• content (String) – Message content.

• duration (float) – Duration before the message
disappears, in seconds.

• position (MessagePosition) – Position to
display the message.

Note: The message appears just like a stock mes-
sage, for example quicksave or quickload messages.

5.8. User Interface API 303

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

void clear(boolean clientOnly)
Remove all user interface elements.

Parameters

• clientOnly (boolean) – If true, only remove
objects created by the calling client.

public enum MessagePosition
Message position.

public MessagePosition TOP_LEFT
Top left.

public MessagePosition TOP_CENTER
Top center.

public MessagePosition TOP_RIGHT
Top right.

public MessagePosition BOTTOM_CENTER
Bottom center.

5.8.2 Canvas

public class Canvas
A canvas for user interface elements. See
getStockCanvas() and addCanvas().

RectTransform getRectTransform()
The rect transform for the canvas.

boolean getVisible()

void setVisible(boolean value)
Whether the UI object is visible.

Panel addPanel(boolean visible)
Create a new container for user interface elements.

Parameters

• visible (boolean) – Whether the panel is visi-
ble.

Text addText(String content, boolean visible)
Add text to the canvas.

Parameters

• content (String) – The text.

• visible (boolean) – Whether the text is visible.

InputField addInputField(boolean visible)
Add an input field to the canvas.

Parameters

• visible (boolean) – Whether the input field is
visible.

304 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

Button addButton(String content, boolean visible)
Add a button to the canvas.

Parameters

• content (String) – The label for the button.

• visible (boolean) – Whether the button is vis-
ible.

void remove()
Remove the UI object.

5.8.3 Panel

public class Panel
A container for user interface elements. See
Canvas.addPanel(boolean).

RectTransform getRectTransform()
The rect transform for the panel.

boolean getVisible()

void setVisible(boolean value)
Whether the UI object is visible.

Panel addPanel(boolean visible)
Create a panel within this panel.

Parameters

• visible (boolean) – Whether the new panel is
visible.

Text addText(String content, boolean visible)
Add text to the panel.

Parameters

• content (String) – The text.

• visible (boolean) – Whether the text is visible.

InputField addInputField(boolean visible)
Add an input field to the panel.

Parameters

• visible (boolean) – Whether the input field is
visible.

Button addButton(String content, boolean visible)
Add a button to the panel.

Parameters

• content (String) – The label for the button.

• visible (boolean) – Whether the button is vis-
ible.

5.8. User Interface API 305

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

void remove()
Remove the UI object.

5.8.4 Text

public class Text
A text label. See Panel.addText(String,
boolean).

RectTransform getRectTransform()
The rect transform for the text.

boolean getVisible()

void setVisible(boolean value)
Whether the UI object is visible.

String getContent()

void setContent(String value)
The text string

String getFont()

void setFont(String value)
Name of the font

java.util.List<String> getAvailableFonts()
A list of all available fonts.

int getSize()

void setSize(int value)
Font size.

FontStyle getStyle()

void setStyle(FontStyle value)
Font style.

org.javatuples.Triplet<Double, Double, Double> getColor()

void setColor(org.javatuples.Triplet<Double, Double, Double> value)
Set the color

TextAnchor getAlignment()

void setAlignment(TextAnchor value)
Alignment.

float getLineSpacing()

void setLineSpacing(float value)
Line spacing.

306 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

void remove()
Remove the UI object.

public enum FontStyle
Font style.

public FontStyle NORMAL
Normal.

public FontStyle BOLD
Bold.

public FontStyle ITALIC
Italic.

public FontStyle BOLD_AND_ITALIC
Bold and italic.

public enum TextAlignment
Text alignment.

public TextAlignment LEFT
Left aligned.

public TextAlignment RIGHT
Right aligned.

public TextAlignment CENTER
Center aligned.

public enum TextAnchor
Text alignment.

public TextAnchor LOWER_CENTER
Lower center.

public TextAnchor LOWER_LEFT
Lower left.

public TextAnchor LOWER_RIGHT
Lower right.

public TextAnchor MIDDLE_CENTER
Middle center.

public TextAnchor MIDDLE_LEFT
Middle left.

public TextAnchor MIDDLE_RIGHT
Middle right.

public TextAnchor UPPER_CENTER
Upper center.

public TextAnchor UPPER_LEFT
Upper left.

public TextAnchor UPPER_RIGHT
Upper right.

5.8. User Interface API 307

kRPC, Release 0.3.5

5.8.5 Button

public class Button
A text label. See Panel.addButton(String,
boolean).

RectTransform getRectTransform()
The rect transform for the text.

boolean getVisible()

void setVisible(boolean value)
Whether the UI object is visible.

Text getText()
The text for the button.

boolean getClicked()

void setClicked(boolean value)
Whether the button has been clicked.

Note: This property is set to true when the user
clicks the button. A client script should reset the
property to false in order to detect subsequent but-
ton presses.

void remove()
Remove the UI object.

5.8.6 InputField

public class InputField
An input field. See
Panel.addInputField(boolean).

RectTransform getRectTransform()
The rect transform for the input field.

boolean getVisible()

void setVisible(boolean value)
Whether the UI object is visible.

String getValue()

void setValue(String value)
The value of the input field.

Text getText()
The text component of the input field.

308 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.3.5

Note: Use InputField.getValue() to get
and set the value in the field. This object can be used
to alter the style of the input field’s text.

boolean getChanged()

void setChanged(boolean value)
Whether the input field has been changed.

Note: This property is set to true when the user
modifies the value of the input field. A client script
should reset the property to false in order to detect
subsequent changes.

void remove()
Remove the UI object.

5.8.7 Rect Transform

public class RectTransform
A Unity engine Rect Transform for a UI object. See
the Unity manual for more details.

org.javatuples.Pair<Double, Double> getPosition()

void setPosition(org.javatuples.Pair<Double, Double> value)
Position of the rectangles pivot point relative to the
anchors.

org.javatuples.Triplet<Double, Double, Double> getLocalPosition()

void setLocalPosition(org.javatuples.Triplet<Double, Double, Double> value)
Position of the rectangles pivot point relative to the
anchors.

org.javatuples.Pair<Double, Double> getSize()

void setSize(org.javatuples.Pair<Double, Double> value)
Width and height of the rectangle.

org.javatuples.Pair<Double, Double> getUpperRight()

void setUpperRight(org.javatuples.Pair<Double, Double> value)
Position of the rectangles upper right corner relative
to the anchors.

org.javatuples.Pair<Double, Double> getLowerLeft()

5.8. User Interface API 309

http://docs.unity3d.com/Manual/class-RectTransform.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.3.5

void setLowerLeft(org.javatuples.Pair<Double, Double> value)
Position of the rectangles lower left corner relative
to the anchors.

void setAnchor(org.javatuples.Pair<Double, Double> value)
Set the minimum and maximum anchor points as a
fraction of the size of the parent rectangle.

org.javatuples.Pair<Double, Double> getAnchorMax()

void setAnchorMax(org.javatuples.Pair<Double, Double> value)
The anchor point for the lower left corner of the
rectangle defined as a fraction of the size of the
parent rectangle.

org.javatuples.Pair<Double, Double> getAnchorMin()

void setAnchorMin(org.javatuples.Pair<Double, Double> value)
The anchor point for the upper right corner of the
rectangle defined as a fraction of the size of the
parent rectangle.

org.javatuples.Pair<Double, Double> getPivot()

void setPivot(org.javatuples.Pair<Double, Double> value)
Location of the pivot point around which the rect-
angle rotates, defined as a fraction of the size of the
rectangle itself.

org.javatuples.Quartet<Double, Double, Double, Double> getRotation()

void setRotation(org.javatuples.Quartet<Double, Double, Double, Double> value)
Rotation, as a quaternion, of the object around its
pivot point.

org.javatuples.Triplet<Double, Double, Double> getScale()

void setScale(org.javatuples.Triplet<Double, Double, Double> value)
Scale factor applied to the object in the x, y and z
dimensions.

310 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Pair.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

CHAPTER

SIX

LUA

6.1 Lua Client

This client provides functionality to interact with a kRPC server from programs written in Lua. It can be installed
using LuaRocks or downloaded from GitHub.

6.1.1 Installing the Library

The Lua client and all of its dependencies can be installed using luarocks with a single command:

luarocks install krpc

6.1.2 Using the Library

Once it’s installed, simply require ’krpc’ and you are good to go!

6.1.3 Connecting to the Server

To connect to a server, use the krpc.connect() function. This returns a connection object through which you can
interact with the server. For example to connect to a server running on the local machine:

local krpc = require 'krpc'
local conn = krpc.connect('Example')
print(conn.krpc:get_status().version)

This function also accepts arguments that specify what address and port numbers to connect to. For example:

local krpc = require 'krpc'
local conn = krpc.connect('Remote example', 'my.domain.name', 1000, 1001)
print(conn.krpc:get_status().version)

6.1.4 Interacting with the Server

Interaction with the server is performed via the client object (of type krpc.Client) returned when connecting to
the server using krpc.connect().

Upon connecting, the client interrogates the server to find out what functionality it provides and dynamically adds all
of the classes, methods, properties to the client object.

311

https://luarocks.org/modules/djungelorm/krpc
https://luarocks.org/modules/djungelorm/krpc
https://github.com/krpc/krpc/releases/download/v0.3.5/krpc-lua-0.3.5.zip

kRPC, Release 0.3.5

For example, all of the functionality provided by the SpaceCenter service is accessible via conn.space_center
and the functionality provided by the InfernalRobotics service is accessible via conn.infernal_robotics.

Calling methods, getting or setting properties, etc. are mapped to remote procedure calls and passed to the server by
the lua client.

6.1.5 Streaming Data from the Server

Streams are not yet supported by the Lua client.

6.1.6 Reference

connect([name=nil][, address=‘127.0.0.1’][, rpc_port=50000][, stream_port=50001])
This function creates a connection to a kRPC server. It returns a krpc.Client object, through which the
server can be communicated with.

Parameters

• name (string) – A descriptive name for the connection. This is passed to the server and
appears, for example, in the client connection dialog on the in-game server window.

• address (string) – The address of the server to connect to. Can either be a hostname
or an IP address in dotted decimal notation. Defaults to ‘127.0.0.1’.

• rpc_port (number) – The port number of the RPC Server. Defaults to 50000.

• stream_port (number) – The port number of the Stream Server. Defaults to 50001.

class Client
This class provides the interface for communicating with the server. It is dynamically populated with all the
functionality provided by the server. Instances of this class should be obtained by calling krpc.connect().

close()
Closes the connection to the server.

krpc
The built-in KRPC class, providing basic interactions with the server.

Return type krpc.KRPC

class KRPC
This class provides access to the basic server functionality provided by the KRPC service. An instance can be
obtained by calling krpc.Client.krpc. Most of this functionality is used internally by the lua client and
therefore does not need to be used directly from application code. The only exception that may be useful is:

get_status()
Gets a status message from the server containing information including the server’s version string and
performance statistics.

For example, the following prints out the version string for the server:

print('Server version = ' .. conn.krpc:get_status().version)

Or to get the rate at which the server is sending and receiving data over the network:

local status = conn.krpc:get_status()
print('Data in = ' .. (status.bytes_read_rate/1024) .. ' KB/s')
print('Data out = ' .. (status.bytes_written_rate/1024) .. ' KB/s')

312 Chapter 6. Lua

kRPC, Release 0.3.5

6.2 KRPC API

Main kRPC service, used by clients to interact with basic server functionality.

static get_status()
Returns some information about the server, such as the version.

Return type krpc.schema.KRPC.Status

static get_services()
Returns information on all services, procedures, classes, properties etc. provided by the server. Can be used by
client libraries to automatically create functionality such as stubs.

Return type krpc.schema.KRPC.Services

current_game_scene
Get the current game scene.

Attribute Read-only, cannot be set

Return type KRPC.GameScene

static add_stream(request)
Add a streaming request and return its identifier.

Parameters request (krpc.schema.KRPC.Request) –

Return type number

Note: Streams are not supported by the Lua client.

static remove_stream(id)
Remove a streaming request.

Parameters id (number) –

Note: Streams are not supported by the Lua client.

class GameScene
The game scene. See KRPC.current_game_scene.

space_center
The game scene showing the Kerbal Space Center buildings.

flight
The game scene showing a vessel in flight (or on the launchpad/runway).

tracking_station
The tracking station.

editor_vab
The Vehicle Assembly Building.

editor_sph
The Space Plane Hangar.

6.2. KRPC API 313

kRPC, Release 0.3.5

6.3 SpaceCenter API

6.3.1 SpaceCenter

Provides functionality to interact with Kerbal Space Program. This includes controlling the active vessel, managing
its resources, planning maneuver nodes and auto-piloting.

active_vessel
The currently active vessel.

Attribute Can be read or written

Return type SpaceCenter.Vessel

vessels
A list of all the vessels in the game.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Vessel

bodies
A dictionary of all celestial bodies (planets, moons, etc.) in the game, keyed by the name of the body.

Attribute Read-only, cannot be set

Return type Map from string to SpaceCenter.CelestialBody

target_body
The currently targeted celestial body.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

target_vessel
The currently targeted vessel.

Attribute Can be read or written

Return type SpaceCenter.Vessel

target_docking_port
The currently targeted docking port.

Attribute Can be read or written

Return type SpaceCenter.DockingPort

static clear_target()
Clears the current target.

static launchable_vessels(craft_directory)
Returns a list of vessels from the given craft_directory that can be launched.

Parameters craft_directory (string) – Name of the directory in the current saves “Ships”
directory. For example "VAB" or "SPH".

Return type List of string

static launch_vessel(craft_directory, name, launch_site)
Launch a vessel.

Parameters

314 Chapter 6. Lua

kRPC, Release 0.3.5

• craft_directory (string) – Name of the directory in the current saves “Ships” di-
rectory, that contains the craft file. For example "VAB" or "SPH".

• name (string) – Name of the vessel to launch. This is the name of the ”.craft” file in the
save directory, without the ”.craft” file extension.

• launch_site (string) – Name of the launch site. For example "LaunchPad" or
"Runway".

static launch_vessel_from_vab(name)
Launch a new vessel from the VAB onto the launchpad.

Parameters name (string) – Name of the vessel to launch.

Note: This is equivalent to calling SpaceCenter.launch_vessel() with the craft directory set to
“VAB” and the launch site set to “LaunchPad”.

static launch_vessel_from_sph(name)
Launch a new vessel from the SPH onto the runway.

Parameters name (string) – Name of the vessel to launch.

Note: This is equivalent to calling SpaceCenter.launch_vessel() with the craft directory set to
“SPH” and the launch site set to “Runway”.

static save(name)
Save the game with a given name. This will create a save file called name.sfs in the folder of the current save
game.

Parameters name (string) –

static load(name)
Load the game with the given name. This will create a load a save file called name.sfs from the folder of the
current save game.

Parameters name (string) –

static quicksave()
Save a quicksave.

Note: This is the same as calling SpaceCenter.save() with the name “quicksave”.

static quickload()
Load a quicksave.

Note: This is the same as calling SpaceCenter.load() with the name “quicksave”.

camera
An object that can be used to control the camera.

Attribute Read-only, cannot be set

Return type SpaceCenter.Camera

ut
The current universal time in seconds.

6.3. SpaceCenter API 315

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type number

g
The value of the gravitational constant G in 𝑁(𝑚/𝑘𝑔)2.

Attribute Read-only, cannot be set

Return type number

warp_mode
The current time warp mode. Returns SpaceCenter.WarpMode.none if time warp is
not active, SpaceCenter.WarpMode.rails if regular “on-rails” time warp is active, or
SpaceCenter.WarpMode.physics if physical time warp is active.

Attribute Read-only, cannot be set

Return type SpaceCenter.WarpMode

warp_rate
The current warp rate. This is the rate at which time is passing for either on-rails or physical time warp. For
example, a value of 10 means time is passing 10x faster than normal. Returns 1 if time warp is not active.

Attribute Read-only, cannot be set

Return type number

warp_factor
The current warp factor. This is the index of the rate at which time is passing for either regular “on-
rails” or physical time warp. Returns 0 if time warp is not active. When in on-rails time warp,
this is equal to SpaceCenter.rails_warp_factor, and in physics time warp, this is equal to
SpaceCenter.physics_warp_factor.

Attribute Read-only, cannot be set

Return type number

rails_warp_factor
The time warp rate, using regular “on-rails” time warp. A value between 0 and 7 inclusive. 0 means no time
warp. Returns 0 if physical time warp is active. If requested time warp factor cannot be set, it will be set to the
next lowest possible value. For example, if the vessel is too close to a planet. See the KSP wiki for details.

Attribute Can be read or written

Return type number

physics_warp_factor
The physical time warp rate. A value between 0 and 3 inclusive. 0 means no time warp. Returns 0 if regular
“on-rails” time warp is active.

Attribute Can be read or written

Return type number

static can_rails_warp_at([factor = 1])
Returns True if regular “on-rails” time warp can be used, at the specified warp factor. The maximum time
warp rate is limited by various things, including how close the active vessel is to a planet. See the KSP wiki for
details.

Parameters factor (number) – The warp factor to check.

Return type boolean

316 Chapter 6. Lua

https://en.wikipedia.org/wiki/Gravitational_constant
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.3.5

maximum_rails_warp_factor
The current maximum regular “on-rails” warp factor that can be set. A value between 0 and 7 inclusive. See the
KSP wiki for details.

Attribute Read-only, cannot be set

Return type number

static warp_to(ut[, max_rails_rate = 100000.0][, max_physics_rate = 2.0])
Uses time acceleration to warp forward to a time in the future, specified by universal time ut. This call blocks
until the desired time is reached. Uses regular “on-rails” or physical time warp as appropriate. For example,
physical time warp is used when the active vessel is traveling through an atmosphere. When using regular “on-
rails” time warp, the warp rate is limited by max_rails_rate, and when using physical time warp, the warp rate
is limited by max_physics_rate.

Parameters

• ut (number) – The universal time to warp to, in seconds.

• max_rails_rate (number) – The maximum warp rate in regular “on-rails” time warp.

• max_physics_rate (number) – The maximum warp rate in physical time warp.

Returns When the time warp is complete.

static transform_position(position, from, to)
Converts a position vector from one reference frame to another.

Parameters

• position (Tuple) – Position vector in reference frame from.

• from (SpaceCenter.ReferenceFrame) – The reference frame that the position vec-
tor is in.

• to (SpaceCenter.ReferenceFrame) – The reference frame to covert the position
vector to.

Returns The corresponding position vector in reference frame to.

Return type Tuple of (number, number, number)

static transform_direction(direction, from, to)
Converts a direction vector from one reference frame to another.

Parameters

• direction (Tuple) – Direction vector in reference frame from.

• from (SpaceCenter.ReferenceFrame) – The reference frame that the direction vec-
tor is in.

• to (SpaceCenter.ReferenceFrame) – The reference frame to covert the direction
vector to.

Returns The corresponding direction vector in reference frame to.

Return type Tuple of (number, number, number)

static transform_rotation(rotation, from, to)
Converts a rotation from one reference frame to another.

Parameters

• rotation (Tuple) – Rotation in reference frame from.

• from (SpaceCenter.ReferenceFrame) – The reference frame that the rotation is in.

6.3. SpaceCenter API 317

http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.3.5

• to (SpaceCenter.ReferenceFrame) – The corresponding rotation in reference
frame to.

Returns The corresponding rotation in reference frame to.

Return type Tuple of (number, number, number, number)

static transform_velocity(position, velocity, from, to)
Converts a velocity vector (acting at the specified position vector) from one reference frame to another. The
position vector is required to take the relative angular velocity of the reference frames into account.

Parameters

• position (Tuple) – Position vector in reference frame from.

• velocity (Tuple) – Velocity vector in reference frame from.

• from (SpaceCenter.ReferenceFrame) – The reference frame that the position and
velocity vectors are in.

• to (SpaceCenter.ReferenceFrame) – The reference frame to covert the velocity
vector to.

Returns The corresponding velocity in reference frame to.

Return type Tuple of (number, number, number)

far_available
Whether Ferram Aerospace Research is installed.

Attribute Read-only, cannot be set

Return type boolean

class WarpMode
The time warp mode. Returned by SpaceCenter.WarpMode

rails
Time warp is active, and in regular “on-rails” mode.

physics
Time warp is active, and in physical time warp mode.

none
Time warp is not active.

6.3.2 Vessel

class Vessel
These objects are used to interact with vessels in KSP. This includes getting orbital and flight data, ma-
nipulating control inputs and managing resources. Created using SpaceCenter.active_vessel or
SpaceCenter.vessels.

name
The name of the vessel.

Attribute Can be read or written

Return type string

type
The type of the vessel.

Attribute Can be read or written

318 Chapter 6. Lua

http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

Return type SpaceCenter.VesselType

situation
The situation the vessel is in.

Attribute Read-only, cannot be set

Return type SpaceCenter.VesselSituation

recoverable
Whether the vessel is recoverable.

Attribute Read-only, cannot be set

Return type boolean

recover()
Recover the vessel.

met
The mission elapsed time in seconds.

Attribute Read-only, cannot be set

Return type number

flight([reference_frame = None])
Returns a SpaceCenter.Flight object that can be used to get flight telemetry for the vessel, in the
specified reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –
Reference frame. Defaults to the vessel’s surface reference frame
(SpaceCenter.Vessel.surface_reference_frame).

Return type SpaceCenter.Flight

Note: When this is called with no arguments, the vessel’s surface reference frame is used. This reference
frame moves with the vessel, therefore velocities and speeds returned by the flight object will be zero. See
the reference frames tutorial for examples of getting the orbital speed and surface speed of a vessel.

orbit
The current orbit of the vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Orbit

control
Returns a SpaceCenter.Control object that can be used to manipulate the vessel’s control inputs.
For example, its pitch/yaw/roll controls, RCS and thrust.

Attribute Read-only, cannot be set

Return type SpaceCenter.Control

auto_pilot
An SpaceCenter.AutoPilot object, that can be used to perform simple auto-piloting of the vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.AutoPilot

6.3. SpaceCenter API 319

kRPC, Release 0.3.5

resources
A SpaceCenter.Resources object, that can used to get information about resources stored in the
vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Resources

resources_in_decouple_stage(stage[, cumulative = True])
Returns a SpaceCenter.Resources object, that can used to get information about resources stored
in a given stage.

Parameters

• stage (number) – Get resources for parts that are decoupled in this stage.

• cumulative (boolean) – When False, returns the resources for parts decoupled in
just the given stage. When True returns the resources decoupled in the given stage and
all subsequent stages combined.

Return type SpaceCenter.Resources

Note: For details on stage numbering, see the discussion on Staging.

parts
A SpaceCenter.Parts object, that can used to interact with the parts that make up this vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Parts

mass
The total mass of the vessel, including resources, in kg.

Attribute Read-only, cannot be set

Return type number

dry_mass
The total mass of the vessel, excluding resources, in kg.

Attribute Read-only, cannot be set

Return type number

thrust
The total thrust currently being produced by the vessel’s engines, in Newtons. This is computed by sum-
ming SpaceCenter.Engine.thrust for every engine in the vessel.

Attribute Read-only, cannot be set

Return type number

available_thrust
Gets the total available thrust that can be produced by the vessel’s active engines, in Newtons. This is
computed by summing SpaceCenter.Engine.available_thrust for every active engine in the
vessel.

Attribute Read-only, cannot be set

Return type number

320 Chapter 6. Lua

kRPC, Release 0.3.5

max_thrust
The total maximum thrust that can be produced by the vessel’s active engines, in Newtons. This is com-
puted by summing SpaceCenter.Engine.max_thrust for every active engine.

Attribute Read-only, cannot be set

Return type number

max_vacuum_thrust
The total maximum thrust that can be produced by the vessel’s active engines when the vessel is in a vac-
uum, in Newtons. This is computed by summing SpaceCenter.Engine.max_vacuum_thrust
for every active engine.

Attribute Read-only, cannot be set

Return type number

specific_impulse
The combined specific impulse of all active engines, in seconds. This is computed using the formula
described here.

Attribute Read-only, cannot be set

Return type number

vacuum_specific_impulse
The combined vacuum specific impulse of all active engines, in seconds. This is computed using the
formula described here.

Attribute Read-only, cannot be set

Return type number

kerbin_sea_level_specific_impulse
The combined specific impulse of all active engines at sea level on Kerbin, in seconds. This is computed
using the formula described here.

Attribute Read-only, cannot be set

Return type number

moment_of_inertia
The moment of inertia of the vessel around its center of mass in 𝑘𝑔.𝑚2. The inertia values are
around the pitch, roll and yaw directions respectively. This corresponds to the vessels reference frame
(SpaceCenter.Vessel.reference_frame).

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

inertia_tensor
The inertia tensor of the vessel around its center of mass, in the vessels reference frame
(SpaceCenter.Vessel.reference_frame). Returns the 3x3 matrix as a list of elements, in row-
major order.

Attribute Read-only, cannot be set

Return type List of number

available_torque
The maximum torque that the vessel generate. Includes contributions from reaction wheels, RCS, gim-
balled engines and aerodynamic control surfaces. Returns the torques in 𝑁.𝑚 around each of the coordi-
nate axes of the vessels reference frame (SpaceCenter.Vessel.reference_frame). These axes
are equivalent to the pitch, roll and yaw axes of the vessel.

6.3. SpaceCenter API 321

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

available_reaction_wheel_torque
The maximum torque that the currently active and powered reaction wheels can generate. Re-
turns the torques in 𝑁.𝑚 around each of the coordinate axes of the vessels reference frame
(SpaceCenter.Vessel.reference_frame). These axes are equivalent to the pitch, roll and yaw
axes of the vessel.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

available_rcs_torque
The maximum torque that the currently active RCS thrusters can generate. Returns
the torques in 𝑁.𝑚 around each of the coordinate axes of the vessels reference frame
(SpaceCenter.Vessel.reference_frame). These axes are equivalent to the pitch, roll
and yaw axes of the vessel.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

available_engine_torque
The maximum torque that the currently active and gimballed engines can generate. Re-
turns the torques in 𝑁.𝑚 around each of the coordinate axes of the vessels reference frame
(SpaceCenter.Vessel.reference_frame). These axes are equivalent to the pitch, roll and yaw
axes of the vessel.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

available_control_surface_torque
The maximum torque that the aerodynamic control surfaces can generate. Returns the
torques in 𝑁.𝑚 around each of the coordinate axes of the vessels reference frame
(SpaceCenter.Vessel.reference_frame). These axes are equivalent to the pitch, roll
and yaw axes of the vessel.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the vessel.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel.

•The x-axis points out to the right of the vessel.

•The y-axis points in the forward direction of the vessel.

•The z-axis points out of the bottom off the vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

orbital_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the vessels orbital pro-
grade/normal/radial directions.

322 Chapter 6. Lua

kRPC, Release 0.3.5

Fig. 6.1: Vessel reference frame origin and axes for the Aeris 3A aircraft

•The origin is at the center of mass of the vessel.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

Note: Be careful not to confuse this with ‘orbit’ mode on the navball.

surface_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the surface of the body being
orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the north and up directions on the surface of the body.

•The x-axis points in the zenith direction (upwards, normal to the body being orbited, from the center
of the body towards the center of mass of the vessel).

•The y-axis points northwards towards the astronomical horizon (north, and tangential to the surface
of the body – the direction in which a compass would point when on the surface).

•The z-axis points eastwards towards the astronomical horizon (east, and tangential to the surface of
the body – east on a compass when on the surface).

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

6.3. SpaceCenter API 323

https://en.wikipedia.org/wiki/Zenith
https://en.wikipedia.org/wiki/Horizon
https://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.3.5

Fig. 6.2: Vessel reference frame origin and axes for the Kerbal-X rocket

324 Chapter 6. Lua

kRPC, Release 0.3.5

Fig. 6.3: Vessel orbital reference frame origin and axes

Note: Be careful not to confuse this with ‘surface’ mode on the navball.

surface_velocity_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the velocity vector of the vessel
relative to the surface of the body being orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel’s velocity vector.

•The y-axis points in the direction of the vessel’s velocity vector, relative to the surface of the body
being orbited.

•The z-axis is in the plane of the astronomical horizon.

•The x-axis is orthogonal to the other two axes.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

position(reference_frame)
Returns the position vector of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

velocity(reference_frame)
Returns the velocity vector of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

6.3. SpaceCenter API 325

https://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.3.5

Fig. 6.4: Vessel surface reference frame origin and axes

Fig. 6.5: Vessel surface velocity reference frame origin and axes

326 Chapter 6. Lua

kRPC, Release 0.3.5

rotation(reference_frame)
Returns the rotation of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number, number)

direction(reference_frame)
Returns the direction in which the vessel is pointing, as a unit vector, in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

angular_velocity(reference_frame)
Returns the angular velocity of the vessel in the given reference frame. The magnitude of the returned
vector is the rotational speed in radians per second, and the direction of the vector indicates the axis of
rotation (using the right hand rule).

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

class VesselType
The type of a vessel. See SpaceCenter.Vessel.type.

ship
Ship.

station
Station.

lander
Lander.

probe
Probe.

rover
Rover.

base
Base.

debris
Debris.

class VesselSituation
The situation a vessel is in. See SpaceCenter.Vessel.situation.

docked
Vessel is docked to another.

escaping
Escaping.

flying
Vessel is flying through an atmosphere.

landed
Vessel is landed on the surface of a body.

orbiting
Vessel is orbiting a body.

6.3. SpaceCenter API 327

kRPC, Release 0.3.5

pre_launch
Vessel is awaiting launch.

splashed
Vessel has splashed down in an ocean.

sub_orbital
Vessel is on a sub-orbital trajectory.

6.3.3 CelestialBody

class CelestialBody
Represents a celestial body (such as a planet or moon). See SpaceCenter.bodies.

name
The name of the body.

Attribute Read-only, cannot be set

Return type string

satellites
A list of celestial bodies that are in orbit around this celestial body.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.CelestialBody

orbit
The orbit of the body.

Attribute Read-only, cannot be set

Return type SpaceCenter.Orbit

mass
The mass of the body, in kilograms.

Attribute Read-only, cannot be set

Return type number

gravitational_parameter
The standard gravitational parameter of the body in 𝑚3𝑠−2.

Attribute Read-only, cannot be set

Return type number

surface_gravity
The acceleration due to gravity at sea level (mean altitude) on the body, in 𝑚/𝑠2.

Attribute Read-only, cannot be set

Return type number

rotational_period
The sidereal rotational period of the body, in seconds.

Attribute Read-only, cannot be set

Return type number

rotational_speed
The rotational speed of the body, in radians per second.

328 Chapter 6. Lua

https://en.wikipedia.org/wiki/Standard_gravitational_parameter

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type number

equatorial_radius
The equatorial radius of the body, in meters.

Attribute Read-only, cannot be set

Return type number

surface_height(latitude, longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water this
is equal to 0.

Parameters

• latitude (number) – Latitude in degrees

• longitude (number) – Longitude in degrees

Return type number

bedrock_height(latitude, longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water, this
is the height of the sea-bed and is therefore a negative value.

Parameters

• latitude (number) – Latitude in degrees

• longitude (number) – Longitude in degrees

Return type number

msl_position(latitude, longitude, reference_frame)
The position at mean sea level at the given latitude and longitude, in the given reference frame.

Parameters

• latitude (number) – Latitude in degrees

• longitude (number) – Longitude in degrees

• reference_frame (SpaceCenter.ReferenceFrame) – Reference frame for the
returned position vector

Return type Tuple of (number, number, number)

surface_position(latitude, longitude, reference_frame)
The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position of the surface of the water.

Parameters

• latitude (number) – Latitude in degrees

• longitude (number) – Longitude in degrees

• reference_frame (SpaceCenter.ReferenceFrame) – Reference frame for the
returned position vector

Return type Tuple of (number, number, number)

bedrock_position(latitude, longitude, reference_frame)
The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position at the bottom of the sea-bed.

6.3. SpaceCenter API 329

kRPC, Release 0.3.5

Parameters

• latitude (number) – Latitude in degrees

• longitude (number) – Longitude in degrees

• reference_frame (SpaceCenter.ReferenceFrame) – Reference frame for the
returned position vector

Return type Tuple of (number, number, number)

sphere_of_influence
The radius of the sphere of influence of the body, in meters.

Attribute Read-only, cannot be set

Return type number

has_atmosphere
True if the body has an atmosphere.

Attribute Read-only, cannot be set

Return type boolean

atmosphere_depth
The depth of the atmosphere, in meters.

Attribute Read-only, cannot be set

Return type number

has_atmospheric_oxygen
True if there is oxygen in the atmosphere, required for air-breathing engines.

Attribute Read-only, cannot be set

Return type boolean

reference_frame
The reference frame that is fixed relative to the celestial body.

•The origin is at the center of the body.

•The axes rotate with the body.

•The x-axis points from the center of the body towards the intersection of the prime meridian and
equator (the position at 0° longitude, 0° latitude).

•The y-axis points from the center of the body towards the north pole.

•The z-axis points from the center of the body towards the equator at 90°E longitude.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

non_rotating_reference_frame
The reference frame that is fixed relative to this celestial body, and orientated in a fixed direction (it does
not rotate with the body).

•The origin is at the center of the body.

•The axes do not rotate.

•The x-axis points in an arbitrary direction through the equator.

330 Chapter 6. Lua

kRPC, Release 0.3.5

Fig. 6.6: Celestial body reference frame origin and axes. The equator is shown in blue, and the prime meridian in red.

•The y-axis points from the center of the body towards the north pole.

•The z-axis points in an arbitrary direction through the equator.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

orbital_reference_frame
Gets the reference frame that is fixed relative to this celestial body, but orientated with the body’s orbital
prograde/normal/radial directions.

•The origin is at the center of the body.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

position(reference_frame)
Returns the position vector of the center of the body in the specified reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

velocity(reference_frame)
Returns the velocity vector of the body in the specified reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

6.3. SpaceCenter API 331

kRPC, Release 0.3.5

Return type Tuple of (number, number, number)

rotation(reference_frame)
Returns the rotation of the body in the specified reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number, number)

direction(reference_frame)
Returns the direction in which the north pole of the celestial body is pointing, as a unit vector, in the
specified reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

angular_velocity(reference_frame)
Returns the angular velocity of the body in the specified reference frame. The magnitude of the vector is
the rotational speed of the body, in radians per second, and the direction of the vector indicates the axis of
rotation, using the right-hand rule.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

6.3.4 Flight

class Flight
Used to get flight telemetry for a vessel, by calling SpaceCenter.Vessel.flight(). All of the in-
formation returned by this class is given in the reference frame passed to that method. Obtained by calling
SpaceCenter.Vessel.flight().

Note: To get orbital information, such as the apoapsis or inclination, see SpaceCenter.Orbit.

g_force
The current G force acting on the vessel in 𝑚/𝑠2.

Attribute Read-only, cannot be set

Return type number

mean_altitude
The altitude above sea level, in meters. Measured from the center of mass of the vessel.

Attribute Read-only, cannot be set

Return type number

surface_altitude
The altitude above the surface of the body or sea level, whichever is closer, in meters. Measured from the
center of mass of the vessel.

Attribute Read-only, cannot be set

Return type number

bedrock_altitude
The altitude above the surface of the body, in meters. When over water, this is the altitude above the sea
floor. Measured from the center of mass of the vessel.

Attribute Read-only, cannot be set

332 Chapter 6. Lua

kRPC, Release 0.3.5

Return type number

elevation
The elevation of the terrain under the vessel, in meters. This is the height of the terrain above sea level,
and is negative when the vessel is over the sea.

Attribute Read-only, cannot be set

Return type number

latitude
The latitude of the vessel for the body being orbited, in degrees.

Attribute Read-only, cannot be set

Return type number

longitude
The longitude of the vessel for the body being orbited, in degrees.

Attribute Read-only, cannot be set

Return type number

velocity
The velocity vector of the vessel. The magnitude of the vector is the speed of the vessel in meters per
second. The direction of the vector is the direction of the vessels motion.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

speed
The speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type number

horizontal_speed
The horizontal speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type number

vertical_speed
The vertical speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type number

center_of_mass
The position of the center of mass of the vessel.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

rotation
The rotation of the vessel.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number, number)

6.3. SpaceCenter API 333

https://en.wikipedia.org/wiki/Latitude
https://en.wikipedia.org/wiki/Longitude

kRPC, Release 0.3.5

direction
The direction vector that the vessel is pointing in.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

pitch
The pitch angle of the vessel relative to the horizon, in degrees. A value between -90° and +90°.

Attribute Read-only, cannot be set

Return type number

heading
The heading angle of the vessel relative to north, in degrees. A value between 0° and 360°.

Attribute Read-only, cannot be set

Return type number

roll
The roll angle of the vessel relative to the horizon, in degrees. A value between -180° and +180°.

Attribute Read-only, cannot be set

Return type number

prograde
The unit direction vector pointing in the prograde direction.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

retrograde
The unit direction vector pointing in the retrograde direction.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

normal
The unit direction vector pointing in the normal direction.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

anti_normal
The unit direction vector pointing in the anti-normal direction.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

radial
The unit direction vector pointing in the radial direction.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

anti_radial
The unit direction vector pointing in the anti-radial direction.

Attribute Read-only, cannot be set

334 Chapter 6. Lua

kRPC, Release 0.3.5

Return type Tuple of (number, number, number)

atmosphere_density
The current density of the atmosphere around the vessel, in 𝑘𝑔/𝑚3.

Attribute Read-only, cannot be set

Return type number

dynamic_pressure
The dynamic pressure acting on the vessel, in Pascals. This is a measure of the strength of the aerodynamic
forces. It is equal to 1

2 .air density.velocity2. It is commonly denoted as 𝑄.

Attribute Read-only, cannot be set

Return type number

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

static_pressure
The static atmospheric pressure acting on the vessel, in Pascals.

Attribute Read-only, cannot be set

Return type number

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

aerodynamic_force
The total aerodynamic forces acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

lift
The aerodynamic lift currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

drag
The aerodynamic drag currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

6.3. SpaceCenter API 335

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Aerodynamic_force

kRPC, Release 0.3.5

Return type Tuple of (number, number, number)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

speed_of_sound
The speed of sound, in the atmosphere around the vessel, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type number

Note: Not available when Ferram Aerospace Research is installed.

mach
The speed of the vessel, in multiples of the speed of sound.

Attribute Read-only, cannot be set

Return type number

Note: Not available when Ferram Aerospace Research is installed.

equivalent_air_speed
The equivalent air speed of the vessel, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type number

Note: Not available when Ferram Aerospace Research is installed.

terminal_velocity
An estimate of the current terminal velocity of the vessel, in 𝑚/𝑠. This is the speed at which the drag
forces cancel out the force of gravity.

Attribute Read-only, cannot be set

Return type number

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

angle_of_attack
Gets the pitch angle between the orientation of the vessel and its velocity vector, in degrees.

Attribute Read-only, cannot be set

Return type number

sideslip_angle
Gets the yaw angle between the orientation of the vessel and its velocity vector, in degrees.

Attribute Read-only, cannot be set

Return type number

336 Chapter 6. Lua

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Equivalent_airspeed
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

total_air_temperature
The total air temperature of the atmosphere around the vessel, in Kelvin. This temperature includes the
SpaceCenter.Flight.static_air_temperature and the vessel’s kinetic energy.

Attribute Read-only, cannot be set

Return type number

static_air_temperature
The static (ambient) temperature of the atmosphere around the vessel, in Kelvin.

Attribute Read-only, cannot be set

Return type number

stall_fraction
Gets the current amount of stall, between 0 and 1. A value greater than 0.005 indicates a minor stall and a
value greater than 0.5 indicates a large-scale stall.

Attribute Read-only, cannot be set

Return type number

Note: Requires Ferram Aerospace Research.

drag_coefficient
Gets the coefficient of drag. This is the amount of drag produced by the vessel. It depends on air speed,
air density and wing area.

Attribute Read-only, cannot be set

Return type number

Note: Requires Ferram Aerospace Research.

lift_coefficient
Gets the coefficient of lift. This is the amount of lift produced by the vessel, and depends on air speed, air
density and wing area.

Attribute Read-only, cannot be set

Return type number

Note: Requires Ferram Aerospace Research.

ballistic_coefficient
Gets the ballistic coefficient.

Attribute Read-only, cannot be set

Return type number

Note: Requires Ferram Aerospace Research.

thrust_specific_fuel_consumption
Gets the thrust specific fuel consumption for the jet engines on the vessel. This is a measure of the

6.3. SpaceCenter API 337

https://en.wikipedia.org/wiki/Total_air_temperature
https://en.wikipedia.org/wiki/Total_air_temperature
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Ballistic_coefficient
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

efficiency of the engines, with a lower value indicating a more efficient vessel. This value is the number of
Newtons of fuel that are burned, per hour, to product one newton of thrust.

Attribute Read-only, cannot be set

Return type number

Note: Requires Ferram Aerospace Research.

6.3.5 Orbit

class Orbit
Describes an orbit. For example, the orbit of a vessel, obtained by calling SpaceCenter.Vessel.orbit,
or a celestial body, obtained by calling SpaceCenter.CelestialBody.orbit.

body
The celestial body (e.g. planet or moon) around which the object is orbiting.

Attribute Read-only, cannot be set

Return type SpaceCenter.CelestialBody

apoapsis
Gets the apoapsis of the orbit, in meters, from the center of mass of the body being orbited.

Attribute Read-only, cannot be set

Return type number

Note: For the apoapsis altitude reported on the in-game map view, use
SpaceCenter.Orbit.apoapsis_altitude.

periapsis
The periapsis of the orbit, in meters, from the center of mass of the body being orbited.

Attribute Read-only, cannot be set

Return type number

Note: For the periapsis altitude reported on the in-game map view, use
SpaceCenter.Orbit.periapsis_altitude.

apoapsis_altitude
The apoapsis of the orbit, in meters, above the sea level of the body being orbited.

Attribute Read-only, cannot be set

Return type number

Note: This is equal to SpaceCenter.Orbit.apoapsis minus the equatorial radius of the body.

periapsis_altitude
The periapsis of the orbit, in meters, above the sea level of the body being orbited.

Attribute Read-only, cannot be set

338 Chapter 6. Lua

http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

Return type number

Note: This is equal to SpaceCenter.Orbit.periapsis minus the equatorial radius of the body.

semi_major_axis
The semi-major axis of the orbit, in meters.

Attribute Read-only, cannot be set

Return type number

semi_minor_axis
The semi-minor axis of the orbit, in meters.

Attribute Read-only, cannot be set

Return type number

radius
The current radius of the orbit, in meters. This is the distance between the center of mass of the object in
orbit, and the center of mass of the body around which it is orbiting.

Attribute Read-only, cannot be set

Return type number

Note: This value will change over time if the orbit is elliptical.

speed
The current orbital speed of the object in meters per second.

Attribute Read-only, cannot be set

Return type number

Note: This value will change over time if the orbit is elliptical.

period
The orbital period, in seconds.

Attribute Read-only, cannot be set

Return type number

time_to_apoapsis
The time until the object reaches apoapsis, in seconds.

Attribute Read-only, cannot be set

Return type number

time_to_periapsis
The time until the object reaches periapsis, in seconds.

Attribute Read-only, cannot be set

Return type number

eccentricity
The eccentricity of the orbit.

6.3. SpaceCenter API 339

https://en.wikipedia.org/wiki/Orbital_eccentricity

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type number

inclination
The inclination of the orbit, in radians.

Attribute Read-only, cannot be set

Return type number

longitude_of_ascending_node
The longitude of the ascending node, in radians.

Attribute Read-only, cannot be set

Return type number

argument_of_periapsis
The argument of periapsis, in radians.

Attribute Read-only, cannot be set

Return type number

mean_anomaly_at_epoch
The mean anomaly at epoch.

Attribute Read-only, cannot be set

Return type number

epoch
The time since the epoch (the point at which the mean anomaly at epoch was measured, in seconds.

Attribute Read-only, cannot be set

Return type number

mean_anomaly
The mean anomaly.

Attribute Read-only, cannot be set

Return type number

eccentric_anomaly
The eccentric anomaly.

Attribute Read-only, cannot be set

Return type number

static reference_plane_normal(reference_frame)
The unit direction vector that is normal to the orbits reference plane, in the given reference frame. The
reference plane is the plane from which the orbits inclination is measured.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

static reference_plane_direction(reference_frame)
The unit direction vector from which the orbits longitude of ascending node is measured, in the given
reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

340 Chapter 6. Lua

https://en.wikipedia.org/wiki/Orbital_inclination
https://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
https://en.wikipedia.org/wiki/Argument_of_periapsis
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Eccentric_anomaly

kRPC, Release 0.3.5

time_to_soi_change
The time until the object changes sphere of influence, in seconds. Returns NaN if the object is not going
to change sphere of influence.

Attribute Read-only, cannot be set

Return type number

next_orbit
If the object is going to change sphere of influence in the future, returns the new orbit after the change.
Otherwise returns nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Orbit

6.3.6 Control

class Control
Used to manipulate the controls of a vessel. This includes adjusting the throttle, enabling/disabling sys-
tems such as SAS and RCS, or altering the direction in which the vessel is pointing. Obtained by calling
SpaceCenter.Vessel.control.

Note: Control inputs (such as pitch, yaw and roll) are zeroed when all clients that have set one or more of these
inputs are no longer connected.

sas
The state of SAS.

Attribute Can be read or written

Return type boolean

Note: Equivalent to SpaceCenter.AutoPilot.sas

sas_mode
The current SpaceCenter.SASMode. These modes are equivalent to the mode buttons to the left of
the navball that appear when SAS is enabled.

Attribute Can be read or written

Return type SpaceCenter.SASMode

Note: Equivalent to SpaceCenter.AutoPilot.sas_mode

speed_mode
The current SpaceCenter.SpeedMode of the navball. This is the mode displayed next to the speed at
the top of the navball.

Attribute Can be read or written

Return type SpaceCenter.SpeedMode

rcs
The state of RCS.

Attribute Can be read or written

6.3. SpaceCenter API 341

kRPC, Release 0.3.5

Return type boolean

gear
The state of the landing gear/legs.

Attribute Can be read or written

Return type boolean

lights
The state of the lights.

Attribute Can be read or written

Return type boolean

brakes
The state of the wheel brakes.

Attribute Can be read or written

Return type boolean

abort
The state of the abort action group.

Attribute Can be read or written

Return type boolean

throttle
The state of the throttle. A value between 0 and 1.

Attribute Can be read or written

Return type number

pitch
The state of the pitch control. A value between -1 and 1. Equivalent to the w and s keys.

Attribute Can be read or written

Return type number

yaw
The state of the yaw control. A value between -1 and 1. Equivalent to the a and d keys.

Attribute Can be read or written

Return type number

roll
The state of the roll control. A value between -1 and 1. Equivalent to the q and e keys.

Attribute Can be read or written

Return type number

forward
The state of the forward translational control. A value between -1 and 1. Equivalent to the h and n keys.

Attribute Can be read or written

Return type number

up
The state of the up translational control. A value between -1 and 1. Equivalent to the i and k keys.

342 Chapter 6. Lua

kRPC, Release 0.3.5

Attribute Can be read or written

Return type number

right
The state of the right translational control. A value between -1 and 1. Equivalent to the j and l keys.

Attribute Can be read or written

Return type number

wheel_throttle
The state of the wheel throttle. A value between -1 and 1. A value of 1 rotates the wheels forwards, a value
of -1 rotates the wheels backwards.

Attribute Can be read or written

Return type number

wheel_steering
The state of the wheel steering. A value between -1 and 1. A value of 1 steers to the left, and a value of -1
steers to the right.

Attribute Can be read or written

Return type number

current_stage
The current stage of the vessel. Corresponds to the stage number in the in-game UI.

Attribute Read-only, cannot be set

Return type number

activate_next_stage()
Activates the next stage. Equivalent to pressing the space bar in-game.

Returns A list of vessel objects that are jettisoned from the active vessel.

Return type List of SpaceCenter.Vessel

get_action_group(group)
Returns True if the given action group is enabled.

Parameters group (number) – A number between 0 and 9 inclusive.

Return type boolean

set_action_group(group, state)
Sets the state of the given action group (a value between 0 and 9 inclusive).

Parameters

• group (number) – A number between 0 and 9 inclusive.

• state (boolean) –

toggle_action_group(group)
Toggles the state of the given action group.

Parameters group (number) – A number between 0 and 9 inclusive.

add_node(ut[, prograde = 0.0][, normal = 0.0][, radial = 0.0])
Creates a maneuver node at the given universal time, and returns a SpaceCenter.Node object that can
be used to modify it. Optionally sets the magnitude of the delta-v for the maneuver node in the prograde,
normal and radial directions.

6.3. SpaceCenter API 343

kRPC, Release 0.3.5

Parameters

• ut (number) – Universal time of the maneuver node.

• prograde (number) – Delta-v in the prograde direction.

• normal (number) – Delta-v in the normal direction.

• radial (number) – Delta-v in the radial direction.

Return type SpaceCenter.Node

nodes
Returns a list of all existing maneuver nodes, ordered by time from first to last.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Node

remove_nodes()
Remove all maneuver nodes.

class SASMode
The behavior of the SAS auto-pilot. See SpaceCenter.AutoPilot.sas_mode.

stability_assist
Stability assist mode. Dampen out any rotation.

maneuver
Point in the burn direction of the next maneuver node.

prograde
Point in the prograde direction.

retrograde
Point in the retrograde direction.

normal
Point in the orbit normal direction.

anti_normal
Point in the orbit anti-normal direction.

radial
Point in the orbit radial direction.

anti_radial
Point in the orbit anti-radial direction.

target
Point in the direction of the current target.

anti_target
Point away from the current target.

class SpeedMode
The mode of the speed reported in the navball. See SpaceCenter.Control.speed_mode.

orbit
Speed is relative to the vessel’s orbit.

surface
Speed is relative to the surface of the body being orbited.

target
Speed is relative to the current target.

344 Chapter 6. Lua

kRPC, Release 0.3.5

6.3.7 Parts

The following classes allow interaction with a vessels individual parts.

• Parts
• Part
• Module
• Specific Types of Part

– Cargo Bay
– Control Surface
– Decoupler
– Docking Port
– Engine
– Experiment
– Fairing
– Intake
– Landing Gear
– Landing Leg
– Launch Clamp
– Light
– Parachute
– Radiator
– Resource Converter
– Resource Harvester
– Reaction Wheel
– RCS
– Sensor
– Solar Panel
– Thruster

• Trees of Parts
– Traversing the Tree
– Attachment Modes

• Fuel Lines
• Staging

Parts

class Parts
Instances of this class are used to interact with the parts of a vessel. An instance can be obtained by calling
SpaceCenter.Vessel.parts.

all
A list of all of the vessels parts.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Part

root
The vessels root part.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

6.3. SpaceCenter API 345

kRPC, Release 0.3.5

Note: See the discussion on Trees of Parts.

controlling
The part from which the vessel is controlled.

Attribute Can be read or written

Return type SpaceCenter.Part

with_name(name)
A list of parts whose SpaceCenter.Part.name is name.

Parameters name (string) –

Return type List of SpaceCenter.Part

with_title(title)
A list of all parts whose SpaceCenter.Part.title is title.

Parameters title (string) –

Return type List of SpaceCenter.Part

with_module(module_name)
A list of all parts that contain a SpaceCenter.Module whose SpaceCenter.Module.name is
module_name.

Parameters module_name (string) –

Return type List of SpaceCenter.Part

in_stage(stage)
A list of all parts that are activated in the given stage.

Parameters stage (number) –

Return type List of SpaceCenter.Part

Note: See the discussion on Staging.

in_decouple_stage(stage)
A list of all parts that are decoupled in the given stage.

Parameters stage (number) –

Return type List of SpaceCenter.Part

Note: See the discussion on Staging.

modules_with_name(module_name)
A list of modules (combined across all parts in the vessel) whose SpaceCenter.Module.name is
module_name.

Parameters module_name (string) –

Return type List of SpaceCenter.Module

cargo_bays
A list of all cargo bays in the vessel.

346 Chapter 6. Lua

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type List of SpaceCenter.CargoBay

control_surfaces
A list of all control surfaces in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.ControlSurface

decouplers
A list of all decouplers in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Decoupler

docking_ports
A list of all docking ports in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.DockingPort

docking_port_with_name(name)
The first docking port in the vessel with the given port name, as returned by
SpaceCenter.DockingPort.name. Returns nil if there are no such docking ports.

Parameters name (string) –

Return type SpaceCenter.DockingPort

engines
A list of all engines in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Engine

Note: This includes any part that generates thrust. This covers many different types of engine, including
liquid fuel rockets, solid rocket boosters, jet engines and RCS thrusters.

experiments
A list of all science experiments in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Experiment

fairings
A list of all fairings in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Fairing

intakes
A list of all intakes in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Intake

6.3. SpaceCenter API 347

kRPC, Release 0.3.5

landing_gear
A list of all landing gear attached to the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.LandingGear

landing_legs
A list of all landing legs attached to the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.LandingLeg

launch_clamps
A list of all launch clamps attached to the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.LaunchClamp

lights
A list of all lights in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Light

parachutes
A list of all parachutes in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Parachute

radiators
A list of all radiators in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Radiator

rcs
A list of all RCS blocks/thrusters in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.RCS

reaction_wheels
A list of all reaction wheels in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.ReactionWheel

resource_converters
A list of all resource converters in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.ResourceConverter

resource_harvesters
A list of all resource harvesters in the vessel.

Attribute Read-only, cannot be set

348 Chapter 6. Lua

kRPC, Release 0.3.5

Return type List of SpaceCenter.ResourceHarvester

sensors
A list of all sensors in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Sensor

solar_panels
A list of all solar panels in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.SolarPanel

Part

class Part
Represents an individual part. Vessels are made up of multiple parts. Instances of this class can be obtained by
several methods in SpaceCenter.Parts.

name
Internal name of the part, as used in part cfg files. For example “Mark1-2Pod”.

Attribute Read-only, cannot be set

Return type string

title
Title of the part, as shown when the part is right clicked in-game. For example “Mk1-2 Command Pod”.

Attribute Read-only, cannot be set

Return type string

cost
The cost of the part, in units of funds.

Attribute Read-only, cannot be set

Return type number

vessel
The vessel that contains this part.

Attribute Read-only, cannot be set

Return type SpaceCenter.Vessel

parent
The parts parent. Returns nil if the part does not have a parent. This, in combination with
SpaceCenter.Part.children, can be used to traverse the vessels parts tree.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

Note: See the discussion on Trees of Parts.

children
The parts children. Returns an empty list if the part has no children. This, in combination with
SpaceCenter.Part.parent, can be used to traverse the vessels parts tree.

6.3. SpaceCenter API 349

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Part

Note: See the discussion on Trees of Parts.

axially_attached
Whether the part is axially attached to its parent, i.e. on the top or bottom of its parent. If the part has no
parent, returns False.

Attribute Read-only, cannot be set

Return type boolean

Note: See the discussion on Attachment Modes.

radially_attached
Whether the part is radially attached to its parent, i.e. on the side of its parent. If the part has no parent,
returns False.

Attribute Read-only, cannot be set

Return type boolean

Note: See the discussion on Attachment Modes.

stage
The stage in which this part will be activated. Returns -1 if the part is not activated by staging.

Attribute Read-only, cannot be set

Return type number

Note: See the discussion on Staging.

decouple_stage
The stage in which this part will be decoupled. Returns -1 if the part is never decoupled from the vessel.

Attribute Read-only, cannot be set

Return type number

Note: See the discussion on Staging.

massless
Whether the part is massless.

Attribute Read-only, cannot be set

Return type boolean

mass
The current mass of the part, including resources it contains, in kilograms. Returns zero if the part is
massless.

350 Chapter 6. Lua

http://wiki.kerbalspaceprogram.com/wiki/Massless_part

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type number

dry_mass
The mass of the part, not including any resources it contains, in kilograms. Returns zero if the part is
massless.

Attribute Read-only, cannot be set

Return type number

shielded
Whether the part is shielded from the exterior of the vessel, for example by a fairing.

Attribute Read-only, cannot be set

Return type boolean

dynamic_pressure
The dynamic pressure acting on the part, in Pascals.

Attribute Read-only, cannot be set

Return type number

impact_tolerance
The impact tolerance of the part, in meters per second.

Attribute Read-only, cannot be set

Return type number

temperature
Temperature of the part, in Kelvin.

Attribute Read-only, cannot be set

Return type number

skin_temperature
Temperature of the skin of the part, in Kelvin.

Attribute Read-only, cannot be set

Return type number

max_temperature
Maximum temperature that the part can survive, in Kelvin.

Attribute Read-only, cannot be set

Return type number

max_skin_temperature
Maximum temperature that the skin of the part can survive, in Kelvin.

Attribute Read-only, cannot be set

Return type number

thermal_mass
A measure of how much energy it takes to increase the internal temperature of the part, in Joules per
Kelvin.

Attribute Read-only, cannot be set

Return type number

6.3. SpaceCenter API 351

kRPC, Release 0.3.5

thermal_skin_mass
A measure of how much energy it takes to increase the skin temperature of the part, in Joules per Kelvin.

Attribute Read-only, cannot be set

Return type number

thermal_resource_mass
A measure of how much energy it takes to increase the temperature of the resources contained in the part,
in Joules per Kelvin.

Attribute Read-only, cannot be set

Return type number

thermal_conduction_flux
The rate at which heat energy is conducting into or out of the part via contact with other parts. Measured
in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy, and
negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type number

thermal_convection_flux
The rate at which heat energy is convecting into or out of the part from the surrounding atmosphere.
Measured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat
energy, and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type number

thermal_radiation_flux
The rate at which heat energy is radiating into or out of the part from the surrounding environment. Mea-
sured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy,
and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type number

thermal_internal_flux
The rate at which heat energy is begin generated by the part. For example, some engines generate heat by
combusting fuel. Measured in energy per unit time, or power, in Watts. A positive value means the part is
gaining heat energy, and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type number

thermal_skin_to_internal_flux
The rate at which heat energy is transferring between the part’s skin and its internals. Measured in energy
per unit time, or power, in Watts. A positive value means the part’s internals are gaining heat energy, and
negative means its skin is gaining heat energy.

Attribute Read-only, cannot be set

Return type number

resources
A SpaceCenter.Resources object for the part.

Attribute Read-only, cannot be set

352 Chapter 6. Lua

kRPC, Release 0.3.5

Return type SpaceCenter.Resources

crossfeed
Whether this part is crossfeed capable.

Attribute Read-only, cannot be set

Return type boolean

is_fuel_line
Whether this part is a fuel line.

Attribute Read-only, cannot be set

Return type boolean

fuel_lines_from
The parts that are connected to this part via fuel lines, where the direction of the fuel line is into this part.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Part

Note: See the discussion on Fuel Lines.

fuel_lines_to
The parts that are connected to this part via fuel lines, where the direction of the fuel line is out of this part.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Part

Note: See the discussion on Fuel Lines.

modules
The modules for this part.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Module

cargo_bay
A SpaceCenter.CargoBay if the part is a cargo bay, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.CargoBay

control_surface
A SpaceCenter.ControlSurface if the part is an aerodynamic control surface, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.ControlSurface

decoupler
A SpaceCenter.Decoupler if the part is a decoupler, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Decoupler

6.3. SpaceCenter API 353

kRPC, Release 0.3.5

docking_port
A SpaceCenter.DockingPort if the part is a docking port, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.DockingPort

engine
An SpaceCenter.Engine if the part is an engine, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Engine

experiment
An SpaceCenter.Experiment if the part is a science experiment, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Experiment

fairing
A SpaceCenter.Fairing if the part is a fairing, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Fairing

intake
An SpaceCenter.Intake if the part is an intake, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Intake

Note: This includes any part that generates thrust. This covers many different types of engine, including
liquid fuel rockets, solid rocket boosters and jet engines. For RCS thrusters see SpaceCenter.RCS.

landing_gear
A SpaceCenter.LandingGear if the part is a landing gear, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.LandingGear

landing_leg
A SpaceCenter.LandingLeg if the part is a landing leg, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.LandingLeg

launch_clamp
A SpaceCenter.LaunchClamp if the part is a launch clamp, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.LaunchClamp

light
A SpaceCenter.Light if the part is a light, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Light

354 Chapter 6. Lua

kRPC, Release 0.3.5

parachute
A SpaceCenter.Parachute if the part is a parachute, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Parachute

radiator
A SpaceCenter.Radiator if the part is a radiator, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Radiator

rcs
A SpaceCenter.RCS if the part is an RCS block/thruster, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.RCS

reaction_wheel
A SpaceCenter.ReactionWheel if the part is a reaction wheel, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReactionWheel

resource_converter
A SpaceCenter.ResourceConverter if the part is a resource converter, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.ResourceConverter

resource_harvester
A SpaceCenter.ResourceHarvester if the part is a resource harvester, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.ResourceHarvester

sensor
A SpaceCenter.Sensor if the part is a sensor, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Sensor

solar_panel
A SpaceCenter.SolarPanel if the part is a solar panel, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.SolarPanel

position(reference_frame)
The position of the part in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

Note: This is a fixed position in the part, defined by the parts model. It s not necessarily the same as the
parts center of mass. Use SpaceCenter.Part.center_of_mass() to get the parts center of mass.

6.3. SpaceCenter API 355

kRPC, Release 0.3.5

center_of_mass(reference_frame)
The position of the parts center of mass in the given reference frame. If the part is physicsless, this is
equivalent to SpaceCenter.Part.position().

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

direction(reference_frame)
The direction of the part in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

velocity(reference_frame)
The velocity of the part in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

rotation(reference_frame)
The rotation of the part in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number, number)

moment_of_inertia
The moment of inertia of the part in 𝑘𝑔.𝑚2 around its center of mass in the parts reference frame
(SpaceCenter.ReferenceFrame).

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

inertia_tensor
The inertia tensor of the part in the parts reference frame (SpaceCenter.ReferenceFrame). Returns
the 3x3 matrix as a list of elements, in row-major order.

Attribute Read-only, cannot be set

Return type List of number

reference_frame
The reference frame that is fixed relative to this part, and centered on a fixed position within the part,
defined by the parts model.

•The origin is at the position of the part, as returned by SpaceCenter.Part.position().

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by SpaceCenter.DockingPort.reference_frame.

356 Chapter 6. Lua

kRPC, Release 0.3.5

Fig. 6.7: Mk1 Command Pod reference frame origin and axes

center_of_mass_reference_frame
The reference frame that is fixed relative to this part, and centered on its center of mass.

•The origin is at the center of mass of the part, as returned by
SpaceCenter.Part.center_of_mass().

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by SpaceCenter.DockingPort.reference_frame.

Module

class Module
This can be used to interact with a specific part module. This includes part modules in stock KSP, and those
added by mods. In KSP, each part has zero or more PartModules associated with it. Each one contains some of
the functionality of the part. For example, an engine has a “ModuleEngines” part module that contains all the
functionality of an engine.

name
Name of the PartModule. For example, “ModuleEngines”.

Attribute Read-only, cannot be set

Return type string

6.3. SpaceCenter API 357

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation#MODULES

kRPC, Release 0.3.5

part
The part that contains this module.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

fields
The modules field names and their associated values, as a dictionary. These are the values visible in the
right-click menu of the part.

Attribute Read-only, cannot be set

Return type Map from string to string

has_field(name)
Returns True if the module has a field with the given name.

Parameters name (string) – Name of the field.

Return type boolean

get_field(name)
Returns the value of a field.

Parameters name (string) – Name of the field.

Return type string

set_field_int(name, value)
Set the value of a field to the given integer number.

Parameters

• name (string) – Name of the field.

• value (number) – Value to set.

set_field_float(name, value)
Set the value of a field to the given floating point number.

Parameters

• name (string) – Name of the field.

• value (number) – Value to set.

set_field_string(name, value)
Set the value of a field to the given string.

Parameters

• name (string) – Name of the field.

• value (string) – Value to set.

reset_field(name)
Set the value of a field to its original value.

Parameters name (string) – Name of the field.

events
A list of the names of all of the modules events. Events are the clickable buttons visible in the right-click
menu of the part.

Attribute Read-only, cannot be set

Return type List of string

358 Chapter 6. Lua

kRPC, Release 0.3.5

has_event(name)
True if the module has an event with the given name.

Parameters name (string) –

Return type boolean

trigger_event(name)
Trigger the named event. Equivalent to clicking the button in the right-click menu of the part.

Parameters name (string) –

actions
A list of all the names of the modules actions. These are the parts actions that can be assigned to action
groups in the in-game editor.

Attribute Read-only, cannot be set

Return type List of string

has_action(name)
True if the part has an action with the given name.

Parameters name (string) –

Return type boolean

set_action(name[, value = True])
Set the value of an action with the given name.

Parameters

• name (string) –

• value (boolean) –

Specific Types of Part

The following classes provide functionality for specific types of part.

6.3. SpaceCenter API 359

kRPC, Release 0.3.5

• Cargo Bay
• Control Surface
• Decoupler
• Docking Port
• Engine
• Experiment
• Fairing
• Intake
• Landing Gear
• Landing Leg
• Launch Clamp
• Light
• Parachute
• Radiator
• Resource Converter
• Resource Harvester
• Reaction Wheel
• RCS
• Sensor
• Solar Panel
• Thruster

Cargo Bay

class CargoBay
A cargo bay. Obtained by calling SpaceCenter.Part.cargo_bay .

part
The part object for this cargo bay.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

state
The state of the cargo bay.

Attribute Read-only, cannot be set

Return type SpaceCenter.CargoBayState

open
Whether the cargo bay is open.

Attribute Can be read or written

Return type boolean

class CargoBayState
The state of a cargo bay. See SpaceCenter.CargoBay.state.

open
Cargo bay is fully open.

closed
Cargo bay closed and locked.

opening
Cargo bay is opening.

360 Chapter 6. Lua

kRPC, Release 0.3.5

closing
Cargo bay is closing.

Control Surface

class ControlSurface
An aerodynamic control surface. Obtained by calling SpaceCenter.Part.control_surface.

part
The part object for this control surface.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

pitch_enabled
Whether the control surface has pitch control enabled.

Attribute Can be read or written

Return type boolean

yaw_enabled
Whether the control surface has yaw control enabled.

Attribute Can be read or written

Return type boolean

roll_enabled
Whether the control surface has roll control enabled.

Attribute Can be read or written

Return type boolean

inverted
Whether the control surface movement is inverted.

Attribute Can be read or written

Return type boolean

deployed
Whether the control surface has been fully deployed.

Attribute Can be read or written

Return type boolean

surface_area
Surface area of the control surface in 𝑚2.

Attribute Read-only, cannot be set

Return type number

available_torque
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the SpaceCenter.Vessel.reference_frame.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

6.3. SpaceCenter API 361

kRPC, Release 0.3.5

Decoupler

class Decoupler
A decoupler. Obtained by calling SpaceCenter.Part.decoupler

part
The part object for this decoupler.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

decouple()
Fires the decoupler. Returns the new vessel created when the decoupler fires. Throws an exception if the
decoupler has already fired.

Return type SpaceCenter.Vessel

decoupled
Whether the decoupler has fired.

Attribute Read-only, cannot be set

Return type boolean

impulse
The impulse that the decoupler imparts when it is fired, in Newton seconds.

Attribute Read-only, cannot be set

Return type number

Docking Port

class DockingPort
A docking port. Obtained by calling SpaceCenter.Part.docking_port

part
The part object for this docking port.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

name
The port name of the docking port. This is the name of the port that can be set in the right click menu,
when the Docking Port Alignment Indicator mod is installed. If this mod is not installed, returns the title
of the part (SpaceCenter.Part.title).

Attribute Can be read or written

Return type string

state
The current state of the docking port.

Attribute Read-only, cannot be set

Return type SpaceCenter.DockingPortState

docked_part
The part that this docking port is docked to. Returns nil if this docking port is not docked to anything.

Attribute Read-only, cannot be set

362 Chapter 6. Lua

http://forum.kerbalspaceprogram.com/index.php?/topic/40423-11-docking-port-alignment-indicator-version-621-beta-updated-04122016/

kRPC, Release 0.3.5

Return type SpaceCenter.Part

undock()
Undocks the docking port and returns the new SpaceCenter.Vessel that is created. This method can
be called for either docking port in a docked pair. Throws an exception if the docking port is not docked
to anything.

Return type SpaceCenter.Vessel

Note: After undocking, the active vessel may change. See SpaceCenter.active_vessel.

reengage_distance
The distance a docking port must move away when it undocks before it becomes ready to dock with another
port, in meters.

Attribute Read-only, cannot be set

Return type number

has_shield
Whether the docking port has a shield.

Attribute Read-only, cannot be set

Return type boolean

shielded
The state of the docking ports shield, if it has one. Returns True if the docking port has a shield, and
the shield is closed. Otherwise returns False. When set to True, the shield is closed, and when set to
False the shield is opened. If the docking port does not have a shield, setting this attribute has no effect.

Attribute Can be read or written

Return type boolean

position(reference_frame)
The position of the docking port in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

direction(reference_frame)
The direction that docking port points in, in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

rotation(reference_frame)
The rotation of the docking port, in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number, number)

reference_frame
The reference frame that is fixed relative to this docking port, and oriented with the port.

•The origin is at the position of the docking port.

•The axes rotate with the docking port.

•The x-axis points out to the right side of the docking port.

6.3. SpaceCenter API 363

kRPC, Release 0.3.5

•The y-axis points in the direction the docking port is facing.

•The z-axis points out of the bottom off the docking port.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

Note: This reference frame is not necessarily equivalent to the reference frame for the part, returned by
SpaceCenter.Part.reference_frame.

Fig. 6.8: Docking port reference frame origin and axes

class DockingPortState
The state of a docking port. See SpaceCenter.DockingPort.state.

ready
The docking port is ready to dock to another docking port.

docked
The docking port is docked to another docking port, or docked to another part (from the VAB/SPH).

docking
The docking port is very close to another docking port, but has not docked. It is using magnetic force to
acquire a solid dock.

undocking
The docking port has just been undocked from another docking port, and is disabled until it moves away
by a sufficient distance (SpaceCenter.DockingPort.reengage_distance).

shielded
The docking port has a shield, and the shield is closed.

364 Chapter 6. Lua

kRPC, Release 0.3.5

Fig. 6.9: Inline docking port reference frame origin and axes

moving
The docking ports shield is currently opening/closing.

Engine

class Engine
An engine, including ones of various types. For example liquid fuelled gimballed engines, solid rocket boosters
and jet engines. Obtained by calling SpaceCenter.Part.engine.

Note: For RCS thrusters SpaceCenter.Part.rcs.

part
The part object for this engine.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

active
Whether the engine is active. Setting this attribute may have no effect, depending on
SpaceCenter.Engine.can_shutdown and SpaceCenter.Engine.can_restart.

Attribute Can be read or written

Return type boolean

thrust
The current amount of thrust being produced by the engine, in Newtons.

Attribute Read-only, cannot be set

Return type number

6.3. SpaceCenter API 365

kRPC, Release 0.3.5

available_thrust
The amount of thrust, in Newtons, that would be produced by the engine when activated and with its
throttle set to 100%. Returns zero if the engine does not have any fuel. Takes the engine’s current
SpaceCenter.Engine.thrust_limit and atmospheric conditions into account.

Attribute Read-only, cannot be set

Return type number

max_thrust
The amount of thrust, in Newtons, that would be produced by the engine when activated and fueled, with
its throttle and throttle limiter set to 100%.

Attribute Read-only, cannot be set

Return type number

max_vacuum_thrust
The maximum amount of thrust that can be produced by the engine in a vacuum, in Newtons. This is the
amount of thrust produced by the engine when activated, SpaceCenter.Engine.thrust_limit is
set to 100%, the main vessel’s throttle is set to 100% and the engine is in a vacuum.

Attribute Read-only, cannot be set

Return type number

thrust_limit
The thrust limiter of the engine. A value between 0 and 1. Setting this attribute may have no effect, for
example the thrust limit for a solid rocket booster cannot be changed in flight.

Attribute Can be read or written

Return type number

thrusters
The components of the engine that generate thrust.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Thruster

Note: For example, this corresponds to the rocket nozzel on a solid rocket booster, or the in-
dividual nozzels on a RAPIER engine. The overall thrust produced by the engine, as reported
by SpaceCenter.Engine.available_thrust, SpaceCenter.Engine.max_thrust and
others, is the sum of the thrust generated by each thruster.

specific_impulse
The current specific impulse of the engine, in seconds. Returns zero if the engine is not active.

Attribute Read-only, cannot be set

Return type number

vacuum_specific_impulse
The vacuum specific impulse of the engine, in seconds.

Attribute Read-only, cannot be set

Return type number

kerbin_sea_level_specific_impulse
The specific impulse of the engine at sea level on Kerbin, in seconds.

366 Chapter 6. Lua

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type number

propellant_names
The names of the propellants that the engine consumes.

Attribute Read-only, cannot be set

Return type List of string

propellant_ratios
The ratio of resources that the engine consumes. A dictionary mapping resource names to the ratio at
which they are consumed by the engine.

Attribute Read-only, cannot be set

Return type Map from string to number

Note: For example, if the ratios are 0.6 for LiquidFuel and 0.4 for Oxidizer, then for every 0.6 units of
LiquidFuel that the engine burns, it will burn 0.4 units of Oxidizer.

propellants
The propellants that the engine consumes.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Propellant

has_fuel
Whether the engine has any fuel available.

Attribute Read-only, cannot be set

Return type boolean

Note: The engine must be activated for this property to update correctly.

throttle
The current throttle setting for the engine. A value between 0 and 1. This is not necessarily the same as
the vessel’s main throttle setting, as some engines take time to adjust their throttle (such as jet engines).

Attribute Read-only, cannot be set

Return type number

throttle_locked
Whether the SpaceCenter.Control.throttle affects the engine. For example, this is True for
liquid fueled rockets, and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type boolean

can_restart
Whether the engine can be restarted once shutdown. If the engine cannot be shutdown, returns False.
For example, this is True for liquid fueled rockets and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type boolean

6.3. SpaceCenter API 367

kRPC, Release 0.3.5

can_shutdown
Whether the engine can be shutdown once activated. For example, this is True for liquid fueled rockets
and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type boolean

has_modes
Whether the engine has multiple modes of operation.

Attribute Read-only, cannot be set

Return type boolean

mode
The name of the current engine mode.

Attribute Can be read or written

Return type string

modes
The available modes for the engine. A dictionary mapping mode names to SpaceCenter.Engine
objects.

Attribute Read-only, cannot be set

Return type Map from string to SpaceCenter.Engine

toggle_mode()
Toggle the current engine mode.

auto_mode_switch
Whether the engine will automatically switch modes.

Attribute Can be read or written

Return type boolean

gimballed
Whether the engine is gimballed.

Attribute Read-only, cannot be set

Return type boolean

gimbal_range
The range over which the gimbal can move, in degrees. Returns 0 if the engine is not gimballed.

Attribute Read-only, cannot be set

Return type number

gimbal_locked
Whether the engines gimbal is locked in place. Setting this attribute has no effect if the engine is not
gimballed.

Attribute Can be read or written

Return type boolean

gimbal_limit
The gimbal limiter of the engine. A value between 0 and 1. Returns 0 if the gimbal is locked.

Attribute Can be read or written

368 Chapter 6. Lua

kRPC, Release 0.3.5

Return type number

available_torque
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the SpaceCenter.Vessel.reference_frame. Returns zero if the engine
is inactive, or not gimballed.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

class Propellant
A propellant for an engine. Obtains by calling SpaceCenter.Engine.propellants.

name
The name of the propellant.

Attribute Read-only, cannot be set

Return type string

current_amount
The current amount of propellant.

Attribute Read-only, cannot be set

Return type number

current_requirement
The required amount of propellant.

Attribute Read-only, cannot be set

Return type number

total_resource_available
The total amount of the underlying resource currently reachable given resource flow rules.

Attribute Read-only, cannot be set

Return type number

total_resource_capacity
The total vehicle capacity for the underlying propellant resource, restricted by resource flow rules.

Attribute Read-only, cannot be set

Return type number

ignore_for_isp
If this propellant should be ignored when calculating required mass flow given specific impulse.

Attribute Read-only, cannot be set

Return type boolean

ignore_for_thrust_curve
If this propellant should be ignored for thrust curve calculations.

Attribute Read-only, cannot be set

Return type boolean

draw_stack_gauge
If this propellant has a stack gauge or not.

Attribute Read-only, cannot be set

6.3. SpaceCenter API 369

kRPC, Release 0.3.5

Return type boolean

is_deprived
If this propellant is deprived.

Attribute Read-only, cannot be set

Return type boolean

ratio
The propellant ratio.

Attribute Read-only, cannot be set

Return type number

connected_resources
The reachable resources connected to this propellant.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Resource

Experiment

class Experiment
Obtained by calling SpaceCenter.Part.experiment.

part
The part object for this experiment.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

run()
Run the experiment.

transmit()
Transmit all experimental data contained by this part.

dump()
Dump the experimental data contained by the experiment.

reset()
Reset the experiment.

deployed
Whether the experiment has been deployed.

Attribute Read-only, cannot be set

Return type boolean

rerunnable
Whether the experiment can be re-run.

Attribute Read-only, cannot be set

Return type boolean

inoperable
Whether the experiment is inoperable.

Attribute Read-only, cannot be set

370 Chapter 6. Lua

kRPC, Release 0.3.5

Return type boolean

has_data
Whether the experiment contains data.

Attribute Read-only, cannot be set

Return type boolean

data
The data contained in this experiment.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.ScienceData

class ScienceData
Obtained by calling SpaceCenter.Experiment.data.

data_amount
Data amount.

Attribute Read-only, cannot be set

Return type number

science_value
Science value.

Attribute Read-only, cannot be set

Return type number

transmit_value
Transmit value.

Attribute Read-only, cannot be set

Return type number

Fairing

class Fairing
A fairing. Obtained by calling SpaceCenter.Part.fairing.

part
The part object for this fairing.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

jettison()
Jettison the fairing. Has no effect if it has already been jettisoned.

jettisoned
Whether the fairing has been jettisoned.

Attribute Read-only, cannot be set

Return type boolean

6.3. SpaceCenter API 371

kRPC, Release 0.3.5

Intake

class Intake
An air intake. Obtained by calling SpaceCenter.Part.intake.

part
The part object for this intake.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

open
Whether the intake is open.

Attribute Can be read or written

Return type boolean

speed
Speed of the flow into the intake, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type number

flow
The rate of flow into the intake, in units of resource per second.

Attribute Read-only, cannot be set

Return type number

area
The area of the intake’s opening, in square meters.

Attribute Read-only, cannot be set

Return type number

Landing Gear

class LandingGear
Landing gear with wheels. Obtained by calling SpaceCenter.Part.landing_gear.

part
The part object for this landing gear.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

state
Gets the current state of the landing gear.

Attribute Read-only, cannot be set

Return type SpaceCenter.LandingGearState

Note: Fixed landing gear are always deployed.

372 Chapter 6. Lua

kRPC, Release 0.3.5

deployable
Whether the landing gear is deployable.

Attribute Read-only, cannot be set

Return type boolean

deployed
Whether the landing gear is deployed.

Attribute Can be read or written

Return type boolean

Note: Fixed landing gear are always deployed. Returns an error if you try to deploy fixed landing gear.

class LandingGearState
The state of a landing gear. See SpaceCenter.LandingGear.state.

deployed
Landing gear is fully deployed.

retracted
Landing gear is fully retracted.

deploying
Landing gear is being deployed.

retracting
Landing gear is being retracted.

broken
Landing gear is broken.

Landing Leg

class LandingLeg
A landing leg. Obtained by calling SpaceCenter.Part.landing_leg.

part
The part object for this landing leg.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

state
The current state of the landing leg.

Attribute Read-only, cannot be set

Return type SpaceCenter.LandingLegState

deployed
Whether the landing leg is deployed.

Attribute Can be read or written

Return type boolean

6.3. SpaceCenter API 373

kRPC, Release 0.3.5

Note: Fixed landing legs are always deployed. Returns an error if you try to deploy fixed landing gear.

class LandingLegState
The state of a landing leg. See SpaceCenter.LandingLeg.state.

deployed
Landing leg is fully deployed.

retracted
Landing leg is fully retracted.

deploying
Landing leg is being deployed.

retracting
Landing leg is being retracted.

broken
Landing leg is broken.

Launch Clamp

class LaunchClamp
A launch clamp. Obtained by calling SpaceCenter.Part.launch_clamp.

part
The part object for this launch clamp.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

release()
Releases the docking clamp. Has no effect if the clamp has already been released.

Light

class Light
A light. Obtained by calling SpaceCenter.Part.light.

part
The part object for this light.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

active
Whether the light is switched on.

Attribute Can be read or written

Return type boolean

color
The color of the light, as an RGB triple.

Attribute Can be read or written

Return type Tuple of (number, number, number)

374 Chapter 6. Lua

kRPC, Release 0.3.5

power_usage
The current power usage, in units of charge per second.

Attribute Read-only, cannot be set

Return type number

Parachute

class Parachute
A parachute. Obtained by calling SpaceCenter.Part.parachute.

part
The part object for this parachute.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

deploy()
Deploys the parachute. This has no effect if the parachute has already been deployed.

deployed
Whether the parachute has been deployed.

Attribute Read-only, cannot be set

Return type boolean

state
The current state of the parachute.

Attribute Read-only, cannot be set

Return type SpaceCenter.ParachuteState

deploy_altitude
The altitude at which the parachute will full deploy, in meters.

Attribute Can be read or written

Return type number

deploy_min_pressure
The minimum pressure at which the parachute will semi-deploy, in atmospheres.

Attribute Can be read or written

Return type number

class ParachuteState
The state of a parachute. See SpaceCenter.Parachute.state.

stowed
The parachute is safely tucked away inside its housing.

active
The parachute is still stowed, but ready to semi-deploy.

semi_deployed
The parachute has been deployed and is providing some drag, but is not fully deployed yet.

deployed
The parachute is fully deployed.

6.3. SpaceCenter API 375

kRPC, Release 0.3.5

cut
The parachute has been cut.

Radiator

class Radiator
A radiator. Obtained by calling SpaceCenter.Part.radiator.

part
The part object for this radiator.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

deployable
Whether the radiator is deployable.

Attribute Read-only, cannot be set

Return type boolean

deployed
For a deployable radiator, True if the radiator is extended. If the radiator is not deployable, this is always
True.

Attribute Can be read or written

Return type boolean

state
The current state of the radiator.

Attribute Read-only, cannot be set

Return type SpaceCenter.RadiatorState

Note: A fixed radiator is always SpaceCenter.RadiatorState.extended.

class RadiatorState
The state of a radiator. SpaceCenter.RadiatorState

extended
Radiator is fully extended.

retracted
Radiator is fully retracted.

extending
Radiator is being extended.

retracting
Radiator is being retracted.

broken
Radiator is being broken.

376 Chapter 6. Lua

kRPC, Release 0.3.5

Resource Converter

class ResourceConverter
A resource converter. Obtained by calling SpaceCenter.Part.resource_converter.

part
The part object for this converter.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

count
The number of converters in the part.

Attribute Read-only, cannot be set

Return type number

name(index)
The name of the specified converter.

Parameters index (number) – Index of the converter.

Return type string

active(index)
True if the specified converter is active.

Parameters index (number) – Index of the converter.

Return type boolean

start(index)
Start the specified converter.

Parameters index (number) – Index of the converter.

stop(index)
Stop the specified converter.

Parameters index (number) – Index of the converter.

state(index)
The state of the specified converter.

Parameters index (number) – Index of the converter.

Return type SpaceCenter.ResourceConverterState

status_info(index)
Status information for the specified converter. This is the full status message shown in the in-game UI.

Parameters index (number) – Index of the converter.

Return type string

inputs(index)
List of the names of resources consumed by the specified converter.

Parameters index (number) – Index of the converter.

Return type List of string

outputs(index)
List of the names of resources produced by the specified converter.

6.3. SpaceCenter API 377

kRPC, Release 0.3.5

Parameters index (number) – Index of the converter.

Return type List of string

class ResourceConverterState
The state of a resource converter. See SpaceCenter.ResourceConverter.state().

running
Converter is running.

idle
Converter is idle.

missing_resource
Converter is missing a required resource.

storage_full
No available storage for output resource.

capacity
At preset resource capacity.

unknown
Unknown state. Possible with modified resource converters. In this case, check
SpaceCenter.ResourceConverter.status_info() for more information.

Resource Harvester

class ResourceHarvester
A resource harvester (drill). Obtained by calling SpaceCenter.Part.resource_harvester.

part
The part object for this harvester.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

state
The state of the harvester.

Attribute Read-only, cannot be set

Return type SpaceCenter.ResourceHarvesterState

deployed
Whether the harvester is deployed.

Attribute Can be read or written

Return type boolean

active
Whether the harvester is actively drilling.

Attribute Can be read or written

Return type boolean

extraction_rate
The rate at which the drill is extracting ore, in units per second.

Attribute Read-only, cannot be set

378 Chapter 6. Lua

kRPC, Release 0.3.5

Return type number

thermal_efficiency
The thermal efficiency of the drill, as a percentage of its maximum.

Attribute Read-only, cannot be set

Return type number

core_temperature
The core temperature of the drill, in Kelvin.

Attribute Read-only, cannot be set

Return type number

optimum_core_temperature
The core temperature at which the drill will operate with peak efficiency, in Kelvin.

Attribute Read-only, cannot be set

Return type number

class ResourceHarvesterState
The state of a resource harvester. See SpaceCenter.ResourceHarvester.state.

deploying
The drill is deploying.

deployed
The drill is deployed and ready.

retracting
The drill is retracting.

retracted
The drill is retracted.

active
The drill is running.

Reaction Wheel

class ReactionWheel
A reaction wheel. Obtained by calling SpaceCenter.Part.reaction_wheel.

part
The part object for this reaction wheel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

active
Whether the reaction wheel is active.

Attribute Can be read or written

Return type boolean

broken
Whether the reaction wheel is broken.

Attribute Read-only, cannot be set

6.3. SpaceCenter API 379

kRPC, Release 0.3.5

Return type boolean

available_torque
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes corre-
spond to the coordinate axes of the SpaceCenter.Vessel.reference_frame. Returns zero if the
reaction wheel is inactive or broken.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

max_torque
The maximum torque the reaction wheel can provide, is it active, in the pitch, roll and yaw
axes of the vessel, in Newton meters. These axes correspond to the coordinate axes of the
SpaceCenter.Vessel.reference_frame.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

RCS

class RCS
An RCS block or thruster. Obtained by calling SpaceCenter.Part.rcs.

part
The part object for this RCS.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

active
Whether the RCS thrusters are active. An RCS thruster is inactive if the RCS action
group is disabled (SpaceCenter.Control.rcs), the RCS thruster itself is not enabled
(SpaceCenter.RCS.enabled) or it is covered by a fairing (SpaceCenter.Part.shielded).

Attribute Read-only, cannot be set

Return type boolean

enabled
Whether the RCS thrusters are enabled.

Attribute Can be read or written

Return type boolean

pitch_enabled
Whether the RCS thruster will fire when pitch control input is given.

Attribute Can be read or written

Return type boolean

yaw_enabled
Whether the RCS thruster will fire when yaw control input is given.

Attribute Can be read or written

Return type boolean

roll_enabled
Whether the RCS thruster will fire when roll control input is given.

380 Chapter 6. Lua

kRPC, Release 0.3.5

Attribute Can be read or written

Return type boolean

forward_enabled
Whether the RCS thruster will fire when pitch control input is given.

Attribute Can be read or written

Return type boolean

up_enabled
Whether the RCS thruster will fire when yaw control input is given.

Attribute Can be read or written

Return type boolean

right_enabled
Whether the RCS thruster will fire when roll control input is given.

Attribute Can be read or written

Return type boolean

available_torque
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the SpaceCenter.Vessel.reference_frame. Returns zero if the RCS
is inactive.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

max_thrust
The maximum amount of thrust that can be produced by the RCS thrusters when active, in Newtons.

Attribute Read-only, cannot be set

Return type number

max_vacuum_thrust
The maximum amount of thrust that can be produced by the RCS thrusters when active in a vacuum, in
Newtons.

Attribute Read-only, cannot be set

Return type number

thrusters
A list of thrusters, one of each nozzel in the RCS part.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Thruster

specific_impulse
The current specific impulse of the RCS, in seconds. Returns zero if the RCS is not active.

Attribute Read-only, cannot be set

Return type number

vacuum_specific_impulse
The vacuum specific impulse of the RCS, in seconds.

Attribute Read-only, cannot be set

6.3. SpaceCenter API 381

kRPC, Release 0.3.5

Return type number

kerbin_sea_level_specific_impulse
The specific impulse of the RCS at sea level on Kerbin, in seconds.

Attribute Read-only, cannot be set

Return type number

propellants
The names of resources that the RCS consumes.

Attribute Read-only, cannot be set

Return type List of string

propellant_ratios
The ratios of resources that the RCS consumes. A dictionary mapping resource names to the ratios at
which they are consumed by the RCS.

Attribute Read-only, cannot be set

Return type Map from string to number

has_fuel
Whether the RCS has fuel available.

Attribute Read-only, cannot be set

Return type boolean

Note: The RCS thruster must be activated for this property to update correctly.

Sensor

class Sensor
A sensor, such as a thermometer. Obtained by calling SpaceCenter.Part.sensor.

part
The part object for this sensor.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

active
Whether the sensor is active.

Attribute Can be read or written

Return type boolean

value
The current value of the sensor.

Attribute Read-only, cannot be set

Return type string

power_usage
The current power usage of the sensor, in units of charge per second.

Attribute Read-only, cannot be set

382 Chapter 6. Lua

kRPC, Release 0.3.5

Return type number

Solar Panel

class SolarPanel
A solar panel. Obtained by calling SpaceCenter.Part.solar_panel.

part
The part object for this solar panel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

deployed
Whether the solar panel is extended.

Attribute Can be read or written

Return type boolean

state
The current state of the solar panel.

Attribute Read-only, cannot be set

Return type SpaceCenter.SolarPanelState

energy_flow
The current amount of energy being generated by the solar panel, in units of charge per second.

Attribute Read-only, cannot be set

Return type number

sun_exposure
The current amount of sunlight that is incident on the solar panel, as a percentage. A value between 0 and
1.

Attribute Read-only, cannot be set

Return type number

class SolarPanelState
The state of a solar panel. See SpaceCenter.SolarPanel.state.

extended
Solar panel is fully extended.

retracted
Solar panel is fully retracted.

extending
Solar panel is being extended.

retracting
Solar panel is being retracted.

broken
Solar panel is broken.

6.3. SpaceCenter API 383

kRPC, Release 0.3.5

Thruster

class Thruster
The component of an SpaceCenter.Engine or SpaceCenter.RCS part that generates thrust. Can ob-
tained by calling SpaceCenter.Engine.thrusters or SpaceCenter.RCS.thrusters.

Note: Engines can consist of multiple thrusters. For example, the S3 KS-25x4 “Mammoth” has four rocket
nozzels, and so consists of four thrusters.

part
The SpaceCenter.Part that contains this thruster.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

thrust_position(reference_frame)
The position at which the thruster generates thrust, in the given reference frame. For gimballed engines,
this takes into account the current rotation of the gimbal.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

thrust_direction(reference_frame)
The direction of the force generated by the thruster, in the given reference frame. This is opposite to the
direction in which the thruster expels propellant. For gimballed engines, this takes into account the current
rotation of the gimbal.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

thrust_reference_frame
A reference frame that is fixed relative to the thruster and orientated with its thrust direction
(SpaceCenter.Thruster.thrust_direction()). For gimballed engines, this takes into ac-
count the current rotation of the gimbal.

•The origin is at the position of thrust for this thruster
(SpaceCenter.Thruster.thrust_position()).

•The axes rotate with the thrust direction. This is the direction in which the thruster expels propellant,
including any gimballing.

•The y-axis points along the thrust direction.

•The x-axis and z-axis are perpendicular to the thrust direction.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

gimballed
Whether the thruster is gimballed.

Attribute Read-only, cannot be set

Return type boolean

gimbal_position(reference_frame)
Position around which the gimbal pivots.

384 Chapter 6. Lua

kRPC, Release 0.3.5

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

gimbal_angle
The current gimbal angle in the pitch, roll and yaw axes.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

initial_thrust_position(reference_frame)
The position at which the thruster generates thrust, when the engine is in its initial position (no gimballing),
in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

Note: This position can move when the gimbal rotates. This is because the thrust position and gimbal
position are not necessarily the same.

initial_thrust_direction(reference_frame)
The direction of the force generated by the thruster, when the engine is in its initial position (no gim-
balling), in the given reference frame. This is opposite to the direction in which the thruster expels propel-
lant.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

Trees of Parts

Vessels in KSP are comprised of a number of parts, connected to one another in a
tree structure. An example vessel is shown in Figure 1, and the corresponding tree of
parts in Figure 2. The craft file for this example can also be downloaded here.

Fig. 6.10: Figure 1 – Example parts making up a vessel.

Traversing the Tree

The tree of parts can be traversed using the
attributes SpaceCenter.Parts.root,
SpaceCenter.Part.parent and
SpaceCenter.Part.children.

The root of the tree is the same as the
vessels root part (part number 1 in the
example above) and can be obtained by
calling SpaceCenter.Parts.root.
A parts children can be obtained by call-
ing SpaceCenter.Part.children.
If the part does not have any children,
SpaceCenter.Part.children returns
an empty list. A parts parent can be obtained
by calling SpaceCenter.Part.parent.
If the part does not have a parent
(as is the case for the root part),

6.3. SpaceCenter API 385

kRPC, Release 0.3.5

SpaceCenter.Part.parent returns
nil.

The following Lua example uses these at-
tributes to perform a depth-first traversal over
all of the parts in a vessel:

local root = vessel.parts.root
local stack = {{root,0}}
while #stack > 0 do
local part,depth = unpack(table.remove(stack))
print(string.rep(' ', depth) .. part.title)
for _,child in ipairs(part.children) do
table.insert(stack, {child, depth+1})

end
end

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1
TR-18A Stack Decoupler
FL-T400 Fuel Tank
LV-909 Liquid Fuel Engine
TR-18A Stack Decoupler
FL-T800 Fuel Tank
LV-909 Liquid Fuel Engine
TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

LT-1 Landing Struts
LT-1 Landing Struts

Mk16 Parachute

Attachment Modes

Parts can be attached to other parts either ra-
dially (on the side of the parent part) or axially
(on the end of the parent part, to form a stack).

For example, in the vessel pictured above, the
parachute (part 2) is axially connected to its

parent (the command pod – part 1), and the landing leg (part 5) is radially connected to its parent (the fuel tank – part
4).

Fig. 6.11: Figure 2 – Tree of parts for the vessel in Figure 1. Arrows
point from the parent part to the child part.

The root part of a vessel (for example the com-
mand pod – part 1) does not have a parent part,

386 Chapter 6. Lua

kRPC, Release 0.3.5

so does not have an attachment mode. How-
ever, the part is consider to be axially attached
to nothing.

The following Lua example does a depth-first
traversal as before, but also prints out the at-
tachment mode used by the part:

local root = vessel.parts.root
local stack = {{root, 0}}
while #stack > 0 do

local part,depth = unpack(table.remove(stack))
local attach_mode
if part.axially_attached then
attach_mode = 'axial'

else -- radially_attached
attach_mode = 'radial'

end
print(string.rep(' ', depth) .. part.title .. ' - ' .. attach_mode)
for _,child in ipairs(part.children) do
table.insert(stack, {child, depth+1})

end
end

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1 - axial
TR-18A Stack Decoupler - axial
FL-T400 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TR-18A Stack Decoupler - axial
FL-T800 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

LT-1 Landing Struts - radial
LT-1 Landing Struts - radial

Mk16 Parachute - axial

6.3. SpaceCenter API 387

kRPC, Release 0.3.5

Fuel Lines

Fig. 6.12: Figure 5 – Fuel lines from the example
in Figure 1. Fuel flows from the parts highlighted
in green, into the part highlighted in blue.

Fig. 6.13: Figure 4 – A subset of the parts tree
from Figure 2 above.

Fuel lines are considered parts, and are included in the parts tree
(for example, as pictured in Figure 4). However, the parts tree
does not contain information about which parts fuel lines connect
to. The parent part of a fuel line is the part from which it will take
fuel (as shown in Figure 4) however the part that it will send fuel
to is not represented in the parts tree.

Figure 5 shows the fuel lines from the example vessel pictured
earlier. Fuel line part 15 (in red) takes fuel from a fuel tank (part
11 – in green) and feeds it into another fuel tank (part 9 – in blue).
The fuel line is therefore a child of part 11, but its connection to
part 9 is not represented in the tree.

The attributes SpaceCenter.Part.fuel_lines_from
and SpaceCenter.Part.fuel_lines_to can be used
to discover these connections. In the example in Fig-
ure 5, when SpaceCenter.Part.fuel_lines_to is
called on fuel tank part 11, it will return a list of parts
containing just fuel tank part 9 (the blue part). When
SpaceCenter.Part.fuel_lines_from is called on fuel
tank part 9, it will return a list containing fuel tank parts 11 and
17 (the parts colored green).

Staging

Each part has two staging numbers associated with
it: the stage in which the part is activated and the
stage in which the part is decoupled. These values
can be obtained using SpaceCenter.Part.stage
and SpaceCenter.Part.decouple_stage re-
spectively. For parts that are not activated by staging,
SpaceCenter.Part.stage returns -1. For parts that are
never decoupled, SpaceCenter.Part.decouple_stage
returns a value of -1.

388 Chapter 6. Lua

kRPC, Release 0.3.5

Fig. 6.14: Figure 6 – Example vessel from Figure 1 with a staging sequence.

Figure 6 shows an example
staging sequence for a ves-
sel. Figure 7 shows the
stages in which each part
of the vessel will be acti-
vated. Figure 8 shows the
stages in which each part of
the vessel will be decoupled.

Fig. 6.15: Figure 7 – The stage in which each part is activated.

Fig. 6.16: Figure 8 – The stage in which each part is decou-
pled.

6.3.8 Resources

class Resources
Represents the col-
lection of resources
stored in a ves-
sel, stage or part.
Created by calling
SpaceCenter.Vessel.resources,
SpaceCenter.Vessel.resources_in_decouple_stage()
or SpaceCenter.Part.resources.

all
All the individual resources that can be stored.

6.3. SpaceCenter API 389

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Resource

with_resource(name)
All the individual resources with the given name
that can be stored.

Parameters name (string) –

Return type List of SpaceCenter.Resource

names
A list of resource names that can be stored.

Attribute Read-only, cannot be set

Return type List of string

has_resource(name)
Check whether the named resource can be stored.

Parameters name (string) – The name of the re-
source.

Return type boolean

amount(name)
Returns the amount of a resource that is currently
stored.

Parameters name (string) – The name of the re-
source.

Return type number

max(name)
Returns the amount of a resource that can be stored.

Parameters name (string) – The name of the re-
source.

Return type number

static density(name)
Returns the density of a resource, in kg/l.

Parameters name (string) – The name of the re-
source.

Return type number

static flow_mode(name)
Returns the flow mode of a resource.

Parameters name (string) – The name of the re-
source.

Return type SpaceCenter.ResourceFlowMode

enabled
Whether use of all the resources are enabled.

Attribute Can be read or written

Return type boolean

390 Chapter 6. Lua

kRPC, Release 0.3.5

Note: This is true if all of the resources are enabled.
If any of the resources are not enabled, this is false.

class Resource
An individual resource stored within a
part. Created using methods in the
SpaceCenter.Resources class.

name
The name of the resource.

Attribute Read-only, cannot be set

Return type string

part
The part containing the resource.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

amount
The amount of the resource that is currently stored
in the part.

Attribute Read-only, cannot be set

Return type number

max
The total amount of the resource that can be stored
in the part.

Attribute Read-only, cannot be set

Return type number

density
The density of the resource, in 𝑘𝑔/𝑙.

Attribute Read-only, cannot be set

Return type number

flow_mode
The flow mode of the resource.

Attribute Read-only, cannot be set

Return type SpaceCenter.ResourceFlowMode

enabled
Whether use of this resource is enabled.

Attribute Can be read or written

Return type boolean

class ResourceTransfer
Transfer resources between parts.

6.3. SpaceCenter API 391

kRPC, Release 0.3.5

static start(from_part, to_part, resource, max_amount)
Start transferring a re-
source transfer be-
tween a pair of
parts. The trans-
fer will move at
most max_amount
units of the resource,
depending on how
much of the re-
source is available
in the source part
and how much stor-
age is available in
the destination part.
Use SpaceCenter.ResourceTransfer.complete
to check if the trans-
fer is complete. Use
SpaceCenter.ResourceTransfer.amount
to see how much of the resource has been trans-
ferred.

Parameters

• from_part (SpaceCenter.Part) – The part
to transfer to.

• to_part (SpaceCenter.Part) – The part to
transfer from.

• resource (string) – The name of the resource
to transfer.

• max_amount (number) – The maximum amount
of resource to transfer.

Return type SpaceCenter.ResourceTransfer

amount
The amount of the resource that has been transferred.

Attribute Read-only, cannot be set

Return type number

complete
Whether the transfer has completed.

Attribute Read-only, cannot be set

Return type boolean

class ResourceFlowMode
The way in which a resource
flows between parts. See
SpaceCenter.Resources.flow_mode().

vessel
The resource flows to any part in the vessel. For
example, electric charge.

392 Chapter 6. Lua

kRPC, Release 0.3.5

stage
The resource flows from parts in the first stage,
followed by the second, and so on. For example,
mono-propellant.

adjacent
The resource flows between adjacent parts within
the vessel. For example, liquid fuel or oxidizer.

none
The resource does not flow. For example, solid fuel.

6.3.9 Node

class Node
Represents a maneuver node. Can be created using
SpaceCenter.Control.add_node().

prograde
The magnitude of the maneuver nodes delta-v in the
prograde direction, in meters per second.

Attribute Can be read or written

Return type number

normal
The magnitude of the maneuver nodes delta-v in the
normal direction, in meters per second.

Attribute Can be read or written

Return type number

radial
The magnitude of the maneuver nodes delta-v in the
radial direction, in meters per second.

Attribute Can be read or written

Return type number

delta_v
The delta-v of the maneuver node, in meters per
second.

Attribute Can be read or written

Return type number

Note: Does not change when ex-
ecuting the maneuver node. See
SpaceCenter.Node.remaining_delta_v .

remaining_delta_v
Gets the remaining delta-v of the maneuver node, in
meters per second. Changes as the node is executed.
This is equivalent to the delta-v reported in-game.

Attribute Read-only, cannot be set

6.3. SpaceCenter API 393

kRPC, Release 0.3.5

Return type number

burn_vector([reference_frame = None])
Returns a vector whose direction the direction of the
maneuver node burn, and whose magnitude is the
delta-v of the burn in m/s.

Parameters reference_frame
(SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

Note: Does not
change when exe-
cuting the maneu-
ver node. See
SpaceCenter.Node.remaining_burn_vector().

remaining_burn_vector([reference_frame = None])
Returns a vector whose direction the direction of
the maneuver node burn, and whose magnitude is
the delta-v of the burn in m/s. The direction and
magnitude change as the burn is executed.

Parameters reference_frame
(SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

ut
The universal time at which the maneuver will occur,
in seconds.

Attribute Can be read or written

Return type number

time_to
The time until the maneuver node will be encoun-
tered, in seconds.

Attribute Read-only, cannot be set

Return type number

orbit
The orbit that results from executing the maneuver
node.

Attribute Read-only, cannot be set

Return type SpaceCenter.Orbit

remove()
Removes the maneuver node.

reference_frame
Gets the reference frame that is fixed relative to the
maneuver node’s burn.

•The origin is at the position of the maneuver node.

394 Chapter 6. Lua

kRPC, Release 0.3.5

•The y-axis points in the direction of the burn.

•The x-axis and z-axis point in arbitrary but fixed di-
rections.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

orbital_reference_frame
Gets the reference frame that is fixed relative to
the maneuver node, and orientated with the orbital
prograde/normal/radial directions of the original
orbit at the maneuver node’s position.

•The origin is at the position of the maneuver node.

•The x-axis points in the orbital anti-radial direction
of the original orbit, at the position of the maneuver
node.

•The y-axis points in the orbital prograde direction
of the original orbit, at the position of the maneuver
node.

•The z-axis points in the orbital normal direction of
the original orbit, at the position of the maneuver
node.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

position(reference_frame)
Returns the position vector of the maneuver node in
the given reference frame.

Parameters reference_frame
(SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

direction(reference_frame)
Returns the unit direction vector of the maneuver
nodes burn in the given reference frame.

Parameters reference_frame
(SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

6.3.10 ReferenceFrame

class ReferenceFrame
Represents a reference frame for positions, rotations
and velocities. Contains:

•The position of the origin.

•The directions of the x, y and z axes.

6.3. SpaceCenter API 395

kRPC, Release 0.3.5

•The linear velocity of the frame.

•The angular velocity of the frame.

Note: This class does not contain any properties
or methods. It is only used as a parameter to other
functions.

6.3.11 AutoPilot

class AutoPilot
Provides basic auto-piloting utili-
ties for a vessel. Created by calling
SpaceCenter.Vessel.auto_pilot.

Note: If a client engages the auto-pilot and then
closes its connection to the server, the auto-pilot will
be disengaged and its target reference frame, direc-
tion and roll reset to default.

engage()
Engage the auto-pilot.

disengage()
Disengage the auto-pilot.

wait()
Blocks until the vessel is pointing in the target di-
rection and has the target roll (if set).

error
The error, in degrees, between the direction the
ship has been asked to point in and the direction
it is pointing in. Returns zero if the auto-pilot has
not been engaged and SAS is not enabled or is in
stability assist mode.

Attribute Read-only, cannot be set

Return type number

pitch_error
The error, in degrees, between the vessels current
and target pitch. Returns zero if the auto-pilot has
not been engaged.

Attribute Read-only, cannot be set

Return type number

heading_error
The error, in degrees, between the vessels current
and target heading. Returns zero if the auto-pilot
has not been engaged.

Attribute Read-only, cannot be set

396 Chapter 6. Lua

kRPC, Release 0.3.5

Return type number

roll_error
The error, in degrees, between the vessels current
and target roll. Returns zero if the auto-pilot has not
been engaged or no target roll is set.

Attribute Read-only, cannot be set

Return type number

reference_frame
The reference frame
for the target di-
rection (SpaceCenter.AutoPilot.target_direction).

Attribute Can be read or written

Return type SpaceCenter.ReferenceFrame

target_pitch
The target pitch, in degrees, between -90° and +90°.

Attribute Can be read or written

Return type number

target_heading
The target heading, in degrees, between 0° and 360°.

Attribute Can be read or written

Return type number

target_roll
The target roll, in degrees. NaN if no target roll is
set.

Attribute Can be read or written

Return type number

target_direction
Direction vector corresponding to the target pitch
and heading.

Attribute Can be read or written

Return type Tuple of (number, number, number)

target_pitch_and_heading(pitch, heading)
Set target pitch and heading angles.

Parameters

• pitch (number) – Target pitch angle, in degrees
between -90° and +90°.

• heading (number) – Target heading angle, in de-
grees between 0° and 360°.

sas
The state of SAS.

Attribute Can be read or written

6.3. SpaceCenter API 397

kRPC, Release 0.3.5

Return type boolean

Note: Equivalent to
SpaceCenter.Control.sas

sas_mode
The current SpaceCenter.SASMode. These
modes are equivalent to the mode buttons to the left
of the navball that appear when SAS is enabled.

Attribute Can be read or written

Return type SpaceCenter.SASMode

Note: Equivalent to
SpaceCenter.Control.sas_mode

roll_threshold
The threshold at which the autopilot will try to match
the target roll angle, if any. Defaults to 5 degrees.

Attribute Can be read or written

Return type number

stopping_time
The maximum amount of time that the vessel should
need to come to a complete stop. This determines
the maximum angular velocity of the vessel. A
vector of three stopping times, in seconds, one for
each of the pitch, roll and yaw axes. Defaults to 0.5
seconds for each axis.

Attribute Can be read or written

Return type Tuple of (number, number, number)

deceleration_time
The time the vessel should take to come to a stop
pointing in the target direction. This determines the
angular acceleration used to decelerate the vessel. A
vector of three times, in seconds, one for each of the
pitch, roll and yaw axes. Defaults to 5 seconds for
each axis.

Attribute Can be read or written

Return type Tuple of (number, number, number)

attenuation_angle
The angle at which the autopilot considers the vessel
to be pointing close to the target. This determines
the midpoint of the target velocity attenuation
function. A vector of three angles, in degrees, one
for each of the pitch, roll and yaw axes. Defaults to
1° for each axis.

Attribute Can be read or written

398 Chapter 6. Lua

kRPC, Release 0.3.5

Return type Tuple of (number, number, number)

auto_tune
Whether the rotation rate controllers PID
parameters should be automatically tuned
using the vessels moment of inertia and
available torque. Defaults to True. See
SpaceCenter.AutoPilot.time_to_peak
and SpaceCenter.AutoPilot.overshoot.

Attribute Can be read or written

Return type boolean

time_to_peak
The target time to peak used to autotune the PID
controllers. A vector of three times, in seconds, for
each of the pitch, roll and yaw axes. Defaults to 3
seconds for each axis.

Attribute Can be read or written

Return type Tuple of (number, number, number)

overshoot
The target overshoot percentage used to autotune the
PID controllers. A vector of three values, between
0 and 1, for each of the pitch, roll and yaw axes.
Defaults to 0.01 for each axis.

Attribute Can be read or written

Return type Tuple of (number, number, number)

pitch_pid_gains
Gains for the pitch PID controller.

Attribute Can be read or written

Return type Tuple of (number, number, number)

Note: When
SpaceCenter.AutoPilot.auto_tune
is true, these values are updated automatically,
which will overwrite any manual changes.

roll_pid_gains
Gains for the roll PID controller.

Attribute Can be read or written

Return type Tuple of (number, number, number)

Note: When
SpaceCenter.AutoPilot.auto_tune
is true, these values are updated automatically,
which will overwrite any manual changes.

6.3. SpaceCenter API 399

kRPC, Release 0.3.5

yaw_pid_gains
Gains for the yaw PID controller.

Attribute Can be read or written

Return type Tuple of (number, number, number)

Note: When
SpaceCenter.AutoPilot.auto_tune
is true, these values are updated automatically,
which will overwrite any manual changes.

6.3.12 Geometry Types

class Vector3
3-dimensional vectors are represented as a 3-tuple.
For example:

local krpc = require 'krpc.init'
local conn = krpc.connect()
local v = conn.space_center.active_vessel:flight().prograde
print(v[1], v[2], v[3])

class Quaternion
Quaternions (rotations in 3-dimensional space) are
encoded as a 4-tuple containing the x, y, z and w
components. For example:

local krpc = require 'krpc.init'
local conn = krpc.connect()
local q = conn.space_center.active_vessel:flight().rotation
print(q[1], q[2], q[3], q[4])

6.3.13 Camera

class Camera
Controls the game’s camera. Obtained by calling
SpaceCenter.camera.

mode
The current mode of the camera.

Attribute Can be read or written

Return type SpaceCenter.CameraMode

pitch
The pitch of the camera, in degrees. A value be-
tween SpaceCenter.Camera.min_pitch
and SpaceCenter.Camera.max_pitch

Attribute Can be read or written

Return type number

heading
The heading of the camera, in degrees.

400 Chapter 6. Lua

kRPC, Release 0.3.5

Attribute Can be read or written

Return type number

distance
The distance from the camera to
the subject. A value between
SpaceCenter.Camera.min_distance
and SpaceCenter.Camera.max_distance.

Attribute Can be read or written

Return type number

min_pitch
The minimum pitch of the camera.

Attribute Read-only, cannot be set

Return type number

max_pitch
The maximum pitch of the camera.

Attribute Read-only, cannot be set

Return type number

min_distance
Minimum distance from the camera to the subject.

Attribute Read-only, cannot be set

Return type number

max_distance
Maximum distance from the camera to the subject.

Attribute Read-only, cannot be set

Return type number

default_distance
Default distance from the camera to the subject.

Attribute Read-only, cannot be set

Return type number

focussed_body
In map mode, the celestial body that the camera
is focussed on. Returns nil if the camera is not
focussed on a celestial body. Returns an error is the
camera is not in map mode.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

focussed_vessel
In map mode, the vessel that the camera is focussed
on. Returns nil if the camera is not focussed on a
vessel. Returns an error is the camera is not in map
mode.

Attribute Can be read or written

6.3. SpaceCenter API 401

kRPC, Release 0.3.5

Return type SpaceCenter.Vessel

focussed_node
In map mode, the maneuver node that the camera
is focussed on. Returns nil if the camera is not
focussed on a maneuver node. Returns an error is
the camera is not in map mode.

Attribute Can be read or written

Return type SpaceCenter.Node

class CameraMode
See SpaceCenter.Camera.mode.

automatic
The camera is showing the active vessel, in “auto”
mode.

free
The camera is showing the active vessel, in “free”
mode.

chase
The camera is showing the active vessel, in “chase”
mode.

locked
The camera is showing the active vessel, in “locked”
mode.

orbital
The camera is showing the active vessel, in “orbital”
mode.

iva
The Intra-Vehicular Activity view is being shown.

map
The map view is being shown.

6.4 Drawing API

6.4.1 Drawing

Provides functionality for drawing objects in the
flight scene.

static add_line(start, end, reference_frame[, visible = True])
Draw a line in the scene.

Parameters

• start (Tuple) – Position of the start of the line.

• end (Tuple) – Position of the end of the line.

• reference_frame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the positions are in.

402 Chapter 6. Lua

kRPC, Release 0.3.5

• visible (boolean) – Whether the line is visible.

Return type Drawing.Line

static add_direction(direction, reference_frame[, length = 10.0][, visible = True])
Draw a direction vector in the scene, from the center
of mass of the active vessel.

Parameters

• direction (Tuple) – Direction to draw the line
in.

• reference_frame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the direction is in.

• length (number) – The length of the line.

• visible (boolean) – Whether the line is visible.

Return type Drawing.Line

static add_polygon(vertices, reference_frame[, visible = True])
Draw a polygon in the scene, defined by a list of
vertices.

Parameters

• vertices (List) – Vertices of the polygon.

• reference_frame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the vertices are in.

• visible (boolean) – Whether the polygon is
visible.

Return type Drawing.Polygon

static add_text(text, reference_frame, position, rotation[, visible = True])
Draw text in the scene.

Parameters

• text (string) – The string to draw.

• reference_frame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the text position is in.

• position (Tuple) – Position of the text.

• rotation (Tuple) – Rotation of the text, as a
quaternion.

• visible (boolean) – Whether the text is visible.

Return type Drawing.Text

static clear([client_only = False])
Remove all objects being drawn.

Parameters client_only (boolean) – If true, only
remove objects created by the calling client.

6.4. Drawing API 403

kRPC, Release 0.3.5

6.4.2 Line

class Line
A line. Created using Drawing.add_line().

start
Start position of the line.

Attribute Can be read or written

Return type Tuple of (number, number, number)

end
End position of the line.

Attribute Can be read or written

Return type Tuple of (number, number, number)

reference_frame
Reference frame for the positions of the object.

Attribute Can be read or written

Return type SpaceCenter.ReferenceFrame

visible
Whether the object is visible.

Attribute Can be read or written

Return type boolean

color
Set the color

Attribute Can be read or written

Return type Tuple of (number, number, number)

material
Material used to render the object. Creates the ma-
terial from a shader with the given name.

Attribute Can be read or written

Return type string

thickness
Set the thickness

Attribute Can be read or written

Return type number

remove()
Remove the object.

6.4.3 Polygon

class Polygon
A polygon. Created using
Drawing.add_polygon().

404 Chapter 6. Lua

kRPC, Release 0.3.5

vertices
Vertices for the polygon.

Attribute Can be read or written

Return type List of Tuple of (number, number, number)

reference_frame
Reference frame for the positions of the object.

Attribute Can be read or written

Return type SpaceCenter.ReferenceFrame

visible
Whether the object is visible.

Attribute Can be read or written

Return type boolean

remove()
Remove the object.

color
Set the color

Attribute Can be read or written

Return type Tuple of (number, number, number)

material
Material used to render the object. Creates the ma-
terial from a shader with the given name.

Attribute Can be read or written

Return type string

thickness
Set the thickness

Attribute Can be read or written

Return type number

6.4.4 Text

class Text
Text. Created using Drawing.add_text().

position
Position of the text.

Attribute Can be read or written

Return type Tuple of (number, number, number)

rotation
Rotation of the text as a quaternion.

Attribute Can be read or written

Return type Tuple of (number, number, number, num-
ber)

6.4. Drawing API 405

kRPC, Release 0.3.5

reference_frame
Reference frame for the positions of the object.

Attribute Can be read or written

Return type SpaceCenter.ReferenceFrame

visible
Whether the object is visible.

Attribute Can be read or written

Return type boolean

remove()
Remove the object.

content
The text string

Attribute Can be read or written

Return type string

font
Name of the font

Attribute Can be read or written

Return type string

available_fonts
A list of all available fonts.

Attribute Read-only, cannot be set

Return type List of string

size
Font size.

Attribute Can be read or written

Return type number

character_size
Character size.

Attribute Can be read or written

Return type number

style
Font style.

Attribute Can be read or written

Return type UI.FontStyle

color
Set the color

Attribute Can be read or written

Return type Tuple of (number, number, number)

406 Chapter 6. Lua

kRPC, Release 0.3.5

material
Material used to render the object. Creates the ma-
terial from a shader with the given name.

Attribute Can be read or written

Return type string

alignment
Alignment.

Attribute Can be read or written

Return type UI.TextAlignment

line_spacing
Line spacing.

Attribute Can be read or written

Return type number

anchor
Anchor.

Attribute Can be read or written

Return type UI.TextAnchor

6.5 InfernalRobotics API

Provides RPCs to interact with the InfernalRobotics
mod. Provides the following classes:

6.5.1 InfernalRobotics

This service provides functionality to interact with
Infernal Robotics.

static servo_groups(vessel)
A list of all the servo groups in the given vessel.

Parameters vessel (SpaceCenter.Vessel) –

Return type List of InfernalRobotics.ServoGroup

static servo_group_with_name(vessel, name)
Returns the servo group in the given vessel with the
given name, or nil if none exists. If multiple servo
groups have the same name, only one of them is
returned.

Parameters

• vessel (SpaceCenter.Vessel) – Vessel to
check.

• name (string) – Name of servo group to find.

Return type InfernalRobotics.ServoGroup

6.5. InfernalRobotics API 407

http://forum.kerbalspaceprogram.com/index.php?/topic/104535-105-magic-smoke-industries-infernal-robotics-0214/
http://forum.kerbalspaceprogram.com/index.php?/topic/104535-105-magic-smoke-industries-infernal-robotics-0214/

kRPC, Release 0.3.5

static servo_with_name(vessel, name)
Returns the servo in the given vessel with the given
name or nil if none exists. If multiple servos have
the same name, only one of them is returned.

Parameters

• vessel (SpaceCenter.Vessel) – Vessel to
check.

• name (string) – Name of the servo to find.

Return type InfernalRobotics.Servo

6.5.2 ServoGroup

class ServoGroup
A group of ser-
vos, obtained by calling
InfernalRobotics.servo_groups()
or InfernalRobotics.servo_group_with_name().
Represents the “Servo Groups” in the Infernal-
Robotics UI.

name
The name of the group.

Attribute Can be read or written

Return type string

forward_key
The key assigned to be the “forward” key for the
group.

Attribute Can be read or written

Return type string

reverse_key
The key assigned to be the “reverse” key for the
group.

Attribute Can be read or written

Return type string

speed
The speed multiplier for the group.

Attribute Can be read or written

Return type number

expanded
Whether the group is expanded in the Infernal-
Robotics UI.

Attribute Can be read or written

Return type boolean

408 Chapter 6. Lua

kRPC, Release 0.3.5

servos
The servos that are in the group.

Attribute Read-only, cannot be set

Return type List of InfernalRobotics.Servo

servo_with_name(name)
Returns the servo with the given name from this
group, or nil if none exists.

Parameters name (string) – Name of servo to find.

Return type InfernalRobotics.Servo

parts
The parts containing the servos in the group.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Part

move_right()
Moves all of the servos in the group to the right.

move_left()
Moves all of the servos in the group to the left.

move_center()
Moves all of the servos in the group to the center.

move_next_preset()
Moves all of the servos in the group to the next
preset.

move_prev_preset()
Moves all of the servos in the group to the previous
preset.

stop()
Stops the servos in the group.

6.5.3 Servo

class Servo
Represents a servo. Obtained using
InfernalRobotics.ServoGroup.servos,
InfernalRobotics.ServoGroup.servo_with_name()
or InfernalRobotics.servo_with_name().

name
The name of the servo.

Attribute Can be read or written

Return type string

part
The part containing the servo.

Attribute Read-only, cannot be set

6.5. InfernalRobotics API 409

kRPC, Release 0.3.5

Return type SpaceCenter.Part

highlight
Whether the servo should be highlighted in-game.

Attribute Write-only, cannot be read

Return type boolean

position
The position of the servo.

Attribute Read-only, cannot be set

Return type number

min_config_position
The minimum position of the servo, specified by the
part configuration.

Attribute Read-only, cannot be set

Return type number

max_config_position
The maximum position of the servo, specified by
the part configuration.

Attribute Read-only, cannot be set

Return type number

min_position
The minimum position of the servo, specified by the
in-game tweak menu.

Attribute Can be read or written

Return type number

max_position
The maximum position of the servo, specified by
the in-game tweak menu.

Attribute Can be read or written

Return type number

config_speed
The speed multiplier of the servo, specified by the
part configuration.

Attribute Read-only, cannot be set

Return type number

speed
The speed multiplier of the servo, specified by the
in-game tweak menu.

Attribute Can be read or written

Return type number

current_speed
The current speed at which the servo is moving.

410 Chapter 6. Lua

kRPC, Release 0.3.5

Attribute Can be read or written

Return type number

acceleration
The current speed multiplier set in the UI.

Attribute Can be read or written

Return type number

is_moving
Whether the servo is moving.

Attribute Read-only, cannot be set

Return type boolean

is_free_moving
Whether the servo is freely moving.

Attribute Read-only, cannot be set

Return type boolean

is_locked
Whether the servo is locked.

Attribute Can be read or written

Return type boolean

is_axis_inverted
Whether the servos axis is inverted.

Attribute Can be read or written

Return type boolean

move_right()
Moves the servo to the right.

move_left()
Moves the servo to the left.

move_center()
Moves the servo to the center.

move_next_preset()
Moves the servo to the next preset.

move_prev_preset()
Moves the servo to the previous preset.

move_to(position, speed)
Moves the servo to position and sets the speed mul-
tiplier to speed.

Parameters

• position (number) – The position to move the
servo to.

• speed (number) – Speed multiplier for the move-
ment.

6.5. InfernalRobotics API 411

kRPC, Release 0.3.5

stop()
Stops the servo.

6.5.4 Example

The following example gets the control group named
“MyGroup”, prints out the names and positions of
all of the servos in the group, then moves all of the
servos to the right for 1 second.

local krpc = require 'krpc.init'
local platform = require 'krpc.platform'
local Types = require 'krpc.types'

local conn = krpc.connect(nil, nil, nil, 'InfernalRobotics Example')
local vessel = conn.space_center.active_vessel

local group = conn.infernal_robotics.servo_group_with_name(vessel, 'MyGroup')
if group == Types.none then

print('Group not found')
os.exit(1)

end

for _,servo in ipairs(group.servos) do
print(servo.name, servo.position)

end

group:move_right()
platform.sleep(1)
group:stop()

6.6 Kerbal Alarm Clock API

Provides RPCs to interact with the Kerbal Alarm
Clock mod. Provides the following classes:

6.6.1 KerbalAlarmClock

This service provides functionality to interact with
Kerbal Alarm Clock.

alarms
A list of all the alarms.

Attribute Read-only, cannot be set

Return type List of KerbalAlarmClock.Alarm

static alarm_with_name(name)
Get the alarm with the given name, or nil if no
alarms have that name. If more than one alarm has
the name, only returns one of them.

Parameters name (string) – Name of the alarm to
search for.

412 Chapter 6. Lua

http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/
http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/
http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/

kRPC, Release 0.3.5

Return type KerbalAlarmClock.Alarm

static alarms_with_type(type)
Get a list of alarms of the specified type.

Parameters type (KerbalAlarmClock.AlarmType)
– Type of alarm to return.

Return type List of KerbalAlarmClock.Alarm

static create_alarm(type, name, ut)
Create a new alarm and return it.

Parameters

• type (KerbalAlarmClock.AlarmType) –
Type of the new alarm.

• name (string) – Name of the new alarm.

• ut (number) – Time at which the new alarm should
trigger.

Return type KerbalAlarmClock.Alarm

6.6.2 Alarm

class Alarm
Represents an alarm.
Obtained by calling
KerbalAlarmClock.alarms,
KerbalAlarmClock.alarm_with_name()
or KerbalAlarmClock.alarms_with_type().

action
The action that the alarm triggers.

Attribute Can be read or written

Return type KerbalAlarmClock.AlarmAction

margin
The number of seconds before the event that the
alarm will fire.

Attribute Can be read or written

Return type number

time
The time at which the alarm will fire.

Attribute Can be read or written

Return type number

type
The type of the alarm.

Attribute Read-only, cannot be set

Return type KerbalAlarmClock.AlarmType

6.6. Kerbal Alarm Clock API 413

kRPC, Release 0.3.5

id
The unique identifier for the alarm.

Attribute Read-only, cannot be set

Return type string

name
The short name of the alarm.

Attribute Can be read or written

Return type string

notes
The long description of the alarm.

Attribute Can be read or written

Return type string

remaining
The number of seconds until the alarm will fire.

Attribute Read-only, cannot be set

Return type number

repeat
Whether the alarm will be repeated after it has fired.

Attribute Can be read or written

Return type boolean

repeat_period
The time delay to automatically create an alarm
after it has fired.

Attribute Can be read or written

Return type number

vessel
The vessel that the alarm is attached to.

Attribute Can be read or written

Return type SpaceCenter.Vessel

xfer_origin_body
The celestial body the vessel is departing from.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

xfer_target_body
The celestial body the vessel is arriving at.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

remove()
Removes the alarm.

414 Chapter 6. Lua

kRPC, Release 0.3.5

6.6.3 AlarmType

class AlarmType
The type of an alarm.

raw
An alarm for a specific date/time or a specific period
in the future.

maneuver
An alarm based on the next maneuver node on the
current ships flight path. This node will be stored
and can be restored when you come back to the ship.

maneuver_auto
See KerbalAlarmClock.AlarmType.maneuver.

apoapsis
An alarm for furthest part of the orbit from the
planet.

periapsis
An alarm for nearest part of the orbit from the planet.

ascending_node
Ascending node for the targeted object, or equatorial
ascending node.

descending_node
Descending node for the targeted object, or equato-
rial descending node.

closest
An alarm based on the closest approach of this ves-
sel to the targeted vessel, some number of orbits
into the future.

contract
An alarm based on the expiry or deadline of con-
tracts in career modes.

contract_auto
See KerbalAlarmClock.AlarmType.contract.

crew
An alarm that is attached to a crew member.

distance
An alarm that is triggered when a selected target
comes within a chosen distance.

earth_time
An alarm based on the time in the “Earth” alternative
Universe (aka the Real World).

launch_rendevous
An alarm that fires as your landed craft passes under
the orbit of your target.

soi_change
An alarm manually based on when the next SOI

6.6. Kerbal Alarm Clock API 415

kRPC, Release 0.3.5

point is on the flight path or set to continually
monitor the active flight path and add alarms as it
detects SOI changes.

soi_change_auto
See KerbalAlarmClock.AlarmType.soi_change.

transfer
An alarm based on Interplanetary Transfer Phase
Angles, i.e. when should I launch to planet X?
Based on Kosmo Not’s post and used in Olex’s
Calculator.

transfer_modelled
See KerbalAlarmClock.AlarmType.transfer.

6.6.4 AlarmAction

class AlarmAction
The action performed by an alarm when it fires.

do_nothing
Don’t do anything at all...

do_nothing_delete_when_passed
Don’t do anything, and delete the alarm.

kill_warp
Drop out of time warp.

kill_warp_only
Drop out of time warp.

message_only
Display a message.

pause_game
Pause the game.

6.6.5 Example

The following example creates a new alarm for the
active vessel. The alarm is set to trigger after 10 sec-
onds have passed, and display a message.

local krpc = require 'krpc.init'
local conn = krpc.connect(nil, nil, nil, 'Kerbal Alarm Clock Example')

local alarm = conn.kerbal_alarm_clock.create_alarm(
conn.kerbal_alarm_clock.AlarmType.raw,
'My New Alarm',
conn.space_center.ut+10)

alarm.notes = '10 seconds have now passed since the alarm was created.'
alarm.action = conn.kerbal_alarm_clock.AlarmAction.message_only

416 Chapter 6. Lua

kRPC, Release 0.3.5

6.7 RemoteTech API

6.7.1 RemoteTech

This service provides functionality to interact with
RemoteTech.

ground_stations
The names of the ground stations.

Attribute Read-only, cannot be set

Return type List of string

static comms(vessel)
Get a communications object, representing the com-
munication capability of a particular vessel.

Parameters vessel (SpaceCenter.Vessel) –

Return type RemoteTech.Comms

static antenna(part)
Get the antenna object for a particular part.

Parameters part (SpaceCenter.Part) –

Return type RemoteTech.Antenna

6.7.2 Comms

class Comms
Communications for a vessel.

vessel
Get the vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Vessel

has_local_control
Whether the vessel can be controlled locally.

Attribute Read-only, cannot be set

Return type boolean

has_flight_computer
Whether the vessel has a flight computer on board.

Attribute Read-only, cannot be set

Return type boolean

has_connection
Whether the vessel has any connection.

Attribute Read-only, cannot be set

Return type boolean

6.7. RemoteTech API 417

http://forum.kerbalspaceprogram.com/index.php?/topic/75245-11-remotetech-v1610-2016-04-12/

kRPC, Release 0.3.5

has_connection_to_ground_station
Whether the vessel has a connection to a ground
station.

Attribute Read-only, cannot be set

Return type boolean

signal_delay
The shortest signal delay to the vessel, in seconds.

Attribute Read-only, cannot be set

Return type number

signal_delay_to_ground_station
The signal delay between the vessel and the closest
ground station, in seconds.

Attribute Read-only, cannot be set

Return type number

signal_delay_to_vessel(other)
The signal delay between the this vessel and another
vessel, in seconds.

Parameters other (SpaceCenter.Vessel) –

Return type number

antennas
The antennas for this vessel.

Attribute Read-only, cannot be set

Return type List of RemoteTech.Antenna

6.7.3 Antenna

class Antenna
A RemoteTech antenna. Obtained by call-
ing RemoteTech.Comms.antennas or
RemoteTech.antenna().

part
Get the part containing this antenna.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

has_connection
Whether the antenna has a connection.

Attribute Read-only, cannot be set

Return type boolean

target
The object that the
antenna is target-
ting. This prop-
erty can be used

418 Chapter 6. Lua

kRPC, Release 0.3.5

to set the target to
RemoteTech.Target.none or
RemoteTech.Target.active_vessel.
To set the target to a ce-
lestial body, ground sta-
tion or vessel see
RemoteTech.Antenna.target_body ,
RemoteTech.Antenna.target_ground_station
and RemoteTech.Antenna.target_vessel.

Attribute Can be read or written

Return type RemoteTech.Target

target_body
The celestial body the antenna is targetting.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

target_ground_station
The ground station the antenna is targetting.

Attribute Can be read or written

Return type string

target_vessel
The vessel the antenna is targetting.

Attribute Can be read or written

Return type SpaceCenter.Vessel

class Target
The type of object an antenna is targetting. See
RemoteTech.Antenna.target.

active_vessel
The active vessel.

celestial_body
A celestial body.

ground_station
A ground station.

vessel
A specific vessel.

none
No target.

6.8 User Interface API

6.8.1 UI

Provides functionality for drawing and interacting
with in-game user interface elements.

6.8. User Interface API 419

kRPC, Release 0.3.5

stock_canvas
The stock UI canvas.

Attribute Read-only, cannot be set

Return type UI.Canvas

static add_canvas()
Add a new canvas.

Return type UI.Canvas

Note: If you want to add UI elements to KSPs stock
UI canvas, use UI.stock_canvas.

static message(content[, duration = 1.0][, position = 1])
Display a message on the screen.

Parameters

• content (string) – Message content.

• duration (number) – Duration before the mes-
sage disappears, in seconds.

• position (UI.MessagePosition) – Position
to display the message.

Note: The message appears just like a stock mes-
sage, for example quicksave or quickload messages.

static clear([client_only = False])
Remove all user interface elements.

Parameters client_only (boolean) – If true, only
remove objects created by the calling client.

class MessagePosition
Message position.

top_left
Top left.

top_center
Top center.

top_right
Top right.

bottom_center
Bottom center.

6.8.2 Canvas

class Canvas
A canvas for user interface elements. See
UI.stock_canvas and UI.add_canvas().

420 Chapter 6. Lua

kRPC, Release 0.3.5

rect_transform
The rect transform for the canvas.

Attribute Read-only, cannot be set

Return type UI.RectTransform

visible
Whether the UI object is visible.

Attribute Can be read or written

Return type boolean

add_panel([visible = True])
Create a new container for user interface elements.

Parameters visible (boolean) – Whether the
panel is visible.

Return type UI.Panel

add_text(content[, visible = True])
Add text to the canvas.

Parameters

• content (string) – The text.

• visible (boolean) – Whether the text is visible.

Return type UI.Text

add_input_field([visible = True])
Add an input field to the canvas.

Parameters visible (boolean) – Whether the in-
put field is visible.

Return type UI.InputField

add_button(content[, visible = True])
Add a button to the canvas.

Parameters

• content (string) – The label for the button.

• visible (boolean) – Whether the button is vis-
ible.

Return type UI.Button

remove()
Remove the UI object.

6.8.3 Panel

class Panel
A container for user interface elements. See
UI.Canvas.add_panel().

rect_transform
The rect transform for the panel.

6.8. User Interface API 421

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type UI.RectTransform

visible
Whether the UI object is visible.

Attribute Can be read or written

Return type boolean

add_panel([visible = True])
Create a panel within this panel.

Parameters visible (boolean) – Whether the new
panel is visible.

Return type UI.Panel

add_text(content[, visible = True])
Add text to the panel.

Parameters

• content (string) – The text.

• visible (boolean) – Whether the text is visible.

Return type UI.Text

add_input_field([visible = True])
Add an input field to the panel.

Parameters visible (boolean) – Whether the in-
put field is visible.

Return type UI.InputField

add_button(content[, visible = True])
Add a button to the panel.

Parameters

• content (string) – The label for the button.

• visible (boolean) – Whether the button is vis-
ible.

Return type UI.Button

remove()
Remove the UI object.

6.8.4 Text

class Text
A text label. See UI.Panel.add_text().

rect_transform
The rect transform for the text.

Attribute Read-only, cannot be set

Return type UI.RectTransform

422 Chapter 6. Lua

kRPC, Release 0.3.5

visible
Whether the UI object is visible.

Attribute Can be read or written

Return type boolean

content
The text string

Attribute Can be read or written

Return type string

font
Name of the font

Attribute Can be read or written

Return type string

available_fonts
A list of all available fonts.

Attribute Read-only, cannot be set

Return type List of string

size
Font size.

Attribute Can be read or written

Return type number

style
Font style.

Attribute Can be read or written

Return type UI.FontStyle

color
Set the color

Attribute Can be read or written

Return type Tuple of (number, number, number)

alignment
Alignment.

Attribute Can be read or written

Return type UI.TextAnchor

line_spacing
Line spacing.

Attribute Can be read or written

Return type number

remove()
Remove the UI object.

class FontStyle
Font style.

6.8. User Interface API 423

kRPC, Release 0.3.5

normal
Normal.

bold
Bold.

italic
Italic.

bold_and_italic
Bold and italic.

class TextAlignment
Text alignment.

left
Left aligned.

right
Right aligned.

center
Center aligned.

class TextAnchor
Text alignment.

lower_center
Lower center.

lower_left
Lower left.

lower_right
Lower right.

middle_center
Middle center.

middle_left
Middle left.

middle_right
Middle right.

upper_center
Upper center.

upper_left
Upper left.

upper_right
Upper right.

6.8.5 Button

class Button
A text label. See UI.Panel.add_button().

rect_transform
The rect transform for the text.

Attribute Read-only, cannot be set

424 Chapter 6. Lua

kRPC, Release 0.3.5

Return type UI.RectTransform

visible
Whether the UI object is visible.

Attribute Can be read or written

Return type boolean

text
The text for the button.

Attribute Read-only, cannot be set

Return type UI.Text

clicked
Whether the button has been clicked.

Attribute Can be read or written

Return type boolean

Note: This property is set to true when the user
clicks the button. A client script should reset the
property to false in order to detect subsequent but-
ton presses.

remove()
Remove the UI object.

6.8.6 InputField

class InputField
An input field. See
UI.Panel.add_input_field().

rect_transform
The rect transform for the input field.

Attribute Read-only, cannot be set

Return type UI.RectTransform

visible
Whether the UI object is visible.

Attribute Can be read or written

Return type boolean

value
The value of the input field.

Attribute Can be read or written

Return type string

text
The text component of the input field.

Attribute Read-only, cannot be set

6.8. User Interface API 425

kRPC, Release 0.3.5

Return type UI.Text

Note: Use UI.InputField.value to get and
set the value in the field. This object can be used to
alter the style of the input field’s text.

changed
Whether the input field has been changed.

Attribute Can be read or written

Return type boolean

Note: This property is set to true when the user
modifies the value of the input field. A client script
should reset the property to false in order to detect
subsequent changes.

remove()
Remove the UI object.

6.8.7 Rect Transform

class RectTransform
A Unity engine Rect Transform for a UI object. See
the Unity manual for more details.

position
Position of the rectangles pivot point relative to the
anchors.

Attribute Can be read or written

Return type Tuple of (number, number)

local_position
Position of the rectangles pivot point relative to the
anchors.

Attribute Can be read or written

Return type Tuple of (number, number, number)

size
Width and height of the rectangle.

Attribute Can be read or written

Return type Tuple of (number, number)

upper_right
Position of the rectangles upper right corner relative
to the anchors.

Attribute Can be read or written

Return type Tuple of (number, number)

426 Chapter 6. Lua

http://docs.unity3d.com/Manual/class-RectTransform.html

kRPC, Release 0.3.5

lower_left
Position of the rectangles lower left corner relative
to the anchors.

Attribute Can be read or written

Return type Tuple of (number, number)

anchor
Set the minimum and maximum anchor points as a
fraction of the size of the parent rectangle.

Attribute Write-only, cannot be read

Return type Tuple of (number, number)

anchor_max
The anchor point for the lower left corner of the
rectangle defined as a fraction of the size of the
parent rectangle.

Attribute Can be read or written

Return type Tuple of (number, number)

anchor_min
The anchor point for the upper right corner of the
rectangle defined as a fraction of the size of the
parent rectangle.

Attribute Can be read or written

Return type Tuple of (number, number)

pivot
Location of the pivot point around which the rect-
angle rotates, defined as a fraction of the size of the
rectangle itself.

Attribute Can be read or written

Return type Tuple of (number, number)

rotation
Rotation, as a quaternion, of the object around its
pivot point.

Attribute Can be read or written

Return type Tuple of (number, number, number, num-
ber)

scale
Scale factor applied to the object in the x, y and z
dimensions.

Attribute Can be read or written

Return type Tuple of (number, number, number)

6.8. User Interface API 427

kRPC, Release 0.3.5

428 Chapter 6. Lua

CHAPTER

SEVEN

PYTHON

7.1 Python Client

This client provides functionality to interact with a kRPC server from programs written in Python. It can be installed
using PyPI or downloaded from GitHub.

7.1.1 Installing the Library

The python client and all of its dependencies can be installed using pip with a single command. It supports Python
2.7+ and 3.x

On linux:

pip install krpc

On Windows:

C:\Python27\Scripts\pip.exe install krpc

7.1.2 Using the Library

Once it’s installed, simply import krpc and you are good to go! You can check what version you have installed by
running the following script:

import krpc
print(krpc.__version__)

7.1.3 Connecting to the Server

To connect to a server, use the krpc.connect() function. This returns a connection object through which you can
interact with the server. For example to connect to a server running on the local machine:

import krpc
conn = krpc.connect(name='Example')
print(conn.krpc.get_status().version)

This function also accepts arguments that specify what address and port numbers to connect to. For example:

import krpc
conn = krpc.connect(name='Remote example', address='my.domain.name', rpc_port=1000, stream_port=1001)
print(conn.krpc.get_status().version)

429

https://pypi.python.org/pypi/krpc
https://pypi.python.org/pypi/krpc
https://github.com/krpc/krpc/releases/download/v0.3.5/krpc-python-0.3.5.zip

kRPC, Release 0.3.5

7.1.4 Interacting with the Server

Interaction with the server is performed via the client object (of type krpc.client.Client) returned when con-
necting to the server using krpc.connect().

Upon connecting, the client interrogates the server to find out what functionality it provides and dynamically adds all
of the classes, methods, properties to the client object.

For example, all of the functionality provided by the SpaceCenter service is accessible via conn.space_center
and the functionality provided by the InfernalRobotics service is accessible via conn.infernal_robotics. To
explore the functionality provided by a service, you can use the help() function from an interactive terminal. For
example, running help(conn.space_center) will list all of the classes, enumerations, procedures and proper-
ties provides by the SpaceCenter service. Or for a class, such as the vessel class provided by the SpaceCenter service
by calling help(conn.space_center.Vessel).

Calling methods, getting or setting properties, etc. are mapped to remote procedure calls and passed to the server by
the python client.

7.1.5 Streaming Data from the Server

A stream repeatedly executes a function on the server, with a fixed set of argument values. It provides a more efficient
way of repeatedly getting the result of a function, avoiding the network overhead of having to invoke it directly.

For example, consider the following loop that continuously prints out the position of the active vessel. This loop incurs
significant communication overheads, as the vessel.position function is called repeatedly.

vessel = conn.space_center.active_vessel
refframe = vessel.orbit.body.reference_frame
while True:

print vessel.position(refframe)

The following code achieves the same thing, but is far more efficient. It calls
krpc.client.Client.add_stream() once at the start of the program to create a stream, and then
repeatedly gets the position from the stream.

vessel = conn.space_center.active_vessel
refframe = vessel.orbit.body.reference_frame
position = conn.add_stream(vessel.position, refframe)
while True:

print position()

A stream can be created by calling krpc.client.Client.add_stream() or using the with state-
ment applied to krpc.client.Client.stream(). Both of these approaches return an instance of the
krpc.stream.Stream class.

Both methods and attributes can be streamed. The example given above demonstrates how to stream methods. The
following example shows how to stream an attribute (in this case vessel.control.abort):

abort = conn.add_stream(getattr, vessel.control, 'abort')
while not abort():

...

7.1.6 Client API Reference

connect([address=‘127.0.0.1’][, rpc_port=50000][, stream_port=50001][, name=None])
This function creates a connection to a kRPC server. It returns a krpc.client.Client object, through
which the server can be communicated with.

430 Chapter 7. Python

kRPC, Release 0.3.5

Parameters

• address (str) – The address of the server to connect to. Can either be a hostname or an
IP address in dotted decimal notation. Defaults to ‘127.0.0.1’.

• rpc_port (int) – The port number of the RPC Server. Defaults to 50000.

• stream_port (int) – The port number of the Stream Server. Defaults to 50001.

• name (str) – A descriptive name for the connection. This is passed to the server and
appears, for example, in the client connection dialog on the in-game server window.

class Client
This class provides the interface for communicating with the server. It is dynamically populated with all the
functionality provided by the server. Instances of this class should be obtained by calling krpc.connect().

add_stream(func, *args, **kwargs)
Create a stream for the function func called with arguments args and kwargs. Returns a
krpc.stream.Stream object.

stream(func, *args, **kwargs)
Allows use of the with statement to create a stream and automatically remove it from the server when it
goes out of scope. The function to be streamed should be passed as func, and its arguments as args and
kwargs.

For example, to stream the result of method call vessel.position(refframe):

vessel = conn.space_center.active_vessel
refframe = vessel.orbit.body.reference_frame
with conn.stream(vessel.position, refframe) as pos:

print('Position =', pos())

Or to stream the property conn.space_center.ut:

with conn.stream(getattr(conn.space_center, 'ut')) as ut:
print('Universal Time =', ut())

close()
Closes the connection to the server.

krpc
The built-in KRPC class, providing basic interactions with the server.

Return type krpc.client.KRPC

class KRPC
This class provides access to the basic server functionality provided by the KRPC service. An instance can
be obtained by calling krpc.client.Client.krpc. Most of this functionality is used internally by the
python client (for example to create and remove streams) and therefore does not need to be used directly from
application code. The only exception that may be useful is:

get_status()
Gets a status message from the server containing information including the server’s version string and
performance statistics.

For example, the following prints out the version string for the server:

print('Server version =', conn.krpc.get_status().version)

Or to get the rate at which the server is sending and receiving data over the network:

7.1. Python Client 431

kRPC, Release 0.3.5

status = conn.krpc.get_status()
print('Data in =', (status.bytes_read_rate/1024.0), 'KB/s')
print('Data out =', (status.bytes_written_rate/1024.0), 'KB/s')

class Stream

__call__()
Gets the most recently received value for the stream.

remove()
Remove the stream from the server.

7.2 KRPC API

Main kRPC service, used by clients to interact with basic server functionality.

static get_status()
Returns some information about the server, such as the version.

Return type krpc.schema.KRPC.Status

static get_services()
Returns information on all services, procedures, classes, properties etc. provided by the server. Can be used by
client libraries to automatically create functionality such as stubs.

Return type krpc.schema.KRPC.Services

current_game_scene
Get the current game scene.

Attribute Read-only, cannot be set

Return type GameScene

static add_stream(request)
Add a streaming request and return its identifier.

Parameters request (krpc.schema.KRPC.Request) –

Return type int

Note: Do not call this method from client code. Use streams provided by the Python client library.

static remove_stream(id)
Remove a streaming request.

Parameters id (int) –

Note: Do not call this method from client code. Use streams provided by the Python client library.

class GameScene
The game scene. See current_game_scene.

space_center
The game scene showing the Kerbal Space Center buildings.

432 Chapter 7. Python

kRPC, Release 0.3.5

flight
The game scene showing a vessel in flight (or on the launchpad/runway).

tracking_station
The tracking station.

editor_vab
The Vehicle Assembly Building.

editor_sph
The Space Plane Hangar.

7.3 SpaceCenter API

7.3.1 SpaceCenter

Provides functionality to interact with Kerbal Space Program. This includes controlling the active vessel, managing
its resources, planning maneuver nodes and auto-piloting.

active_vessel
The currently active vessel.

Attribute Can be read or written

Return type Vessel

vessels
A list of all the vessels in the game.

Attribute Read-only, cannot be set

Return type list of Vessel

bodies
A dictionary of all celestial bodies (planets, moons, etc.) in the game, keyed by the name of the body.

Attribute Read-only, cannot be set

Return type dict from str to CelestialBody

target_body
The currently targeted celestial body.

Attribute Can be read or written

Return type CelestialBody

target_vessel
The currently targeted vessel.

Attribute Can be read or written

Return type Vessel

target_docking_port
The currently targeted docking port.

Attribute Can be read or written

Return type DockingPort

static clear_target()
Clears the current target.

7.3. SpaceCenter API 433

kRPC, Release 0.3.5

static launchable_vessels(craft_directory)
Returns a list of vessels from the given craft_directory that can be launched.

Parameters craft_directory (str) – Name of the directory in the current saves “Ships” di-
rectory. For example "VAB" or "SPH".

Return type list of str

static launch_vessel(craft_directory, name, launch_site)
Launch a vessel.

Parameters

• craft_directory (str) – Name of the directory in the current saves “Ships” directory,
that contains the craft file. For example "VAB" or "SPH".

• name (str) – Name of the vessel to launch. This is the name of the ”.craft” file in the save
directory, without the ”.craft” file extension.

• launch_site (str) – Name of the launch site. For example "LaunchPad" or
"Runway".

static launch_vessel_from_vab(name)
Launch a new vessel from the VAB onto the launchpad.

Parameters name (str) – Name of the vessel to launch.

Note: This is equivalent to calling launch_vessel() with the craft directory set to “VAB” and the launch
site set to “LaunchPad”.

static launch_vessel_from_sph(name)
Launch a new vessel from the SPH onto the runway.

Parameters name (str) – Name of the vessel to launch.

Note: This is equivalent to calling launch_vessel() with the craft directory set to “SPH” and the launch
site set to “Runway”.

static save(name)
Save the game with a given name. This will create a save file called name.sfs in the folder of the current save
game.

Parameters name (str) –

static load(name)
Load the game with the given name. This will create a load a save file called name.sfs from the folder of the
current save game.

Parameters name (str) –

static quicksave()
Save a quicksave.

Note: This is the same as calling save() with the name “quicksave”.

static quickload()
Load a quicksave.

434 Chapter 7. Python

kRPC, Release 0.3.5

Note: This is the same as calling load() with the name “quicksave”.

camera
An object that can be used to control the camera.

Attribute Read-only, cannot be set

Return type Camera

ut
The current universal time in seconds.

Attribute Read-only, cannot be set

Return type float

g
The value of the gravitational constant G in 𝑁(𝑚/𝑘𝑔)2.

Attribute Read-only, cannot be set

Return type float

warp_mode
The current time warp mode. Returns WarpMode.none if time warp is not active, WarpMode.rails if
regular “on-rails” time warp is active, or WarpMode.physics if physical time warp is active.

Attribute Read-only, cannot be set

Return type WarpMode

warp_rate
The current warp rate. This is the rate at which time is passing for either on-rails or physical time warp. For
example, a value of 10 means time is passing 10x faster than normal. Returns 1 if time warp is not active.

Attribute Read-only, cannot be set

Return type float

warp_factor
The current warp factor. This is the index of the rate at which time is passing for either regular “on-rails”
or physical time warp. Returns 0 if time warp is not active. When in on-rails time warp, this is equal to
rails_warp_factor, and in physics time warp, this is equal to physics_warp_factor.

Attribute Read-only, cannot be set

Return type float

rails_warp_factor
The time warp rate, using regular “on-rails” time warp. A value between 0 and 7 inclusive. 0 means no time
warp. Returns 0 if physical time warp is active. If requested time warp factor cannot be set, it will be set to the
next lowest possible value. For example, if the vessel is too close to a planet. See the KSP wiki for details.

Attribute Can be read or written

Return type int

physics_warp_factor
The physical time warp rate. A value between 0 and 3 inclusive. 0 means no time warp. Returns 0 if regular
“on-rails” time warp is active.

Attribute Can be read or written

Return type int

7.3. SpaceCenter API 435

https://en.wikipedia.org/wiki/Gravitational_constant
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.3.5

static can_rails_warp_at([factor = 1])
Returns True if regular “on-rails” time warp can be used, at the specified warp factor. The maximum time
warp rate is limited by various things, including how close the active vessel is to a planet. See the KSP wiki for
details.

Parameters factor (int) – The warp factor to check.

Return type bool

maximum_rails_warp_factor
The current maximum regular “on-rails” warp factor that can be set. A value between 0 and 7 inclusive. See the
KSP wiki for details.

Attribute Read-only, cannot be set

Return type int

static warp_to(ut[, max_rails_rate = 100000.0][, max_physics_rate = 2.0])
Uses time acceleration to warp forward to a time in the future, specified by universal time ut. This call blocks
until the desired time is reached. Uses regular “on-rails” or physical time warp as appropriate. For example,
physical time warp is used when the active vessel is traveling through an atmosphere. When using regular “on-
rails” time warp, the warp rate is limited by max_rails_rate, and when using physical time warp, the warp rate
is limited by max_physics_rate.

Parameters

• ut (float) – The universal time to warp to, in seconds.

• max_rails_rate (float) – The maximum warp rate in regular “on-rails” time warp.

• max_physics_rate (float) – The maximum warp rate in physical time warp.

Returns When the time warp is complete.

static transform_position(position, from, to)
Converts a position vector from one reference frame to another.

Parameters

• position (tuple) – Position vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the position vector is in.

• to (ReferenceFrame) – The reference frame to covert the position vector to.

Returns The corresponding position vector in reference frame to.

Return type tuple of (float, float, float)

static transform_direction(direction, from, to)
Converts a direction vector from one reference frame to another.

Parameters

• direction (tuple) – Direction vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the direction vector is in.

• to (ReferenceFrame) – The reference frame to covert the direction vector to.

Returns The corresponding direction vector in reference frame to.

Return type tuple of (float, float, float)

static transform_rotation(rotation, from, to)
Converts a rotation from one reference frame to another.

436 Chapter 7. Python

http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.3.5

Parameters

• rotation (tuple) – Rotation in reference frame from.

• from (ReferenceFrame) – The reference frame that the rotation is in.

• to (ReferenceFrame) – The corresponding rotation in reference frame to.

Returns The corresponding rotation in reference frame to.

Return type tuple of (float, float, float, float)

static transform_velocity(position, velocity, from, to)
Converts a velocity vector (acting at the specified position vector) from one reference frame to another. The
position vector is required to take the relative angular velocity of the reference frames into account.

Parameters

• position (tuple) – Position vector in reference frame from.

• velocity (tuple) – Velocity vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the position and velocity vectors
are in.

• to (ReferenceFrame) – The reference frame to covert the velocity vector to.

Returns The corresponding velocity in reference frame to.

Return type tuple of (float, float, float)

far_available
Whether Ferram Aerospace Research is installed.

Attribute Read-only, cannot be set

Return type bool

class WarpMode
The time warp mode. Returned by WarpMode

rails
Time warp is active, and in regular “on-rails” mode.

physics
Time warp is active, and in physical time warp mode.

none
Time warp is not active.

7.3.2 Vessel

class Vessel
These objects are used to interact with vessels in KSP. This includes getting orbital and flight data, manipulating
control inputs and managing resources. Created using active_vessel or vessels.

name
The name of the vessel.

Attribute Can be read or written

Return type str

type
The type of the vessel.

7.3. SpaceCenter API 437

http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

Attribute Can be read or written

Return type VesselType

situation
The situation the vessel is in.

Attribute Read-only, cannot be set

Return type VesselSituation

recoverable
Whether the vessel is recoverable.

Attribute Read-only, cannot be set

Return type bool

recover()
Recover the vessel.

met
The mission elapsed time in seconds.

Attribute Read-only, cannot be set

Return type float

flight([reference_frame = None])
Returns a Flight object that can be used to get flight telemetry for the vessel, in the specified reference
frame.

Parameters reference_frame (ReferenceFrame) – Reference frame. Defaults to the
vessel’s surface reference frame (Vessel.surface_reference_frame).

Return type Flight

Note: When this is called with no arguments, the vessel’s surface reference frame is used. This reference
frame moves with the vessel, therefore velocities and speeds returned by the flight object will be zero. See
the reference frames tutorial for examples of getting the orbital speed and surface speed of a vessel.

orbit
The current orbit of the vessel.

Attribute Read-only, cannot be set

Return type Orbit

control
Returns a Control object that can be used to manipulate the vessel’s control inputs. For example, its
pitch/yaw/roll controls, RCS and thrust.

Attribute Read-only, cannot be set

Return type Control

auto_pilot
An AutoPilot object, that can be used to perform simple auto-piloting of the vessel.

Attribute Read-only, cannot be set

Return type AutoPilot

438 Chapter 7. Python

kRPC, Release 0.3.5

resources
A Resources object, that can used to get information about resources stored in the vessel.

Attribute Read-only, cannot be set

Return type Resources

resources_in_decouple_stage(stage[, cumulative = True])
Returns a Resources object, that can used to get information about resources stored in a given stage.

Parameters

• stage (int) – Get resources for parts that are decoupled in this stage.

• cumulative (bool) – When False, returns the resources for parts decoupled in just
the given stage. When True returns the resources decoupled in the given stage and all
subsequent stages combined.

Return type Resources

Note: For details on stage numbering, see the discussion on Staging.

parts
A Parts object, that can used to interact with the parts that make up this vessel.

Attribute Read-only, cannot be set

Return type Parts

mass
The total mass of the vessel, including resources, in kg.

Attribute Read-only, cannot be set

Return type float

dry_mass
The total mass of the vessel, excluding resources, in kg.

Attribute Read-only, cannot be set

Return type float

thrust
The total thrust currently being produced by the vessel’s engines, in Newtons. This is computed by sum-
ming Engine.thrust for every engine in the vessel.

Attribute Read-only, cannot be set

Return type float

available_thrust
Gets the total available thrust that can be produced by the vessel’s active engines, in Newtons. This is
computed by summing Engine.available_thrust for every active engine in the vessel.

Attribute Read-only, cannot be set

Return type float

max_thrust
The total maximum thrust that can be produced by the vessel’s active engines, in Newtons. This is com-
puted by summing Engine.max_thrust for every active engine.

Attribute Read-only, cannot be set

7.3. SpaceCenter API 439

kRPC, Release 0.3.5

Return type float

max_vacuum_thrust
The total maximum thrust that can be produced by the vessel’s active engines when the vessel is in a
vacuum, in Newtons. This is computed by summing Engine.max_vacuum_thrust for every active
engine.

Attribute Read-only, cannot be set

Return type float

specific_impulse
The combined specific impulse of all active engines, in seconds. This is computed using the formula
described here.

Attribute Read-only, cannot be set

Return type float

vacuum_specific_impulse
The combined vacuum specific impulse of all active engines, in seconds. This is computed using the
formula described here.

Attribute Read-only, cannot be set

Return type float

kerbin_sea_level_specific_impulse
The combined specific impulse of all active engines at sea level on Kerbin, in seconds. This is computed
using the formula described here.

Attribute Read-only, cannot be set

Return type float

moment_of_inertia
The moment of inertia of the vessel around its center of mass in 𝑘𝑔.𝑚2. The inertia values are
around the pitch, roll and yaw directions respectively. This corresponds to the vessels reference frame
(Vessel.reference_frame).

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

inertia_tensor
The inertia tensor of the vessel around its center of mass, in the vessels reference frame
(Vessel.reference_frame). Returns the 3x3 matrix as a list of elements, in row-major order.

Attribute Read-only, cannot be set

Return type list of float

available_torque
The maximum torque that the vessel generate. Includes contributions from reaction wheels, RCS, gim-
balled engines and aerodynamic control surfaces. Returns the torques in 𝑁.𝑚 around each of the coordi-
nate axes of the vessels reference frame (Vessel.reference_frame). These axes are equivalent to
the pitch, roll and yaw axes of the vessel.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

440 Chapter 7. Python

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.3.5

available_reaction_wheel_torque
The maximum torque that the currently active and powered reaction wheels can generate. Re-
turns the torques in 𝑁.𝑚 around each of the coordinate axes of the vessels reference frame
(Vessel.reference_frame). These axes are equivalent to the pitch, roll and yaw axes of the vessel.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

available_rcs_torque
The maximum torque that the currently active RCS thrusters can generate. Returns the torques in 𝑁.𝑚
around each of the coordinate axes of the vessels reference frame (Vessel.reference_frame).
These axes are equivalent to the pitch, roll and yaw axes of the vessel.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

available_engine_torque
The maximum torque that the currently active and gimballed engines can generate. Returns the torques in
𝑁.𝑚 around each of the coordinate axes of the vessels reference frame (Vessel.reference_frame).
These axes are equivalent to the pitch, roll and yaw axes of the vessel.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

available_control_surface_torque
The maximum torque that the aerodynamic control surfaces can generate. Returns the torques in 𝑁.𝑚
around each of the coordinate axes of the vessels reference frame (Vessel.reference_frame).
These axes are equivalent to the pitch, roll and yaw axes of the vessel.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the vessel.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel.

•The x-axis points out to the right of the vessel.

•The y-axis points in the forward direction of the vessel.

•The z-axis points out of the bottom off the vessel.

Attribute Read-only, cannot be set

Return type ReferenceFrame

orbital_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the vessels orbital pro-
grade/normal/radial directions.

•The origin is at the center of mass of the vessel.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

7.3. SpaceCenter API 441

kRPC, Release 0.3.5

Fig. 7.1: Vessel reference frame origin and axes for the Aeris 3A aircraft

•The z-axis points in the orbital normal direction.

Attribute Read-only, cannot be set

Return type ReferenceFrame

Note: Be careful not to confuse this with ‘orbit’ mode on the navball.

surface_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the surface of the body being
orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the north and up directions on the surface of the body.

•The x-axis points in the zenith direction (upwards, normal to the body being orbited, from the center
of the body towards the center of mass of the vessel).

•The y-axis points northwards towards the astronomical horizon (north, and tangential to the surface
of the body – the direction in which a compass would point when on the surface).

•The z-axis points eastwards towards the astronomical horizon (east, and tangential to the surface of
the body – east on a compass when on the surface).

Attribute Read-only, cannot be set

Return type ReferenceFrame

Note: Be careful not to confuse this with ‘surface’ mode on the navball.

442 Chapter 7. Python

https://en.wikipedia.org/wiki/Zenith
https://en.wikipedia.org/wiki/Horizon
https://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.3.5

Fig. 7.2: Vessel reference frame origin and axes for the Kerbal-X rocket

7.3. SpaceCenter API 443

kRPC, Release 0.3.5

Fig. 7.3: Vessel orbital reference frame origin and axes

Fig. 7.4: Vessel surface reference frame origin and axes

444 Chapter 7. Python

kRPC, Release 0.3.5

surface_velocity_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the velocity vector of the vessel
relative to the surface of the body being orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel’s velocity vector.

•The y-axis points in the direction of the vessel’s velocity vector, relative to the surface of the body
being orbited.

•The z-axis is in the plane of the astronomical horizon.

•The x-axis is orthogonal to the other two axes.

Attribute Read-only, cannot be set

Return type ReferenceFrame

Fig. 7.5: Vessel surface velocity reference frame origin and axes

position(reference_frame)
Returns the position vector of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

velocity(reference_frame)
Returns the velocity vector of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

rotation(reference_frame)
Returns the rotation of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float, float)

7.3. SpaceCenter API 445

https://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.3.5

direction(reference_frame)
Returns the direction in which the vessel is pointing, as a unit vector, in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

angular_velocity(reference_frame)
Returns the angular velocity of the vessel in the given reference frame. The magnitude of the returned
vector is the rotational speed in radians per second, and the direction of the vector indicates the axis of
rotation (using the right hand rule).

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

class VesselType
The type of a vessel. See Vessel.type.

ship
Ship.

station
Station.

lander
Lander.

probe
Probe.

rover
Rover.

base
Base.

debris
Debris.

class VesselSituation
The situation a vessel is in. See Vessel.situation.

docked
Vessel is docked to another.

escaping
Escaping.

flying
Vessel is flying through an atmosphere.

landed
Vessel is landed on the surface of a body.

orbiting
Vessel is orbiting a body.

pre_launch
Vessel is awaiting launch.

splashed
Vessel has splashed down in an ocean.

446 Chapter 7. Python

kRPC, Release 0.3.5

sub_orbital
Vessel is on a sub-orbital trajectory.

7.3.3 CelestialBody

class CelestialBody
Represents a celestial body (such as a planet or moon). See bodies.

name
The name of the body.

Attribute Read-only, cannot be set

Return type str

satellites
A list of celestial bodies that are in orbit around this celestial body.

Attribute Read-only, cannot be set

Return type list of CelestialBody

orbit
The orbit of the body.

Attribute Read-only, cannot be set

Return type Orbit

mass
The mass of the body, in kilograms.

Attribute Read-only, cannot be set

Return type float

gravitational_parameter
The standard gravitational parameter of the body in 𝑚3𝑠−2.

Attribute Read-only, cannot be set

Return type float

surface_gravity
The acceleration due to gravity at sea level (mean altitude) on the body, in 𝑚/𝑠2.

Attribute Read-only, cannot be set

Return type float

rotational_period
The sidereal rotational period of the body, in seconds.

Attribute Read-only, cannot be set

Return type float

rotational_speed
The rotational speed of the body, in radians per second.

Attribute Read-only, cannot be set

Return type float

equatorial_radius
The equatorial radius of the body, in meters.

7.3. SpaceCenter API 447

https://en.wikipedia.org/wiki/Standard_gravitational_parameter

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type float

surface_height(latitude, longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water this
is equal to 0.

Parameters

• latitude (float) – Latitude in degrees

• longitude (float) – Longitude in degrees

Return type float

bedrock_height(latitude, longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water, this
is the height of the sea-bed and is therefore a negative value.

Parameters

• latitude (float) – Latitude in degrees

• longitude (float) – Longitude in degrees

Return type float

msl_position(latitude, longitude, reference_frame)
The position at mean sea level at the given latitude and longitude, in the given reference frame.

Parameters

• latitude (float) – Latitude in degrees

• longitude (float) – Longitude in degrees

• reference_frame (ReferenceFrame) – Reference frame for the returned position
vector

Return type tuple of (float, float, float)

surface_position(latitude, longitude, reference_frame)
The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position of the surface of the water.

Parameters

• latitude (float) – Latitude in degrees

• longitude (float) – Longitude in degrees

• reference_frame (ReferenceFrame) – Reference frame for the returned position
vector

Return type tuple of (float, float, float)

bedrock_position(latitude, longitude, reference_frame)
The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position at the bottom of the sea-bed.

Parameters

• latitude (float) – Latitude in degrees

• longitude (float) – Longitude in degrees

448 Chapter 7. Python

kRPC, Release 0.3.5

• reference_frame (ReferenceFrame) – Reference frame for the returned position
vector

Return type tuple of (float, float, float)

sphere_of_influence
The radius of the sphere of influence of the body, in meters.

Attribute Read-only, cannot be set

Return type float

has_atmosphere
True if the body has an atmosphere.

Attribute Read-only, cannot be set

Return type bool

atmosphere_depth
The depth of the atmosphere, in meters.

Attribute Read-only, cannot be set

Return type float

has_atmospheric_oxygen
True if there is oxygen in the atmosphere, required for air-breathing engines.

Attribute Read-only, cannot be set

Return type bool

reference_frame
The reference frame that is fixed relative to the celestial body.

•The origin is at the center of the body.

•The axes rotate with the body.

•The x-axis points from the center of the body towards the intersection of the prime meridian and
equator (the position at 0° longitude, 0° latitude).

•The y-axis points from the center of the body towards the north pole.

•The z-axis points from the center of the body towards the equator at 90°E longitude.

Attribute Read-only, cannot be set

Return type ReferenceFrame

non_rotating_reference_frame
The reference frame that is fixed relative to this celestial body, and orientated in a fixed direction (it does
not rotate with the body).

•The origin is at the center of the body.

•The axes do not rotate.

•The x-axis points in an arbitrary direction through the equator.

•The y-axis points from the center of the body towards the north pole.

•The z-axis points in an arbitrary direction through the equator.

Attribute Read-only, cannot be set

7.3. SpaceCenter API 449

kRPC, Release 0.3.5

Fig. 7.6: Celestial body reference frame origin and axes. The equator is shown in blue, and the prime meridian in red.

Return type ReferenceFrame

orbital_reference_frame
Gets the reference frame that is fixed relative to this celestial body, but orientated with the body’s orbital
prograde/normal/radial directions.

•The origin is at the center of the body.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Attribute Read-only, cannot be set

Return type ReferenceFrame

position(reference_frame)
Returns the position vector of the center of the body in the specified reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

velocity(reference_frame)
Returns the velocity vector of the body in the specified reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

rotation(reference_frame)
Returns the rotation of the body in the specified reference frame.

Parameters reference_frame (ReferenceFrame) –

450 Chapter 7. Python

kRPC, Release 0.3.5

Return type tuple of (float, float, float, float)

direction(reference_frame)
Returns the direction in which the north pole of the celestial body is pointing, as a unit vector, in the
specified reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

angular_velocity(reference_frame)
Returns the angular velocity of the body in the specified reference frame. The magnitude of the vector is
the rotational speed of the body, in radians per second, and the direction of the vector indicates the axis of
rotation, using the right-hand rule.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

7.3.4 Flight

class Flight
Used to get flight telemetry for a vessel, by calling Vessel.flight(). All of the information returned by
this class is given in the reference frame passed to that method. Obtained by calling Vessel.flight().

Note: To get orbital information, such as the apoapsis or inclination, see Orbit.

g_force
The current G force acting on the vessel in 𝑚/𝑠2.

Attribute Read-only, cannot be set

Return type float

mean_altitude
The altitude above sea level, in meters. Measured from the center of mass of the vessel.

Attribute Read-only, cannot be set

Return type float

surface_altitude
The altitude above the surface of the body or sea level, whichever is closer, in meters. Measured from the
center of mass of the vessel.

Attribute Read-only, cannot be set

Return type float

bedrock_altitude
The altitude above the surface of the body, in meters. When over water, this is the altitude above the sea
floor. Measured from the center of mass of the vessel.

Attribute Read-only, cannot be set

Return type float

elevation
The elevation of the terrain under the vessel, in meters. This is the height of the terrain above sea level,
and is negative when the vessel is over the sea.

Attribute Read-only, cannot be set

7.3. SpaceCenter API 451

kRPC, Release 0.3.5

Return type float

latitude
The latitude of the vessel for the body being orbited, in degrees.

Attribute Read-only, cannot be set

Return type float

longitude
The longitude of the vessel for the body being orbited, in degrees.

Attribute Read-only, cannot be set

Return type float

velocity
The velocity vector of the vessel. The magnitude of the vector is the speed of the vessel in meters per
second. The direction of the vector is the direction of the vessels motion.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

speed
The speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type float

horizontal_speed
The horizontal speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type float

vertical_speed
The vertical speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type float

center_of_mass
The position of the center of mass of the vessel.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

rotation
The rotation of the vessel.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float, float)

direction
The direction vector that the vessel is pointing in.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

pitch
The pitch angle of the vessel relative to the horizon, in degrees. A value between -90° and +90°.

452 Chapter 7. Python

https://en.wikipedia.org/wiki/Latitude
https://en.wikipedia.org/wiki/Longitude

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type float

heading
The heading angle of the vessel relative to north, in degrees. A value between 0° and 360°.

Attribute Read-only, cannot be set

Return type float

roll
The roll angle of the vessel relative to the horizon, in degrees. A value between -180° and +180°.

Attribute Read-only, cannot be set

Return type float

prograde
The unit direction vector pointing in the prograde direction.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

retrograde
The unit direction vector pointing in the retrograde direction.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

normal
The unit direction vector pointing in the normal direction.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

anti_normal
The unit direction vector pointing in the anti-normal direction.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

radial
The unit direction vector pointing in the radial direction.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

anti_radial
The unit direction vector pointing in the anti-radial direction.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

atmosphere_density
The current density of the atmosphere around the vessel, in 𝑘𝑔/𝑚3.

Attribute Read-only, cannot be set

Return type float

7.3. SpaceCenter API 453

kRPC, Release 0.3.5

dynamic_pressure
The dynamic pressure acting on the vessel, in Pascals. This is a measure of the strength of the aerodynamic
forces. It is equal to 1

2 .air density.velocity2. It is commonly denoted as 𝑄.

Attribute Read-only, cannot be set

Return type float

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

static_pressure
The static atmospheric pressure acting on the vessel, in Pascals.

Attribute Read-only, cannot be set

Return type float

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

aerodynamic_force
The total aerodynamic forces acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

lift
The aerodynamic lift currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

drag
The aerodynamic drag currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

454 Chapter 7. Python

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

speed_of_sound
The speed of sound, in the atmosphere around the vessel, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type float

Note: Not available when Ferram Aerospace Research is installed.

mach
The speed of the vessel, in multiples of the speed of sound.

Attribute Read-only, cannot be set

Return type float

Note: Not available when Ferram Aerospace Research is installed.

equivalent_air_speed
The equivalent air speed of the vessel, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type float

Note: Not available when Ferram Aerospace Research is installed.

terminal_velocity
An estimate of the current terminal velocity of the vessel, in 𝑚/𝑠. This is the speed at which the drag
forces cancel out the force of gravity.

Attribute Read-only, cannot be set

Return type float

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

angle_of_attack
Gets the pitch angle between the orientation of the vessel and its velocity vector, in degrees.

Attribute Read-only, cannot be set

Return type float

sideslip_angle
Gets the yaw angle between the orientation of the vessel and its velocity vector, in degrees.

Attribute Read-only, cannot be set

Return type float

total_air_temperature
The total air temperature of the atmosphere around the vessel, in Kelvin. This temperature includes the
Flight.static_air_temperature and the vessel’s kinetic energy.

Attribute Read-only, cannot be set

Return type float

7.3. SpaceCenter API 455

http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Equivalent_airspeed
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Total_air_temperature

kRPC, Release 0.3.5

static_air_temperature
The static (ambient) temperature of the atmosphere around the vessel, in Kelvin.

Attribute Read-only, cannot be set

Return type float

stall_fraction
Gets the current amount of stall, between 0 and 1. A value greater than 0.005 indicates a minor stall and a
value greater than 0.5 indicates a large-scale stall.

Attribute Read-only, cannot be set

Return type float

Note: Requires Ferram Aerospace Research.

drag_coefficient
Gets the coefficient of drag. This is the amount of drag produced by the vessel. It depends on air speed,
air density and wing area.

Attribute Read-only, cannot be set

Return type float

Note: Requires Ferram Aerospace Research.

lift_coefficient
Gets the coefficient of lift. This is the amount of lift produced by the vessel, and depends on air speed, air
density and wing area.

Attribute Read-only, cannot be set

Return type float

Note: Requires Ferram Aerospace Research.

ballistic_coefficient
Gets the ballistic coefficient.

Attribute Read-only, cannot be set

Return type float

Note: Requires Ferram Aerospace Research.

thrust_specific_fuel_consumption
Gets the thrust specific fuel consumption for the jet engines on the vessel. This is a measure of the
efficiency of the engines, with a lower value indicating a more efficient vessel. This value is the number of
Newtons of fuel that are burned, per hour, to product one newton of thrust.

Attribute Read-only, cannot be set

Return type float

456 Chapter 7. Python

https://en.wikipedia.org/wiki/Total_air_temperature
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/
https://en.wikipedia.org/wiki/Ballistic_coefficient
http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

Note: Requires Ferram Aerospace Research.

7.3.5 Orbit

class Orbit
Describes an orbit. For example, the orbit of a vessel, obtained by calling Vessel.orbit, or a celestial body,
obtained by calling CelestialBody.orbit.

body
The celestial body (e.g. planet or moon) around which the object is orbiting.

Attribute Read-only, cannot be set

Return type CelestialBody

apoapsis
Gets the apoapsis of the orbit, in meters, from the center of mass of the body being orbited.

Attribute Read-only, cannot be set

Return type float

Note: For the apoapsis altitude reported on the in-game map view, use Orbit.apoapsis_altitude.

periapsis
The periapsis of the orbit, in meters, from the center of mass of the body being orbited.

Attribute Read-only, cannot be set

Return type float

Note: For the periapsis altitude reported on the in-game map view, use
Orbit.periapsis_altitude.

apoapsis_altitude
The apoapsis of the orbit, in meters, above the sea level of the body being orbited.

Attribute Read-only, cannot be set

Return type float

Note: This is equal to Orbit.apoapsis minus the equatorial radius of the body.

periapsis_altitude
The periapsis of the orbit, in meters, above the sea level of the body being orbited.

Attribute Read-only, cannot be set

Return type float

Note: This is equal to Orbit.periapsis minus the equatorial radius of the body.

7.3. SpaceCenter API 457

http://forum.kerbalspaceprogram.com/index.php?/topic/19321-105-ferram-aerospace-research-v01557-johnson-21816/

kRPC, Release 0.3.5

semi_major_axis
The semi-major axis of the orbit, in meters.

Attribute Read-only, cannot be set

Return type float

semi_minor_axis
The semi-minor axis of the orbit, in meters.

Attribute Read-only, cannot be set

Return type float

radius
The current radius of the orbit, in meters. This is the distance between the center of mass of the object in
orbit, and the center of mass of the body around which it is orbiting.

Attribute Read-only, cannot be set

Return type float

Note: This value will change over time if the orbit is elliptical.

speed
The current orbital speed of the object in meters per second.

Attribute Read-only, cannot be set

Return type float

Note: This value will change over time if the orbit is elliptical.

period
The orbital period, in seconds.

Attribute Read-only, cannot be set

Return type float

time_to_apoapsis
The time until the object reaches apoapsis, in seconds.

Attribute Read-only, cannot be set

Return type float

time_to_periapsis
The time until the object reaches periapsis, in seconds.

Attribute Read-only, cannot be set

Return type float

eccentricity
The eccentricity of the orbit.

Attribute Read-only, cannot be set

Return type float

inclination
The inclination of the orbit, in radians.

458 Chapter 7. Python

https://en.wikipedia.org/wiki/Orbital_eccentricity
https://en.wikipedia.org/wiki/Orbital_inclination

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type float

longitude_of_ascending_node
The longitude of the ascending node, in radians.

Attribute Read-only, cannot be set

Return type float

argument_of_periapsis
The argument of periapsis, in radians.

Attribute Read-only, cannot be set

Return type float

mean_anomaly_at_epoch
The mean anomaly at epoch.

Attribute Read-only, cannot be set

Return type float

epoch
The time since the epoch (the point at which the mean anomaly at epoch was measured, in seconds.

Attribute Read-only, cannot be set

Return type float

mean_anomaly
The mean anomaly.

Attribute Read-only, cannot be set

Return type float

eccentric_anomaly
The eccentric anomaly.

Attribute Read-only, cannot be set

Return type float

static reference_plane_normal(reference_frame)
The unit direction vector that is normal to the orbits reference plane, in the given reference frame. The
reference plane is the plane from which the orbits inclination is measured.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

static reference_plane_direction(reference_frame)
The unit direction vector from which the orbits longitude of ascending node is measured, in the given
reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

time_to_soi_change
The time until the object changes sphere of influence, in seconds. Returns NaN if the object is not going
to change sphere of influence.

Attribute Read-only, cannot be set

7.3. SpaceCenter API 459

https://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
https://en.wikipedia.org/wiki/Argument_of_periapsis
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Mean_anomaly
https://en.wikipedia.org/wiki/Eccentric_anomaly

kRPC, Release 0.3.5

Return type float

next_orbit
If the object is going to change sphere of influence in the future, returns the new orbit after the change.
Otherwise returns None.

Attribute Read-only, cannot be set

Return type Orbit

7.3.6 Control

class Control
Used to manipulate the controls of a vessel. This includes adjusting the throttle, enabling/disabling sys-
tems such as SAS and RCS, or altering the direction in which the vessel is pointing. Obtained by calling
Vessel.control.

Note: Control inputs (such as pitch, yaw and roll) are zeroed when all clients that have set one or more of these
inputs are no longer connected.

sas
The state of SAS.

Attribute Can be read or written

Return type bool

Note: Equivalent to AutoPilot.sas

sas_mode
The current SASMode. These modes are equivalent to the mode buttons to the left of the navball that
appear when SAS is enabled.

Attribute Can be read or written

Return type SASMode

Note: Equivalent to AutoPilot.sas_mode

speed_mode
The current SpeedMode of the navball. This is the mode displayed next to the speed at the top of the
navball.

Attribute Can be read or written

Return type SpeedMode

rcs
The state of RCS.

Attribute Can be read or written

Return type bool

gear
The state of the landing gear/legs.

460 Chapter 7. Python

kRPC, Release 0.3.5

Attribute Can be read or written

Return type bool

lights
The state of the lights.

Attribute Can be read or written

Return type bool

brakes
The state of the wheel brakes.

Attribute Can be read or written

Return type bool

abort
The state of the abort action group.

Attribute Can be read or written

Return type bool

throttle
The state of the throttle. A value between 0 and 1.

Attribute Can be read or written

Return type float

pitch
The state of the pitch control. A value between -1 and 1. Equivalent to the w and s keys.

Attribute Can be read or written

Return type float

yaw
The state of the yaw control. A value between -1 and 1. Equivalent to the a and d keys.

Attribute Can be read or written

Return type float

roll
The state of the roll control. A value between -1 and 1. Equivalent to the q and e keys.

Attribute Can be read or written

Return type float

forward
The state of the forward translational control. A value between -1 and 1. Equivalent to the h and n keys.

Attribute Can be read or written

Return type float

up
The state of the up translational control. A value between -1 and 1. Equivalent to the i and k keys.

Attribute Can be read or written

Return type float

7.3. SpaceCenter API 461

kRPC, Release 0.3.5

right
The state of the right translational control. A value between -1 and 1. Equivalent to the j and l keys.

Attribute Can be read or written

Return type float

wheel_throttle
The state of the wheel throttle. A value between -1 and 1. A value of 1 rotates the wheels forwards, a value
of -1 rotates the wheels backwards.

Attribute Can be read or written

Return type float

wheel_steering
The state of the wheel steering. A value between -1 and 1. A value of 1 steers to the left, and a value of -1
steers to the right.

Attribute Can be read or written

Return type float

current_stage
The current stage of the vessel. Corresponds to the stage number in the in-game UI.

Attribute Read-only, cannot be set

Return type int

activate_next_stage()
Activates the next stage. Equivalent to pressing the space bar in-game.

Returns A list of vessel objects that are jettisoned from the active vessel.

Return type list of Vessel

get_action_group(group)
Returns True if the given action group is enabled.

Parameters group (int) – A number between 0 and 9 inclusive.

Return type bool

set_action_group(group, state)
Sets the state of the given action group (a value between 0 and 9 inclusive).

Parameters

• group (int) – A number between 0 and 9 inclusive.

• state (bool) –

toggle_action_group(group)
Toggles the state of the given action group.

Parameters group (int) – A number between 0 and 9 inclusive.

add_node(ut[, prograde = 0.0][, normal = 0.0][, radial = 0.0])
Creates a maneuver node at the given universal time, and returns a Node object that can be used to modify
it. Optionally sets the magnitude of the delta-v for the maneuver node in the prograde, normal and radial
directions.

Parameters

• ut (float) – Universal time of the maneuver node.

462 Chapter 7. Python

kRPC, Release 0.3.5

• prograde (float) – Delta-v in the prograde direction.

• normal (float) – Delta-v in the normal direction.

• radial (float) – Delta-v in the radial direction.

Return type Node

nodes
Returns a list of all existing maneuver nodes, ordered by time from first to last.

Attribute Read-only, cannot be set

Return type list of Node

remove_nodes()
Remove all maneuver nodes.

class SASMode
The behavior of the SAS auto-pilot. See AutoPilot.sas_mode.

stability_assist
Stability assist mode. Dampen out any rotation.

maneuver
Point in the burn direction of the next maneuver node.

prograde
Point in the prograde direction.

retrograde
Point in the retrograde direction.

normal
Point in the orbit normal direction.

anti_normal
Point in the orbit anti-normal direction.

radial
Point in the orbit radial direction.

anti_radial
Point in the orbit anti-radial direction.

target
Point in the direction of the current target.

anti_target
Point away from the current target.

class SpeedMode
The mode of the speed reported in the navball. See Control.speed_mode.

orbit
Speed is relative to the vessel’s orbit.

surface
Speed is relative to the surface of the body being orbited.

target
Speed is relative to the current target.

7.3. SpaceCenter API 463

kRPC, Release 0.3.5

7.3.7 Parts

The following classes allow interaction with a vessels individual parts.

• Parts
• Part
• Module
• Specific Types of Part

– Cargo Bay
– Control Surface
– Decoupler
– Docking Port
– Engine
– Experiment
– Fairing
– Intake
– Landing Gear
– Landing Leg
– Launch Clamp
– Light
– Parachute
– Radiator
– Resource Converter
– Resource Harvester
– Reaction Wheel
– RCS
– Sensor
– Solar Panel
– Thruster

• Trees of Parts
– Traversing the Tree
– Attachment Modes

• Fuel Lines
• Staging

Parts

class Parts
Instances of this class are used to interact with the parts of a vessel. An instance can be obtained by calling
Vessel.parts.

all
A list of all of the vessels parts.

Attribute Read-only, cannot be set

Return type list of Part

root
The vessels root part.

Attribute Read-only, cannot be set

Return type Part

464 Chapter 7. Python

kRPC, Release 0.3.5

Note: See the discussion on Trees of Parts.

controlling
The part from which the vessel is controlled.

Attribute Can be read or written

Return type Part

with_name(name)
A list of parts whose Part.name is name.

Parameters name (str) –

Return type list of Part

with_title(title)
A list of all parts whose Part.title is title.

Parameters title (str) –

Return type list of Part

with_module(module_name)
A list of all parts that contain a Module whose Module.name is module_name.

Parameters module_name (str) –

Return type list of Part

in_stage(stage)
A list of all parts that are activated in the given stage.

Parameters stage (int) –

Return type list of Part

Note: See the discussion on Staging.

in_decouple_stage(stage)
A list of all parts that are decoupled in the given stage.

Parameters stage (int) –

Return type list of Part

Note: See the discussion on Staging.

modules_with_name(module_name)
A list of modules (combined across all parts in the vessel) whose Module.name is module_name.

Parameters module_name (str) –

Return type list of Module

cargo_bays
A list of all cargo bays in the vessel.

Attribute Read-only, cannot be set

Return type list of CargoBay

7.3. SpaceCenter API 465

kRPC, Release 0.3.5

control_surfaces
A list of all control surfaces in the vessel.

Attribute Read-only, cannot be set

Return type list of ControlSurface

decouplers
A list of all decouplers in the vessel.

Attribute Read-only, cannot be set

Return type list of Decoupler

docking_ports
A list of all docking ports in the vessel.

Attribute Read-only, cannot be set

Return type list of DockingPort

docking_port_with_name(name)
The first docking port in the vessel with the given port name, as returned by DockingPort.name.
Returns None if there are no such docking ports.

Parameters name (str) –

Return type DockingPort

engines
A list of all engines in the vessel.

Attribute Read-only, cannot be set

Return type list of Engine

Note: This includes any part that generates thrust. This covers many different types of engine, including
liquid fuel rockets, solid rocket boosters, jet engines and RCS thrusters.

experiments
A list of all science experiments in the vessel.

Attribute Read-only, cannot be set

Return type list of Experiment

fairings
A list of all fairings in the vessel.

Attribute Read-only, cannot be set

Return type list of Fairing

intakes
A list of all intakes in the vessel.

Attribute Read-only, cannot be set

Return type list of Intake

landing_gear
A list of all landing gear attached to the vessel.

Attribute Read-only, cannot be set

466 Chapter 7. Python

kRPC, Release 0.3.5

Return type list of LandingGear

landing_legs
A list of all landing legs attached to the vessel.

Attribute Read-only, cannot be set

Return type list of LandingLeg

launch_clamps
A list of all launch clamps attached to the vessel.

Attribute Read-only, cannot be set

Return type list of LaunchClamp

lights
A list of all lights in the vessel.

Attribute Read-only, cannot be set

Return type list of Light

parachutes
A list of all parachutes in the vessel.

Attribute Read-only, cannot be set

Return type list of Parachute

radiators
A list of all radiators in the vessel.

Attribute Read-only, cannot be set

Return type list of Radiator

rcs
A list of all RCS blocks/thrusters in the vessel.

Attribute Read-only, cannot be set

Return type list of RCS

reaction_wheels
A list of all reaction wheels in the vessel.

Attribute Read-only, cannot be set

Return type list of ReactionWheel

resource_converters
A list of all resource converters in the vessel.

Attribute Read-only, cannot be set

Return type list of ResourceConverter

resource_harvesters
A list of all resource harvesters in the vessel.

Attribute Read-only, cannot be set

Return type list of ResourceHarvester

sensors
A list of all sensors in the vessel.

7.3. SpaceCenter API 467

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type list of Sensor

solar_panels
A list of all solar panels in the vessel.

Attribute Read-only, cannot be set

Return type list of SolarPanel

Part

class Part
Represents an individual part. Vessels are made up of multiple parts. Instances of this class can be obtained by
several methods in Parts.

name
Internal name of the part, as used in part cfg files. For example “Mark1-2Pod”.

Attribute Read-only, cannot be set

Return type str

title
Title of the part, as shown when the part is right clicked in-game. For example “Mk1-2 Command Pod”.

Attribute Read-only, cannot be set

Return type str

cost
The cost of the part, in units of funds.

Attribute Read-only, cannot be set

Return type float

vessel
The vessel that contains this part.

Attribute Read-only, cannot be set

Return type Vessel

parent
The parts parent. Returns None if the part does not have a parent. This, in combination with
Part.children, can be used to traverse the vessels parts tree.

Attribute Read-only, cannot be set

Return type Part

Note: See the discussion on Trees of Parts.

children
The parts children. Returns an empty list if the part has no children. This, in combination with
Part.parent, can be used to traverse the vessels parts tree.

Attribute Read-only, cannot be set

Return type list of Part

468 Chapter 7. Python

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation

kRPC, Release 0.3.5

Note: See the discussion on Trees of Parts.

axially_attached
Whether the part is axially attached to its parent, i.e. on the top or bottom of its parent. If the part has no
parent, returns False.

Attribute Read-only, cannot be set

Return type bool

Note: See the discussion on Attachment Modes.

radially_attached
Whether the part is radially attached to its parent, i.e. on the side of its parent. If the part has no parent,
returns False.

Attribute Read-only, cannot be set

Return type bool

Note: See the discussion on Attachment Modes.

stage
The stage in which this part will be activated. Returns -1 if the part is not activated by staging.

Attribute Read-only, cannot be set

Return type int

Note: See the discussion on Staging.

decouple_stage
The stage in which this part will be decoupled. Returns -1 if the part is never decoupled from the vessel.

Attribute Read-only, cannot be set

Return type int

Note: See the discussion on Staging.

massless
Whether the part is massless.

Attribute Read-only, cannot be set

Return type bool

mass
The current mass of the part, including resources it contains, in kilograms. Returns zero if the part is
massless.

Attribute Read-only, cannot be set

Return type float

7.3. SpaceCenter API 469

http://wiki.kerbalspaceprogram.com/wiki/Massless_part

kRPC, Release 0.3.5

dry_mass
The mass of the part, not including any resources it contains, in kilograms. Returns zero if the part is
massless.

Attribute Read-only, cannot be set

Return type float

shielded
Whether the part is shielded from the exterior of the vessel, for example by a fairing.

Attribute Read-only, cannot be set

Return type bool

dynamic_pressure
The dynamic pressure acting on the part, in Pascals.

Attribute Read-only, cannot be set

Return type float

impact_tolerance
The impact tolerance of the part, in meters per second.

Attribute Read-only, cannot be set

Return type float

temperature
Temperature of the part, in Kelvin.

Attribute Read-only, cannot be set

Return type float

skin_temperature
Temperature of the skin of the part, in Kelvin.

Attribute Read-only, cannot be set

Return type float

max_temperature
Maximum temperature that the part can survive, in Kelvin.

Attribute Read-only, cannot be set

Return type float

max_skin_temperature
Maximum temperature that the skin of the part can survive, in Kelvin.

Attribute Read-only, cannot be set

Return type float

thermal_mass
A measure of how much energy it takes to increase the internal temperature of the part, in Joules per
Kelvin.

Attribute Read-only, cannot be set

Return type float

thermal_skin_mass
A measure of how much energy it takes to increase the skin temperature of the part, in Joules per Kelvin.

470 Chapter 7. Python

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type float

thermal_resource_mass
A measure of how much energy it takes to increase the temperature of the resources contained in the part,
in Joules per Kelvin.

Attribute Read-only, cannot be set

Return type float

thermal_conduction_flux
The rate at which heat energy is conducting into or out of the part via contact with other parts. Measured
in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy, and
negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type float

thermal_convection_flux
The rate at which heat energy is convecting into or out of the part from the surrounding atmosphere.
Measured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat
energy, and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type float

thermal_radiation_flux
The rate at which heat energy is radiating into or out of the part from the surrounding environment. Mea-
sured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy,
and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type float

thermal_internal_flux
The rate at which heat energy is begin generated by the part. For example, some engines generate heat by
combusting fuel. Measured in energy per unit time, or power, in Watts. A positive value means the part is
gaining heat energy, and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type float

thermal_skin_to_internal_flux
The rate at which heat energy is transferring between the part’s skin and its internals. Measured in energy
per unit time, or power, in Watts. A positive value means the part’s internals are gaining heat energy, and
negative means its skin is gaining heat energy.

Attribute Read-only, cannot be set

Return type float

resources
A Resources object for the part.

Attribute Read-only, cannot be set

Return type Resources

7.3. SpaceCenter API 471

kRPC, Release 0.3.5

crossfeed
Whether this part is crossfeed capable.

Attribute Read-only, cannot be set

Return type bool

is_fuel_line
Whether this part is a fuel line.

Attribute Read-only, cannot be set

Return type bool

fuel_lines_from
The parts that are connected to this part via fuel lines, where the direction of the fuel line is into this part.

Attribute Read-only, cannot be set

Return type list of Part

Note: See the discussion on Fuel Lines.

fuel_lines_to
The parts that are connected to this part via fuel lines, where the direction of the fuel line is out of this part.

Attribute Read-only, cannot be set

Return type list of Part

Note: See the discussion on Fuel Lines.

modules
The modules for this part.

Attribute Read-only, cannot be set

Return type list of Module

cargo_bay
A CargoBay if the part is a cargo bay, otherwise None.

Attribute Read-only, cannot be set

Return type CargoBay

control_surface
A ControlSurface if the part is an aerodynamic control surface, otherwise None.

Attribute Read-only, cannot be set

Return type ControlSurface

decoupler
A Decoupler if the part is a decoupler, otherwise None.

Attribute Read-only, cannot be set

Return type Decoupler

docking_port
A DockingPort if the part is a docking port, otherwise None.

472 Chapter 7. Python

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type DockingPort

engine
An Engine if the part is an engine, otherwise None.

Attribute Read-only, cannot be set

Return type Engine

experiment
An Experiment if the part is a science experiment, otherwise None.

Attribute Read-only, cannot be set

Return type Experiment

fairing
A Fairing if the part is a fairing, otherwise None.

Attribute Read-only, cannot be set

Return type Fairing

intake
An Intake if the part is an intake, otherwise None.

Attribute Read-only, cannot be set

Return type Intake

Note: This includes any part that generates thrust. This covers many different types of engine, including
liquid fuel rockets, solid rocket boosters and jet engines. For RCS thrusters see RCS.

landing_gear
A LandingGear if the part is a landing gear, otherwise None.

Attribute Read-only, cannot be set

Return type LandingGear

landing_leg
A LandingLeg if the part is a landing leg, otherwise None.

Attribute Read-only, cannot be set

Return type LandingLeg

launch_clamp
A LaunchClamp if the part is a launch clamp, otherwise None.

Attribute Read-only, cannot be set

Return type LaunchClamp

light
A Light if the part is a light, otherwise None.

Attribute Read-only, cannot be set

Return type Light

parachute
A Parachute if the part is a parachute, otherwise None.

7.3. SpaceCenter API 473

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type Parachute

radiator
A Radiator if the part is a radiator, otherwise None.

Attribute Read-only, cannot be set

Return type Radiator

rcs
A RCS if the part is an RCS block/thruster, otherwise None.

Attribute Read-only, cannot be set

Return type RCS

reaction_wheel
A ReactionWheel if the part is a reaction wheel, otherwise None.

Attribute Read-only, cannot be set

Return type ReactionWheel

resource_converter
A ResourceConverter if the part is a resource converter, otherwise None.

Attribute Read-only, cannot be set

Return type ResourceConverter

resource_harvester
A ResourceHarvester if the part is a resource harvester, otherwise None.

Attribute Read-only, cannot be set

Return type ResourceHarvester

sensor
A Sensor if the part is a sensor, otherwise None.

Attribute Read-only, cannot be set

Return type Sensor

solar_panel
A SolarPanel if the part is a solar panel, otherwise None.

Attribute Read-only, cannot be set

Return type SolarPanel

position(reference_frame)
The position of the part in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

Note: This is a fixed position in the part, defined by the parts model. It s not necessarily the same as the
parts center of mass. Use Part.center_of_mass() to get the parts center of mass.

474 Chapter 7. Python

kRPC, Release 0.3.5

center_of_mass(reference_frame)
The position of the parts center of mass in the given reference frame. If the part is physicsless, this is
equivalent to Part.position().

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

direction(reference_frame)
The direction of the part in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

velocity(reference_frame)
The velocity of the part in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

rotation(reference_frame)
The rotation of the part in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float, float)

moment_of_inertia
The moment of inertia of the part in 𝑘𝑔.𝑚2 around its center of mass in the parts reference frame
(ReferenceFrame).

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

inertia_tensor
The inertia tensor of the part in the parts reference frame (ReferenceFrame). Returns the 3x3 matrix
as a list of elements, in row-major order.

Attribute Read-only, cannot be set

Return type list of float

reference_frame
The reference frame that is fixed relative to this part, and centered on a fixed position within the part,
defined by the parts model.

•The origin is at the position of the part, as returned by Part.position().

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

Attribute Read-only, cannot be set

Return type ReferenceFrame

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by DockingPort.reference_frame.

7.3. SpaceCenter API 475

kRPC, Release 0.3.5

Fig. 7.7: Mk1 Command Pod reference frame origin and axes

center_of_mass_reference_frame
The reference frame that is fixed relative to this part, and centered on its center of mass.

•The origin is at the center of mass of the part, as returned by Part.center_of_mass().

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

Attribute Read-only, cannot be set

Return type ReferenceFrame

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by DockingPort.reference_frame.

Module

class Module
This can be used to interact with a specific part module. This includes part modules in stock KSP, and those
added by mods. In KSP, each part has zero or more PartModules associated with it. Each one contains some of
the functionality of the part. For example, an engine has a “ModuleEngines” part module that contains all the
functionality of an engine.

name
Name of the PartModule. For example, “ModuleEngines”.

Attribute Read-only, cannot be set

Return type str

476 Chapter 7. Python

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation#MODULES

kRPC, Release 0.3.5

part
The part that contains this module.

Attribute Read-only, cannot be set

Return type Part

fields
The modules field names and their associated values, as a dictionary. These are the values visible in the
right-click menu of the part.

Attribute Read-only, cannot be set

Return type dict from str to str

has_field(name)
Returns True if the module has a field with the given name.

Parameters name (str) – Name of the field.

Return type bool

get_field(name)
Returns the value of a field.

Parameters name (str) – Name of the field.

Return type str

set_field_int(name, value)
Set the value of a field to the given integer number.

Parameters

• name (str) – Name of the field.

• value (int) – Value to set.

set_field_float(name, value)
Set the value of a field to the given floating point number.

Parameters

• name (str) – Name of the field.

• value (float) – Value to set.

set_field_string(name, value)
Set the value of a field to the given string.

Parameters

• name (str) – Name of the field.

• value (str) – Value to set.

reset_field(name)
Set the value of a field to its original value.

Parameters name (str) – Name of the field.

events
A list of the names of all of the modules events. Events are the clickable buttons visible in the right-click
menu of the part.

Attribute Read-only, cannot be set

Return type list of str

7.3. SpaceCenter API 477

kRPC, Release 0.3.5

has_event(name)
True if the module has an event with the given name.

Parameters name (str) –

Return type bool

trigger_event(name)
Trigger the named event. Equivalent to clicking the button in the right-click menu of the part.

Parameters name (str) –

actions
A list of all the names of the modules actions. These are the parts actions that can be assigned to action
groups in the in-game editor.

Attribute Read-only, cannot be set

Return type list of str

has_action(name)
True if the part has an action with the given name.

Parameters name (str) –

Return type bool

set_action(name[, value = True])
Set the value of an action with the given name.

Parameters

• name (str) –

• value (bool) –

Specific Types of Part

The following classes provide functionality for specific types of part.

478 Chapter 7. Python

kRPC, Release 0.3.5

• Cargo Bay
• Control Surface
• Decoupler
• Docking Port
• Engine
• Experiment
• Fairing
• Intake
• Landing Gear
• Landing Leg
• Launch Clamp
• Light
• Parachute
• Radiator
• Resource Converter
• Resource Harvester
• Reaction Wheel
• RCS
• Sensor
• Solar Panel
• Thruster

Cargo Bay

class CargoBay
A cargo bay. Obtained by calling Part.cargo_bay .

part
The part object for this cargo bay.

Attribute Read-only, cannot be set

Return type Part

state
The state of the cargo bay.

Attribute Read-only, cannot be set

Return type CargoBayState

open
Whether the cargo bay is open.

Attribute Can be read or written

Return type bool

class CargoBayState
The state of a cargo bay. See CargoBay.state.

open
Cargo bay is fully open.

closed
Cargo bay closed and locked.

opening
Cargo bay is opening.

7.3. SpaceCenter API 479

kRPC, Release 0.3.5

closing
Cargo bay is closing.

Control Surface

class ControlSurface
An aerodynamic control surface. Obtained by calling Part.control_surface.

part
The part object for this control surface.

Attribute Read-only, cannot be set

Return type Part

pitch_enabled
Whether the control surface has pitch control enabled.

Attribute Can be read or written

Return type bool

yaw_enabled
Whether the control surface has yaw control enabled.

Attribute Can be read or written

Return type bool

roll_enabled
Whether the control surface has roll control enabled.

Attribute Can be read or written

Return type bool

inverted
Whether the control surface movement is inverted.

Attribute Can be read or written

Return type bool

deployed
Whether the control surface has been fully deployed.

Attribute Can be read or written

Return type bool

surface_area
Surface area of the control surface in 𝑚2.

Attribute Read-only, cannot be set

Return type float

available_torque
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel.reference_frame.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

480 Chapter 7. Python

kRPC, Release 0.3.5

Decoupler

class Decoupler
A decoupler. Obtained by calling Part.decoupler

part
The part object for this decoupler.

Attribute Read-only, cannot be set

Return type Part

decouple()
Fires the decoupler. Returns the new vessel created when the decoupler fires. Throws an exception if the
decoupler has already fired.

Return type Vessel

decoupled
Whether the decoupler has fired.

Attribute Read-only, cannot be set

Return type bool

impulse
The impulse that the decoupler imparts when it is fired, in Newton seconds.

Attribute Read-only, cannot be set

Return type float

Docking Port

class DockingPort
A docking port. Obtained by calling Part.docking_port

part
The part object for this docking port.

Attribute Read-only, cannot be set

Return type Part

name
The port name of the docking port. This is the name of the port that can be set in the right click menu,
when the Docking Port Alignment Indicator mod is installed. If this mod is not installed, returns the title
of the part (Part.title).

Attribute Can be read or written

Return type str

state
The current state of the docking port.

Attribute Read-only, cannot be set

Return type DockingPortState

docked_part
The part that this docking port is docked to. Returns None if this docking port is not docked to anything.

Attribute Read-only, cannot be set

7.3. SpaceCenter API 481

http://forum.kerbalspaceprogram.com/index.php?/topic/40423-11-docking-port-alignment-indicator-version-621-beta-updated-04122016/

kRPC, Release 0.3.5

Return type Part

undock()
Undocks the docking port and returns the new Vessel that is created. This method can be called for
either docking port in a docked pair. Throws an exception if the docking port is not docked to anything.

Return type Vessel

Note: After undocking, the active vessel may change. See active_vessel.

reengage_distance
The distance a docking port must move away when it undocks before it becomes ready to dock with another
port, in meters.

Attribute Read-only, cannot be set

Return type float

has_shield
Whether the docking port has a shield.

Attribute Read-only, cannot be set

Return type bool

shielded
The state of the docking ports shield, if it has one. Returns True if the docking port has a shield, and
the shield is closed. Otherwise returns False. When set to True, the shield is closed, and when set to
False the shield is opened. If the docking port does not have a shield, setting this attribute has no effect.

Attribute Can be read or written

Return type bool

position(reference_frame)
The position of the docking port in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

direction(reference_frame)
The direction that docking port points in, in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

rotation(reference_frame)
The rotation of the docking port, in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float, float)

reference_frame
The reference frame that is fixed relative to this docking port, and oriented with the port.

•The origin is at the position of the docking port.

•The axes rotate with the docking port.

•The x-axis points out to the right side of the docking port.

•The y-axis points in the direction the docking port is facing.

482 Chapter 7. Python

kRPC, Release 0.3.5

•The z-axis points out of the bottom off the docking port.

Attribute Read-only, cannot be set

Return type ReferenceFrame

Note: This reference frame is not necessarily equivalent to the reference frame for the part, returned by
Part.reference_frame.

Fig. 7.8: Docking port reference frame origin and axes

class DockingPortState
The state of a docking port. See DockingPort.state.

ready
The docking port is ready to dock to another docking port.

docked
The docking port is docked to another docking port, or docked to another part (from the VAB/SPH).

docking
The docking port is very close to another docking port, but has not docked. It is using magnetic force to
acquire a solid dock.

undocking
The docking port has just been undocked from another docking port, and is disabled until it moves away
by a sufficient distance (DockingPort.reengage_distance).

shielded
The docking port has a shield, and the shield is closed.

7.3. SpaceCenter API 483

kRPC, Release 0.3.5

Fig. 7.9: Inline docking port reference frame origin and axes

moving
The docking ports shield is currently opening/closing.

Engine

class Engine
An engine, including ones of various types. For example liquid fuelled gimballed engines, solid rocket boosters
and jet engines. Obtained by calling Part.engine.

Note: For RCS thrusters Part.rcs.

part
The part object for this engine.

Attribute Read-only, cannot be set

Return type Part

active
Whether the engine is active. Setting this attribute may have no effect, depending on
Engine.can_shutdown and Engine.can_restart.

Attribute Can be read or written

Return type bool

thrust
The current amount of thrust being produced by the engine, in Newtons.

Attribute Read-only, cannot be set

Return type float

484 Chapter 7. Python

kRPC, Release 0.3.5

available_thrust
The amount of thrust, in Newtons, that would be produced by the engine when activated and with its
throttle set to 100%. Returns zero if the engine does not have any fuel. Takes the engine’s current
Engine.thrust_limit and atmospheric conditions into account.

Attribute Read-only, cannot be set

Return type float

max_thrust
The amount of thrust, in Newtons, that would be produced by the engine when activated and fueled, with
its throttle and throttle limiter set to 100%.

Attribute Read-only, cannot be set

Return type float

max_vacuum_thrust
The maximum amount of thrust that can be produced by the engine in a vacuum, in Newtons. This is the
amount of thrust produced by the engine when activated, Engine.thrust_limit is set to 100%, the
main vessel’s throttle is set to 100% and the engine is in a vacuum.

Attribute Read-only, cannot be set

Return type float

thrust_limit
The thrust limiter of the engine. A value between 0 and 1. Setting this attribute may have no effect, for
example the thrust limit for a solid rocket booster cannot be changed in flight.

Attribute Can be read or written

Return type float

thrusters
The components of the engine that generate thrust.

Attribute Read-only, cannot be set

Return type list of Thruster

Note: For example, this corresponds to the rocket nozzel on a solid rocket booster, or the in-
dividual nozzels on a RAPIER engine. The overall thrust produced by the engine, as reported by
Engine.available_thrust, Engine.max_thrust and others, is the sum of the thrust gener-
ated by each thruster.

specific_impulse
The current specific impulse of the engine, in seconds. Returns zero if the engine is not active.

Attribute Read-only, cannot be set

Return type float

vacuum_specific_impulse
The vacuum specific impulse of the engine, in seconds.

Attribute Read-only, cannot be set

Return type float

kerbin_sea_level_specific_impulse
The specific impulse of the engine at sea level on Kerbin, in seconds.

7.3. SpaceCenter API 485

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type float

propellant_names
The names of the propellants that the engine consumes.

Attribute Read-only, cannot be set

Return type list of str

propellant_ratios
The ratio of resources that the engine consumes. A dictionary mapping resource names to the ratio at
which they are consumed by the engine.

Attribute Read-only, cannot be set

Return type dict from str to float

Note: For example, if the ratios are 0.6 for LiquidFuel and 0.4 for Oxidizer, then for every 0.6 units of
LiquidFuel that the engine burns, it will burn 0.4 units of Oxidizer.

propellants
The propellants that the engine consumes.

Attribute Read-only, cannot be set

Return type list of Propellant

has_fuel
Whether the engine has any fuel available.

Attribute Read-only, cannot be set

Return type bool

Note: The engine must be activated for this property to update correctly.

throttle
The current throttle setting for the engine. A value between 0 and 1. This is not necessarily the same as
the vessel’s main throttle setting, as some engines take time to adjust their throttle (such as jet engines).

Attribute Read-only, cannot be set

Return type float

throttle_locked
Whether the Control.throttle affects the engine. For example, this is True for liquid fueled rock-
ets, and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type bool

can_restart
Whether the engine can be restarted once shutdown. If the engine cannot be shutdown, returns False.
For example, this is True for liquid fueled rockets and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type bool

486 Chapter 7. Python

kRPC, Release 0.3.5

can_shutdown
Whether the engine can be shutdown once activated. For example, this is True for liquid fueled rockets
and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type bool

has_modes
Whether the engine has multiple modes of operation.

Attribute Read-only, cannot be set

Return type bool

mode
The name of the current engine mode.

Attribute Can be read or written

Return type str

modes
The available modes for the engine. A dictionary mapping mode names to Engine objects.

Attribute Read-only, cannot be set

Return type dict from str to Engine

toggle_mode()
Toggle the current engine mode.

auto_mode_switch
Whether the engine will automatically switch modes.

Attribute Can be read or written

Return type bool

gimballed
Whether the engine is gimballed.

Attribute Read-only, cannot be set

Return type bool

gimbal_range
The range over which the gimbal can move, in degrees. Returns 0 if the engine is not gimballed.

Attribute Read-only, cannot be set

Return type float

gimbal_locked
Whether the engines gimbal is locked in place. Setting this attribute has no effect if the engine is not
gimballed.

Attribute Can be read or written

Return type bool

gimbal_limit
The gimbal limiter of the engine. A value between 0 and 1. Returns 0 if the gimbal is locked.

Attribute Can be read or written

Return type float

7.3. SpaceCenter API 487

kRPC, Release 0.3.5

available_torque
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel.reference_frame. Returns zero if the engine is inactive, or
not gimballed.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

class Propellant
A propellant for an engine. Obtains by calling Engine.propellants.

name
The name of the propellant.

Attribute Read-only, cannot be set

Return type str

current_amount
The current amount of propellant.

Attribute Read-only, cannot be set

Return type float

current_requirement
The required amount of propellant.

Attribute Read-only, cannot be set

Return type float

total_resource_available
The total amount of the underlying resource currently reachable given resource flow rules.

Attribute Read-only, cannot be set

Return type float

total_resource_capacity
The total vehicle capacity for the underlying propellant resource, restricted by resource flow rules.

Attribute Read-only, cannot be set

Return type float

ignore_for_isp
If this propellant should be ignored when calculating required mass flow given specific impulse.

Attribute Read-only, cannot be set

Return type bool

ignore_for_thrust_curve
If this propellant should be ignored for thrust curve calculations.

Attribute Read-only, cannot be set

Return type bool

draw_stack_gauge
If this propellant has a stack gauge or not.

Attribute Read-only, cannot be set

Return type bool

488 Chapter 7. Python

kRPC, Release 0.3.5

is_deprived
If this propellant is deprived.

Attribute Read-only, cannot be set

Return type bool

ratio
The propellant ratio.

Attribute Read-only, cannot be set

Return type float

connected_resources
The reachable resources connected to this propellant.

Attribute Read-only, cannot be set

Return type list of Resource

Experiment

class Experiment
Obtained by calling Part.experiment.

part
The part object for this experiment.

Attribute Read-only, cannot be set

Return type Part

run()
Run the experiment.

transmit()
Transmit all experimental data contained by this part.

dump()
Dump the experimental data contained by the experiment.

reset()
Reset the experiment.

deployed
Whether the experiment has been deployed.

Attribute Read-only, cannot be set

Return type bool

rerunnable
Whether the experiment can be re-run.

Attribute Read-only, cannot be set

Return type bool

inoperable
Whether the experiment is inoperable.

Attribute Read-only, cannot be set

Return type bool

7.3. SpaceCenter API 489

kRPC, Release 0.3.5

has_data
Whether the experiment contains data.

Attribute Read-only, cannot be set

Return type bool

data
The data contained in this experiment.

Attribute Read-only, cannot be set

Return type list of ScienceData

class ScienceData
Obtained by calling Experiment.data.

data_amount
Data amount.

Attribute Read-only, cannot be set

Return type float

science_value
Science value.

Attribute Read-only, cannot be set

Return type float

transmit_value
Transmit value.

Attribute Read-only, cannot be set

Return type float

Fairing

class Fairing
A fairing. Obtained by calling Part.fairing.

part
The part object for this fairing.

Attribute Read-only, cannot be set

Return type Part

jettison()
Jettison the fairing. Has no effect if it has already been jettisoned.

jettisoned
Whether the fairing has been jettisoned.

Attribute Read-only, cannot be set

Return type bool

490 Chapter 7. Python

kRPC, Release 0.3.5

Intake

class Intake
An air intake. Obtained by calling Part.intake.

part
The part object for this intake.

Attribute Read-only, cannot be set

Return type Part

open
Whether the intake is open.

Attribute Can be read or written

Return type bool

speed
Speed of the flow into the intake, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type float

flow
The rate of flow into the intake, in units of resource per second.

Attribute Read-only, cannot be set

Return type float

area
The area of the intake’s opening, in square meters.

Attribute Read-only, cannot be set

Return type float

Landing Gear

class LandingGear
Landing gear with wheels. Obtained by calling Part.landing_gear.

part
The part object for this landing gear.

Attribute Read-only, cannot be set

Return type Part

state
Gets the current state of the landing gear.

Attribute Read-only, cannot be set

Return type LandingGearState

Note: Fixed landing gear are always deployed.

7.3. SpaceCenter API 491

kRPC, Release 0.3.5

deployable
Whether the landing gear is deployable.

Attribute Read-only, cannot be set

Return type bool

deployed
Whether the landing gear is deployed.

Attribute Can be read or written

Return type bool

Note: Fixed landing gear are always deployed. Returns an error if you try to deploy fixed landing gear.

class LandingGearState
The state of a landing gear. See LandingGear.state.

deployed
Landing gear is fully deployed.

retracted
Landing gear is fully retracted.

deploying
Landing gear is being deployed.

retracting
Landing gear is being retracted.

broken
Landing gear is broken.

Landing Leg

class LandingLeg
A landing leg. Obtained by calling Part.landing_leg.

part
The part object for this landing leg.

Attribute Read-only, cannot be set

Return type Part

state
The current state of the landing leg.

Attribute Read-only, cannot be set

Return type LandingLegState

deployed
Whether the landing leg is deployed.

Attribute Can be read or written

Return type bool

492 Chapter 7. Python

kRPC, Release 0.3.5

Note: Fixed landing legs are always deployed. Returns an error if you try to deploy fixed landing gear.

class LandingLegState
The state of a landing leg. See LandingLeg.state.

deployed
Landing leg is fully deployed.

retracted
Landing leg is fully retracted.

deploying
Landing leg is being deployed.

retracting
Landing leg is being retracted.

broken
Landing leg is broken.

Launch Clamp

class LaunchClamp
A launch clamp. Obtained by calling Part.launch_clamp.

part
The part object for this launch clamp.

Attribute Read-only, cannot be set

Return type Part

release()
Releases the docking clamp. Has no effect if the clamp has already been released.

Light

class Light
A light. Obtained by calling Part.light.

part
The part object for this light.

Attribute Read-only, cannot be set

Return type Part

active
Whether the light is switched on.

Attribute Can be read or written

Return type bool

color
The color of the light, as an RGB triple.

Attribute Can be read or written

Return type tuple of (float, float, float)

7.3. SpaceCenter API 493

kRPC, Release 0.3.5

power_usage
The current power usage, in units of charge per second.

Attribute Read-only, cannot be set

Return type float

Parachute

class Parachute
A parachute. Obtained by calling Part.parachute.

part
The part object for this parachute.

Attribute Read-only, cannot be set

Return type Part

deploy()
Deploys the parachute. This has no effect if the parachute has already been deployed.

deployed
Whether the parachute has been deployed.

Attribute Read-only, cannot be set

Return type bool

state
The current state of the parachute.

Attribute Read-only, cannot be set

Return type ParachuteState

deploy_altitude
The altitude at which the parachute will full deploy, in meters.

Attribute Can be read or written

Return type float

deploy_min_pressure
The minimum pressure at which the parachute will semi-deploy, in atmospheres.

Attribute Can be read or written

Return type float

class ParachuteState
The state of a parachute. See Parachute.state.

stowed
The parachute is safely tucked away inside its housing.

active
The parachute is still stowed, but ready to semi-deploy.

semi_deployed
The parachute has been deployed and is providing some drag, but is not fully deployed yet.

deployed
The parachute is fully deployed.

494 Chapter 7. Python

kRPC, Release 0.3.5

cut
The parachute has been cut.

Radiator

class Radiator
A radiator. Obtained by calling Part.radiator.

part
The part object for this radiator.

Attribute Read-only, cannot be set

Return type Part

deployable
Whether the radiator is deployable.

Attribute Read-only, cannot be set

Return type bool

deployed
For a deployable radiator, True if the radiator is extended. If the radiator is not deployable, this is always
True.

Attribute Can be read or written

Return type bool

state
The current state of the radiator.

Attribute Read-only, cannot be set

Return type RadiatorState

Note: A fixed radiator is always RadiatorState.extended.

class RadiatorState
The state of a radiator. RadiatorState

extended
Radiator is fully extended.

retracted
Radiator is fully retracted.

extending
Radiator is being extended.

retracting
Radiator is being retracted.

broken
Radiator is being broken.

7.3. SpaceCenter API 495

kRPC, Release 0.3.5

Resource Converter

class ResourceConverter
A resource converter. Obtained by calling Part.resource_converter.

part
The part object for this converter.

Attribute Read-only, cannot be set

Return type Part

count
The number of converters in the part.

Attribute Read-only, cannot be set

Return type int

name(index)
The name of the specified converter.

Parameters index (int) – Index of the converter.

Return type str

active(index)
True if the specified converter is active.

Parameters index (int) – Index of the converter.

Return type bool

start(index)
Start the specified converter.

Parameters index (int) – Index of the converter.

stop(index)
Stop the specified converter.

Parameters index (int) – Index of the converter.

state(index)
The state of the specified converter.

Parameters index (int) – Index of the converter.

Return type ResourceConverterState

status_info(index)
Status information for the specified converter. This is the full status message shown in the in-game UI.

Parameters index (int) – Index of the converter.

Return type str

inputs(index)
List of the names of resources consumed by the specified converter.

Parameters index (int) – Index of the converter.

Return type list of str

outputs(index)
List of the names of resources produced by the specified converter.

496 Chapter 7. Python

kRPC, Release 0.3.5

Parameters index (int) – Index of the converter.

Return type list of str

class ResourceConverterState
The state of a resource converter. See ResourceConverter.state().

running
Converter is running.

idle
Converter is idle.

missing_resource
Converter is missing a required resource.

storage_full
No available storage for output resource.

capacity
At preset resource capacity.

unknown
Unknown state. Possible with modified resource converters. In this case, check
ResourceConverter.status_info() for more information.

Resource Harvester

class ResourceHarvester
A resource harvester (drill). Obtained by calling Part.resource_harvester.

part
The part object for this harvester.

Attribute Read-only, cannot be set

Return type Part

state
The state of the harvester.

Attribute Read-only, cannot be set

Return type ResourceHarvesterState

deployed
Whether the harvester is deployed.

Attribute Can be read or written

Return type bool

active
Whether the harvester is actively drilling.

Attribute Can be read or written

Return type bool

extraction_rate
The rate at which the drill is extracting ore, in units per second.

Attribute Read-only, cannot be set

7.3. SpaceCenter API 497

kRPC, Release 0.3.5

Return type float

thermal_efficiency
The thermal efficiency of the drill, as a percentage of its maximum.

Attribute Read-only, cannot be set

Return type float

core_temperature
The core temperature of the drill, in Kelvin.

Attribute Read-only, cannot be set

Return type float

optimum_core_temperature
The core temperature at which the drill will operate with peak efficiency, in Kelvin.

Attribute Read-only, cannot be set

Return type float

class ResourceHarvesterState
The state of a resource harvester. See ResourceHarvester.state.

deploying
The drill is deploying.

deployed
The drill is deployed and ready.

retracting
The drill is retracting.

retracted
The drill is retracted.

active
The drill is running.

Reaction Wheel

class ReactionWheel
A reaction wheel. Obtained by calling Part.reaction_wheel.

part
The part object for this reaction wheel.

Attribute Read-only, cannot be set

Return type Part

active
Whether the reaction wheel is active.

Attribute Can be read or written

Return type bool

broken
Whether the reaction wheel is broken.

Attribute Read-only, cannot be set

498 Chapter 7. Python

kRPC, Release 0.3.5

Return type bool

available_torque
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes corre-
spond to the coordinate axes of the Vessel.reference_frame. Returns zero if the reaction wheel is
inactive or broken.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

max_torque
The maximum torque the reaction wheel can provide, is it active, in the pitch, roll and yaw
axes of the vessel, in Newton meters. These axes correspond to the coordinate axes of the
Vessel.reference_frame.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

RCS

class RCS
An RCS block or thruster. Obtained by calling Part.rcs.

part
The part object for this RCS.

Attribute Read-only, cannot be set

Return type Part

active
Whether the RCS thrusters are active. An RCS thruster is inactive if the RCS action group is disabled
(Control.rcs), the RCS thruster itself is not enabled (RCS.enabled) or it is covered by a fairing
(Part.shielded).

Attribute Read-only, cannot be set

Return type bool

enabled
Whether the RCS thrusters are enabled.

Attribute Can be read or written

Return type bool

pitch_enabled
Whether the RCS thruster will fire when pitch control input is given.

Attribute Can be read or written

Return type bool

yaw_enabled
Whether the RCS thruster will fire when yaw control input is given.

Attribute Can be read or written

Return type bool

roll_enabled
Whether the RCS thruster will fire when roll control input is given.

7.3. SpaceCenter API 499

kRPC, Release 0.3.5

Attribute Can be read or written

Return type bool

forward_enabled
Whether the RCS thruster will fire when pitch control input is given.

Attribute Can be read or written

Return type bool

up_enabled
Whether the RCS thruster will fire when yaw control input is given.

Attribute Can be read or written

Return type bool

right_enabled
Whether the RCS thruster will fire when roll control input is given.

Attribute Can be read or written

Return type bool

available_torque
The available torque in the pitch, roll and yaw axes of the vessel, in Newton meters. These axes correspond
to the coordinate axes of the Vessel.reference_frame. Returns zero if the RCS is inactive.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

max_thrust
The maximum amount of thrust that can be produced by the RCS thrusters when active, in Newtons.

Attribute Read-only, cannot be set

Return type float

max_vacuum_thrust
The maximum amount of thrust that can be produced by the RCS thrusters when active in a vacuum, in
Newtons.

Attribute Read-only, cannot be set

Return type float

thrusters
A list of thrusters, one of each nozzel in the RCS part.

Attribute Read-only, cannot be set

Return type list of Thruster

specific_impulse
The current specific impulse of the RCS, in seconds. Returns zero if the RCS is not active.

Attribute Read-only, cannot be set

Return type float

vacuum_specific_impulse
The vacuum specific impulse of the RCS, in seconds.

Attribute Read-only, cannot be set

Return type float

500 Chapter 7. Python

kRPC, Release 0.3.5

kerbin_sea_level_specific_impulse
The specific impulse of the RCS at sea level on Kerbin, in seconds.

Attribute Read-only, cannot be set

Return type float

propellants
The names of resources that the RCS consumes.

Attribute Read-only, cannot be set

Return type list of str

propellant_ratios
The ratios of resources that the RCS consumes. A dictionary mapping resource names to the ratios at
which they are consumed by the RCS.

Attribute Read-only, cannot be set

Return type dict from str to float

has_fuel
Whether the RCS has fuel available.

Attribute Read-only, cannot be set

Return type bool

Note: The RCS thruster must be activated for this property to update correctly.

Sensor

class Sensor
A sensor, such as a thermometer. Obtained by calling Part.sensor.

part
The part object for this sensor.

Attribute Read-only, cannot be set

Return type Part

active
Whether the sensor is active.

Attribute Can be read or written

Return type bool

value
The current value of the sensor.

Attribute Read-only, cannot be set

Return type str

power_usage
The current power usage of the sensor, in units of charge per second.

Attribute Read-only, cannot be set

Return type float

7.3. SpaceCenter API 501

kRPC, Release 0.3.5

Solar Panel

class SolarPanel
A solar panel. Obtained by calling Part.solar_panel.

part
The part object for this solar panel.

Attribute Read-only, cannot be set

Return type Part

deployed
Whether the solar panel is extended.

Attribute Can be read or written

Return type bool

state
The current state of the solar panel.

Attribute Read-only, cannot be set

Return type SolarPanelState

energy_flow
The current amount of energy being generated by the solar panel, in units of charge per second.

Attribute Read-only, cannot be set

Return type float

sun_exposure
The current amount of sunlight that is incident on the solar panel, as a percentage. A value between 0 and
1.

Attribute Read-only, cannot be set

Return type float

class SolarPanelState
The state of a solar panel. See SolarPanel.state.

extended
Solar panel is fully extended.

retracted
Solar panel is fully retracted.

extending
Solar panel is being extended.

retracting
Solar panel is being retracted.

broken
Solar panel is broken.

Thruster

class Thruster
The component of an Engine or RCS part that generates thrust. Can obtained by calling

502 Chapter 7. Python

kRPC, Release 0.3.5

Engine.thrusters or RCS.thrusters.

Note: Engines can consist of multiple thrusters. For example, the S3 KS-25x4 “Mammoth” has four rocket
nozzels, and so consists of four thrusters.

part
The Part that contains this thruster.

Attribute Read-only, cannot be set

Return type Part

thrust_position(reference_frame)
The position at which the thruster generates thrust, in the given reference frame. For gimballed engines,
this takes into account the current rotation of the gimbal.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

thrust_direction(reference_frame)
The direction of the force generated by the thruster, in the given reference frame. This is opposite to the
direction in which the thruster expels propellant. For gimballed engines, this takes into account the current
rotation of the gimbal.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

thrust_reference_frame
A reference frame that is fixed relative to the thruster and orientated with its thrust direction
(Thruster.thrust_direction()). For gimballed engines, this takes into account the current rota-
tion of the gimbal.

•The origin is at the position of thrust for this thruster (Thruster.thrust_position()).

•The axes rotate with the thrust direction. This is the direction in which the thruster expels propellant,
including any gimballing.

•The y-axis points along the thrust direction.

•The x-axis and z-axis are perpendicular to the thrust direction.

Attribute Read-only, cannot be set

Return type ReferenceFrame

gimballed
Whether the thruster is gimballed.

Attribute Read-only, cannot be set

Return type bool

gimbal_position(reference_frame)
Position around which the gimbal pivots.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

gimbal_angle
The current gimbal angle in the pitch, roll and yaw axes.

7.3. SpaceCenter API 503

kRPC, Release 0.3.5

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

initial_thrust_position(reference_frame)
The position at which the thruster generates thrust, when the engine is in its initial position (no gimballing),
in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

Note: This position can move when the gimbal rotates. This is because the thrust position and gimbal
position are not necessarily the same.

initial_thrust_direction(reference_frame)
The direction of the force generated by the thruster, when the engine is in its initial position (no gim-
balling), in the given reference frame. This is opposite to the direction in which the thruster expels propel-
lant.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

Trees of Parts

Vessels in KSP are comprised of a number of parts, connected to one another in a
tree structure. An example vessel is shown in Figure 1, and the corresponding tree of
parts in Figure 2. The craft file for this example can also be downloaded here.

Fig. 7.10: Figure 1 – Example parts making up a vessel.

Traversing the Tree

The tree of parts can be traversed using the at-
tributes Parts.root, Part.parent and
Part.children.

The root of the tree is the same as the vessels
root part (part number 1 in the example above)
and can be obtained by calling Parts.root.
A parts children can be obtained by calling
Part.children. If the part does not have
any children, Part.children returns an
empty list. A parts parent can be obtained by
calling Part.parent. If the part does not
have a parent (as is the case for the root part),
Part.parent returns None.

The following Python example uses these at-
tributes to perform a depth-first traversal over
all of the parts in a vessel:

root = vessel.parts.root
stack = [(root, 0)]
while len(stack) > 0:

part,depth = stack.pop()

504 Chapter 7. Python

kRPC, Release 0.3.5

print(' '*depth, part.title)
for child in part.children:

stack.append((child, depth+1))

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1
TR-18A Stack Decoupler
FL-T400 Fuel Tank
LV-909 Liquid Fuel Engine
TR-18A Stack Decoupler
FL-T800 Fuel Tank
LV-909 Liquid Fuel Engine
TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

LT-1 Landing Struts
LT-1 Landing Struts

Mk16 Parachute

Attachment Modes

Parts can be attached to other parts either ra-
dially (on the side of the parent part) or axially
(on the end of the parent part, to form a stack).

For example, in the vessel pictured above, the
parachute (part 2) is axially connected to its
parent (the command pod – part 1), and the
landing leg (part 5) is radially connected to its
parent (the fuel tank – part 4).

The root part of a vessel (for example the com-
mand pod – part 1) does not have a parent part,

so does not have an attachment mode. However, the part is consider to be axially attached to nothing.

Fig. 7.11: Figure 2 – Tree of parts for the vessel in Figure 1. Arrows
point from the parent part to the child part.

The following Python example does a depth-
first traversal as before, but also prints out the
attachment mode used by the part:

root = vessel.parts.root
stack = [(root, 0)]
while len(stack) > 0:

part,depth = stack.pop()
if part.axially_attached:

attach_mode = 'axial'

7.3. SpaceCenter API 505

kRPC, Release 0.3.5

else: # radially_attached
attach_mode = 'radial'

print(' '*depth, part.title, '-', attach_mode)
for child in part.children:

stack.append((child, depth+1))

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1 - axial
TR-18A Stack Decoupler - axial
FL-T400 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TR-18A Stack Decoupler - axial
FL-T800 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

LT-1 Landing Struts - radial
LT-1 Landing Struts - radial

Mk16 Parachute - axial

Fuel Lines

Fig. 7.12: Figure 5 – Fuel lines from the example
in Figure 1. Fuel flows from the parts highlighted
in green, into the part highlighted in blue.

506 Chapter 7. Python

kRPC, Release 0.3.5

Fig. 7.13: Figure 4 – A subset of the parts tree
from Figure 2 above.

Fuel lines are considered parts, and are included in the parts tree
(for example, as pictured in Figure 4). However, the parts tree
does not contain information about which parts fuel lines connect
to. The parent part of a fuel line is the part from which it will take
fuel (as shown in Figure 4) however the part that it will send fuel
to is not represented in the parts tree.

Figure 5 shows the fuel lines from the example vessel pictured
earlier. Fuel line part 15 (in red) takes fuel from a fuel tank (part
11 – in green) and feeds it into another fuel tank (part 9 – in blue).
The fuel line is therefore a child of part 11, but its connection to
part 9 is not represented in the tree.

The attributes Part.fuel_lines_from and
Part.fuel_lines_to can be used to discover
these connections. In the example in Figure 5, when
Part.fuel_lines_to is called on fuel tank part 11, it
will return a list of parts containing just fuel tank part 9 (the blue
part). When Part.fuel_lines_from is called on fuel tank
part 9, it will return a list containing fuel tank parts 11 and 17
(the parts colored green).

Staging

Each part has two staging numbers associated with it: the stage
in which the part is activated and the stage in which the part is
decoupled. These values can be obtained using Part.stage
and Part.decouple_stage respectively. For parts that are
not activated by staging, Part.stage returns -1. For parts that
are never decoupled, Part.decouple_stage returns a value
of -1.

Figure 6 shows an example staging sequence for a vessel. Fig-
ure 7 shows the stages in which each part of the vessel will be
activated. Figure 8 shows the stages in which each part of the vessel will be decoupled.

7.3. SpaceCenter API 507

kRPC, Release 0.3.5

Fig. 7.14: Figure 6 – Example vessel from Figure 1 with a staging sequence.

508 Chapter 7. Python

kRPC, Release 0.3.5

Fig. 7.15: Figure 7 – The stage in which each part is activated.

Fig. 7.16: Figure 8 – The stage in which each part is decou-
pled.

7.3.8 Resources

class Resources
Represents the col-
lection of resources
stored in a ves-
sel, stage or part.
Created by calling
Vessel.resources,
Vessel.resources_in_decouple_stage()
or Part.resources.

all
All the individual resources that can be stored.

Attribute Read-only, cannot be set

Return type list of Resource

with_resource(name)
All the individual resources with the given name
that can be stored.

Parameters name (str) –

7.3. SpaceCenter API 509

kRPC, Release 0.3.5

Return type list of Resource

names
A list of resource names that can be stored.

Attribute Read-only, cannot be set

Return type list of str

has_resource(name)
Check whether the named resource can be stored.

Parameters name (str) – The name of the resource.

Return type bool

amount(name)
Returns the amount of a resource that is currently
stored.

Parameters name (str) – The name of the resource.

Return type float

max(name)
Returns the amount of a resource that can be stored.

Parameters name (str) – The name of the resource.

Return type float

static density(name)
Returns the density of a resource, in kg/l.

Parameters name (str) – The name of the resource.

Return type float

static flow_mode(name)
Returns the flow mode of a resource.

Parameters name (str) – The name of the resource.

Return type ResourceFlowMode

enabled
Whether use of all the resources are enabled.

Attribute Can be read or written

Return type bool

Note: This is true if all of the resources are enabled.
If any of the resources are not enabled, this is false.

class Resource
An individual resource stored within a part. Created
using methods in the Resources class.

name
The name of the resource.

Attribute Read-only, cannot be set

Return type str

510 Chapter 7. Python

kRPC, Release 0.3.5

part
The part containing the resource.

Attribute Read-only, cannot be set

Return type Part

amount
The amount of the resource that is currently stored
in the part.

Attribute Read-only, cannot be set

Return type float

max
The total amount of the resource that can be stored
in the part.

Attribute Read-only, cannot be set

Return type float

density
The density of the resource, in 𝑘𝑔/𝑙.

Attribute Read-only, cannot be set

Return type float

flow_mode
The flow mode of the resource.

Attribute Read-only, cannot be set

Return type ResourceFlowMode

enabled
Whether use of this resource is enabled.

Attribute Can be read or written

Return type bool

class ResourceTransfer
Transfer resources between parts.

static start(from_part, to_part, resource, max_amount)
Start transferring a resource transfer between a pair
of parts. The transfer will move at most max_amount
units of the resource, depending on how much of
the resource is available in the source part and
how much storage is available in the destination
part. Use ResourceTransfer.complete
to check if the transfer is complete. Use
ResourceTransfer.amount to see how
much of the resource has been transferred.

Parameters

• from_part (Part) – The part to transfer to.

• to_part (Part) – The part to transfer from.

7.3. SpaceCenter API 511

kRPC, Release 0.3.5

• resource (str) – The name of the resource to
transfer.

• max_amount (float) – The maximum amount of
resource to transfer.

Return type ResourceTransfer

amount
The amount of the resource that has been transferred.

Attribute Read-only, cannot be set

Return type float

complete
Whether the transfer has completed.

Attribute Read-only, cannot be set

Return type bool

class ResourceFlowMode
The way in which a resource flows between parts.
See Resources.flow_mode().

vessel
The resource flows to any part in the vessel. For
example, electric charge.

stage
The resource flows from parts in the first stage,
followed by the second, and so on. For example,
mono-propellant.

adjacent
The resource flows between adjacent parts within
the vessel. For example, liquid fuel or oxidizer.

none
The resource does not flow. For example, solid fuel.

7.3.9 Node

class Node
Represents a maneuver node. Can be created using
Control.add_node().

prograde
The magnitude of the maneuver nodes delta-v in the
prograde direction, in meters per second.

Attribute Can be read or written

Return type float

normal
The magnitude of the maneuver nodes delta-v in the
normal direction, in meters per second.

Attribute Can be read or written

Return type float

512 Chapter 7. Python

kRPC, Release 0.3.5

radial
The magnitude of the maneuver nodes delta-v in the
radial direction, in meters per second.

Attribute Can be read or written

Return type float

delta_v
The delta-v of the maneuver node, in meters per
second.

Attribute Can be read or written

Return type float

Note: Does not change when executing the maneu-
ver node. See Node.remaining_delta_v .

remaining_delta_v
Gets the remaining delta-v of the maneuver node, in
meters per second. Changes as the node is executed.
This is equivalent to the delta-v reported in-game.

Attribute Read-only, cannot be set

Return type float

burn_vector([reference_frame = None])
Returns a vector whose direction the direction of the
maneuver node burn, and whose magnitude is the
delta-v of the burn in m/s.

Parameters reference_frame
(ReferenceFrame) –

Return type tuple of (float, float, float)

Note: Does not change when ex-
ecuting the maneuver node. See
Node.remaining_burn_vector().

remaining_burn_vector([reference_frame = None])
Returns a vector whose direction the direction of
the maneuver node burn, and whose magnitude is
the delta-v of the burn in m/s. The direction and
magnitude change as the burn is executed.

Parameters reference_frame
(ReferenceFrame) –

Return type tuple of (float, float, float)

ut
The universal time at which the maneuver will occur,
in seconds.

Attribute Can be read or written

7.3. SpaceCenter API 513

kRPC, Release 0.3.5

Return type float

time_to
The time until the maneuver node will be encoun-
tered, in seconds.

Attribute Read-only, cannot be set

Return type float

orbit
The orbit that results from executing the maneuver
node.

Attribute Read-only, cannot be set

Return type Orbit

remove()
Removes the maneuver node.

reference_frame
Gets the reference frame that is fixed relative to the
maneuver node’s burn.

•The origin is at the position of the maneuver node.

•The y-axis points in the direction of the burn.

•The x-axis and z-axis point in arbitrary but fixed di-
rections.

Attribute Read-only, cannot be set

Return type ReferenceFrame

orbital_reference_frame
Gets the reference frame that is fixed relative to
the maneuver node, and orientated with the orbital
prograde/normal/radial directions of the original
orbit at the maneuver node’s position.

•The origin is at the position of the maneuver node.

•The x-axis points in the orbital anti-radial direction
of the original orbit, at the position of the maneuver
node.

•The y-axis points in the orbital prograde direction
of the original orbit, at the position of the maneuver
node.

•The z-axis points in the orbital normal direction of
the original orbit, at the position of the maneuver
node.

Attribute Read-only, cannot be set

Return type ReferenceFrame

514 Chapter 7. Python

kRPC, Release 0.3.5

position(reference_frame)
Returns the position vector of the maneuver node in
the given reference frame.

Parameters reference_frame
(ReferenceFrame) –

Return type tuple of (float, float, float)

direction(reference_frame)
Returns the unit direction vector of the maneuver
nodes burn in the given reference frame.

Parameters reference_frame
(ReferenceFrame) –

Return type tuple of (float, float, float)

7.3.10 ReferenceFrame

class ReferenceFrame
Represents a reference frame for positions, rotations
and velocities. Contains:

•The position of the origin.

•The directions of the x, y and z axes.

•The linear velocity of the frame.

•The angular velocity of the frame.

Note: This class does not contain any properties
or methods. It is only used as a parameter to other
functions.

7.3.11 AutoPilot

class AutoPilot
Provides basic auto-piloting utilities for a vessel.
Created by calling Vessel.auto_pilot.

Note: If a client engages the auto-pilot and then
closes its connection to the server, the auto-pilot will
be disengaged and its target reference frame, direc-
tion and roll reset to default.

engage()
Engage the auto-pilot.

disengage()
Disengage the auto-pilot.

7.3. SpaceCenter API 515

kRPC, Release 0.3.5

wait()
Blocks until the vessel is pointing in the target di-
rection and has the target roll (if set).

error
The error, in degrees, between the direction the
ship has been asked to point in and the direction
it is pointing in. Returns zero if the auto-pilot has
not been engaged and SAS is not enabled or is in
stability assist mode.

Attribute Read-only, cannot be set

Return type float

pitch_error
The error, in degrees, between the vessels current
and target pitch. Returns zero if the auto-pilot has
not been engaged.

Attribute Read-only, cannot be set

Return type float

heading_error
The error, in degrees, between the vessels current
and target heading. Returns zero if the auto-pilot
has not been engaged.

Attribute Read-only, cannot be set

Return type float

roll_error
The error, in degrees, between the vessels current
and target roll. Returns zero if the auto-pilot has not
been engaged or no target roll is set.

Attribute Read-only, cannot be set

Return type float

reference_frame
The reference frame for the target direction
(AutoPilot.target_direction).

Attribute Can be read or written

Return type ReferenceFrame

target_pitch
The target pitch, in degrees, between -90° and +90°.

Attribute Can be read or written

Return type float

target_heading
The target heading, in degrees, between 0° and 360°.

Attribute Can be read or written

Return type float

516 Chapter 7. Python

kRPC, Release 0.3.5

target_roll
The target roll, in degrees. NaN if no target roll is
set.

Attribute Can be read or written

Return type float

target_direction
Direction vector corresponding to the target pitch
and heading.

Attribute Can be read or written

Return type tuple of (float, float, float)

target_pitch_and_heading(pitch, heading)
Set target pitch and heading angles.

Parameters

• pitch (float) – Target pitch angle, in degrees be-
tween -90° and +90°.

• heading (float) – Target heading angle, in de-
grees between 0° and 360°.

sas
The state of SAS.

Attribute Can be read or written

Return type bool

Note: Equivalent to Control.sas

sas_mode
The current SASMode. These modes are equivalent
to the mode buttons to the left of the navball that
appear when SAS is enabled.

Attribute Can be read or written

Return type SASMode

Note: Equivalent to Control.sas_mode

roll_threshold
The threshold at which the autopilot will try to match
the target roll angle, if any. Defaults to 5 degrees.

Attribute Can be read or written

Return type float

stopping_time
The maximum amount of time that the vessel should
need to come to a complete stop. This determines
the maximum angular velocity of the vessel. A
vector of three stopping times, in seconds, one for

7.3. SpaceCenter API 517

kRPC, Release 0.3.5

each of the pitch, roll and yaw axes. Defaults to 0.5
seconds for each axis.

Attribute Can be read or written

Return type tuple of (float, float, float)

deceleration_time
The time the vessel should take to come to a stop
pointing in the target direction. This determines the
angular acceleration used to decelerate the vessel. A
vector of three times, in seconds, one for each of the
pitch, roll and yaw axes. Defaults to 5 seconds for
each axis.

Attribute Can be read or written

Return type tuple of (float, float, float)

attenuation_angle
The angle at which the autopilot considers the vessel
to be pointing close to the target. This determines
the midpoint of the target velocity attenuation
function. A vector of three angles, in degrees, one
for each of the pitch, roll and yaw axes. Defaults to
1° for each axis.

Attribute Can be read or written

Return type tuple of (float, float, float)

auto_tune
Whether the rotation rate controllers PID parameters
should be automatically tuned using the vessels
moment of inertia and available torque. Defaults
to True. See AutoPilot.time_to_peak and
AutoPilot.overshoot.

Attribute Can be read or written

Return type bool

time_to_peak
The target time to peak used to autotune the PID
controllers. A vector of three times, in seconds, for
each of the pitch, roll and yaw axes. Defaults to 3
seconds for each axis.

Attribute Can be read or written

Return type tuple of (float, float, float)

overshoot
The target overshoot percentage used to autotune the
PID controllers. A vector of three values, between
0 and 1, for each of the pitch, roll and yaw axes.
Defaults to 0.01 for each axis.

Attribute Can be read or written

Return type tuple of (float, float, float)

518 Chapter 7. Python

kRPC, Release 0.3.5

pitch_pid_gains
Gains for the pitch PID controller.

Attribute Can be read or written

Return type tuple of (float, float, float)

Note: When AutoPilot.auto_tune is true,
these values are updated automatically, which will
overwrite any manual changes.

roll_pid_gains
Gains for the roll PID controller.

Attribute Can be read or written

Return type tuple of (float, float, float)

Note: When AutoPilot.auto_tune is true,
these values are updated automatically, which will
overwrite any manual changes.

yaw_pid_gains
Gains for the yaw PID controller.

Attribute Can be read or written

Return type tuple of (float, float, float)

Note: When AutoPilot.auto_tune is true,
these values are updated automatically, which will
overwrite any manual changes.

7.3.12 Geometry Types

class Vector3
3-dimensional vectors are represented as a 3-tuple.
For example:

import krpc
conn = krpc.connect()
v = conn.space_center.active_vessel.flight().prograde
print(v[0], v[1], v[2])

class Quaternion
Quaternions (rotations in 3-dimensional space) are
encoded as a 4-tuple containing the x, y, z and w
components. For example:

import krpc
conn = krpc.connect()
q = conn.space_center.active_vessel.flight().rotation
print(q[0], q[1], q[2], q[3])

7.3. SpaceCenter API 519

kRPC, Release 0.3.5

7.3.13 Camera

class Camera
Controls the game’s camera. Obtained by calling
camera.

mode
The current mode of the camera.

Attribute Can be read or written

Return type CameraMode

pitch
The pitch of the camera, in degrees. A
value between Camera.min_pitch and
Camera.max_pitch

Attribute Can be read or written

Return type float

heading
The heading of the camera, in degrees.

Attribute Can be read or written

Return type float

distance
The distance from the camera to the subject. A
value between Camera.min_distance and
Camera.max_distance.

Attribute Can be read or written

Return type float

min_pitch
The minimum pitch of the camera.

Attribute Read-only, cannot be set

Return type float

max_pitch
The maximum pitch of the camera.

Attribute Read-only, cannot be set

Return type float

min_distance
Minimum distance from the camera to the subject.

Attribute Read-only, cannot be set

Return type float

max_distance
Maximum distance from the camera to the subject.

Attribute Read-only, cannot be set

Return type float

520 Chapter 7. Python

kRPC, Release 0.3.5

default_distance
Default distance from the camera to the subject.

Attribute Read-only, cannot be set

Return type float

focussed_body
In map mode, the celestial body that the camera
is focussed on. Returns None if the camera is not
focussed on a celestial body. Returns an error is the
camera is not in map mode.

Attribute Can be read or written

Return type CelestialBody

focussed_vessel
In map mode, the vessel that the camera is focussed
on. Returns None if the camera is not focussed on a
vessel. Returns an error is the camera is not in map
mode.

Attribute Can be read or written

Return type Vessel

focussed_node
In map mode, the maneuver node that the camera
is focussed on. Returns None if the camera is not
focussed on a maneuver node. Returns an error is
the camera is not in map mode.

Attribute Can be read or written

Return type Node

class CameraMode
See Camera.mode.

automatic
The camera is showing the active vessel, in “auto”
mode.

free
The camera is showing the active vessel, in “free”
mode.

chase
The camera is showing the active vessel, in “chase”
mode.

locked
The camera is showing the active vessel, in “locked”
mode.

orbital
The camera is showing the active vessel, in “orbital”
mode.

iva
The Intra-Vehicular Activity view is being shown.

7.3. SpaceCenter API 521

kRPC, Release 0.3.5

map
The map view is being shown.

7.4 Drawing API

7.4.1 Drawing

Provides functionality for drawing objects in the
flight scene.

static add_line(start, end, reference_frame[, visible = True])
Draw a line in the scene.

Parameters

• start (tuple) – Position of the start of the line.

• end (tuple) – Position of the end of the line.

• reference_frame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the positions are in.

• visible (bool) – Whether the line is visible.

Return type Line

static add_direction(direction, reference_frame[, length = 10.0][, visible = True])
Draw a direction vector in the scene, from the center
of mass of the active vessel.

Parameters

• direction (tuple) – Direction to draw the line
in.

• reference_frame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the direction is in.

• length (float) – The length of the line.

• visible (bool) – Whether the line is visible.

Return type Line

static add_polygon(vertices, reference_frame[, visible = True])
Draw a polygon in the scene, defined by a list of
vertices.

Parameters

• vertices (list) – Vertices of the polygon.

• reference_frame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the vertices are in.

• visible (bool) – Whether the polygon is visible.

Return type Polygon

522 Chapter 7. Python

kRPC, Release 0.3.5

static add_text(text, reference_frame, position, rotation[, visible = True])
Draw text in the scene.

Parameters

• text (str) – The string to draw.

• reference_frame
(SpaceCenter.ReferenceFrame) – Ref-
erence frame that the text position is in.

• position (tuple) – Position of the text.

• rotation (tuple) – Rotation of the text, as a
quaternion.

• visible (bool) – Whether the text is visible.

Return type Text

static clear([client_only = False])
Remove all objects being drawn.

Parameters client_only (bool) – If true, only re-
move objects created by the calling client.

7.4.2 Line

class Line
A line. Created using add_line().

start
Start position of the line.

Attribute Can be read or written

Return type tuple of (float, float, float)

end
End position of the line.

Attribute Can be read or written

Return type tuple of (float, float, float)

reference_frame
Reference frame for the positions of the object.

Attribute Can be read or written

Return type SpaceCenter.ReferenceFrame

visible
Whether the object is visible.

Attribute Can be read or written

Return type bool

color
Set the color

Attribute Can be read or written

Return type tuple of (float, float, float)

7.4. Drawing API 523

kRPC, Release 0.3.5

material
Material used to render the object. Creates the ma-
terial from a shader with the given name.

Attribute Can be read or written

Return type str

thickness
Set the thickness

Attribute Can be read or written

Return type float

remove()
Remove the object.

7.4.3 Polygon

class Polygon
A polygon. Created using add_polygon().

vertices
Vertices for the polygon.

Attribute Can be read or written

Return type list of tuple of (float, float, float)

reference_frame
Reference frame for the positions of the object.

Attribute Can be read or written

Return type SpaceCenter.ReferenceFrame

visible
Whether the object is visible.

Attribute Can be read or written

Return type bool

remove()
Remove the object.

color
Set the color

Attribute Can be read or written

Return type tuple of (float, float, float)

material
Material used to render the object. Creates the ma-
terial from a shader with the given name.

Attribute Can be read or written

Return type str

thickness
Set the thickness

524 Chapter 7. Python

kRPC, Release 0.3.5

Attribute Can be read or written

Return type float

7.4.4 Text

class Text
Text. Created using add_text().

position
Position of the text.

Attribute Can be read or written

Return type tuple of (float, float, float)

rotation
Rotation of the text as a quaternion.

Attribute Can be read or written

Return type tuple of (float, float, float, float)

reference_frame
Reference frame for the positions of the object.

Attribute Can be read or written

Return type SpaceCenter.ReferenceFrame

visible
Whether the object is visible.

Attribute Can be read or written

Return type bool

remove()
Remove the object.

content
The text string

Attribute Can be read or written

Return type str

font
Name of the font

Attribute Can be read or written

Return type str

available_fonts
A list of all available fonts.

Attribute Read-only, cannot be set

Return type list of str

size
Font size.

Attribute Can be read or written

7.4. Drawing API 525

kRPC, Release 0.3.5

Return type int

character_size
Character size.

Attribute Can be read or written

Return type float

style
Font style.

Attribute Can be read or written

Return type UI.FontStyle

color
Set the color

Attribute Can be read or written

Return type tuple of (float, float, float)

material
Material used to render the object. Creates the ma-
terial from a shader with the given name.

Attribute Can be read or written

Return type str

alignment
Alignment.

Attribute Can be read or written

Return type UI.TextAlignment

line_spacing
Line spacing.

Attribute Can be read or written

Return type float

anchor
Anchor.

Attribute Can be read or written

Return type UI.TextAnchor

7.5 InfernalRobotics API

Provides RPCs to interact with the InfernalRobotics
mod. Provides the following classes:

7.5.1 InfernalRobotics

This service provides functionality to interact with
Infernal Robotics.

526 Chapter 7. Python

http://forum.kerbalspaceprogram.com/index.php?/topic/104535-105-magic-smoke-industries-infernal-robotics-0214/
http://forum.kerbalspaceprogram.com/index.php?/topic/104535-105-magic-smoke-industries-infernal-robotics-0214/

kRPC, Release 0.3.5

static servo_groups(vessel)
A list of all the servo groups in the given vessel.

Parameters vessel (SpaceCenter.Vessel) –

Return type list of ServoGroup

static servo_group_with_name(vessel, name)
Returns the servo group in the given vessel with
the given name, or None if none exists. If multiple
servo groups have the same name, only one of them
is returned.

Parameters

• vessel (SpaceCenter.Vessel) – Vessel to
check.

• name (str) – Name of servo group to find.

Return type ServoGroup

static servo_with_name(vessel, name)
Returns the servo in the given vessel with the given
name or None if none exists. If multiple servos
have the same name, only one of them is returned.

Parameters

• vessel (SpaceCenter.Vessel) – Vessel to
check.

• name (str) – Name of the servo to find.

Return type Servo

7.5.2 ServoGroup

class ServoGroup
A group of servos, obtained by
calling servo_groups() or
servo_group_with_name(). Represents
the “Servo Groups” in the InfernalRobotics UI.

name
The name of the group.

Attribute Can be read or written

Return type str

forward_key
The key assigned to be the “forward” key for the
group.

Attribute Can be read or written

Return type str

reverse_key
The key assigned to be the “reverse” key for the
group.

7.5. InfernalRobotics API 527

kRPC, Release 0.3.5

Attribute Can be read or written

Return type str

speed
The speed multiplier for the group.

Attribute Can be read or written

Return type float

expanded
Whether the group is expanded in the Infernal-
Robotics UI.

Attribute Can be read or written

Return type bool

servos
The servos that are in the group.

Attribute Read-only, cannot be set

Return type list of Servo

servo_with_name(name)
Returns the servo with the given name from this
group, or None if none exists.

Parameters name (str) – Name of servo to find.

Return type Servo

parts
The parts containing the servos in the group.

Attribute Read-only, cannot be set

Return type list of SpaceCenter.Part

move_right()
Moves all of the servos in the group to the right.

move_left()
Moves all of the servos in the group to the left.

move_center()
Moves all of the servos in the group to the center.

move_next_preset()
Moves all of the servos in the group to the next
preset.

move_prev_preset()
Moves all of the servos in the group to the previous
preset.

stop()
Stops the servos in the group.

528 Chapter 7. Python

kRPC, Release 0.3.5

7.5.3 Servo

class Servo
Represents a servo. Obtained
using ServoGroup.servos,
ServoGroup.servo_with_name() or
servo_with_name().

name
The name of the servo.

Attribute Can be read or written

Return type str

part
The part containing the servo.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

highlight
Whether the servo should be highlighted in-game.

Attribute Write-only, cannot be read

Return type bool

position
The position of the servo.

Attribute Read-only, cannot be set

Return type float

min_config_position
The minimum position of the servo, specified by the
part configuration.

Attribute Read-only, cannot be set

Return type float

max_config_position
The maximum position of the servo, specified by
the part configuration.

Attribute Read-only, cannot be set

Return type float

min_position
The minimum position of the servo, specified by the
in-game tweak menu.

Attribute Can be read or written

Return type float

max_position
The maximum position of the servo, specified by
the in-game tweak menu.

Attribute Can be read or written

7.5. InfernalRobotics API 529

kRPC, Release 0.3.5

Return type float

config_speed
The speed multiplier of the servo, specified by the
part configuration.

Attribute Read-only, cannot be set

Return type float

speed
The speed multiplier of the servo, specified by the
in-game tweak menu.

Attribute Can be read or written

Return type float

current_speed
The current speed at which the servo is moving.

Attribute Can be read or written

Return type float

acceleration
The current speed multiplier set in the UI.

Attribute Can be read or written

Return type float

is_moving
Whether the servo is moving.

Attribute Read-only, cannot be set

Return type bool

is_free_moving
Whether the servo is freely moving.

Attribute Read-only, cannot be set

Return type bool

is_locked
Whether the servo is locked.

Attribute Can be read or written

Return type bool

is_axis_inverted
Whether the servos axis is inverted.

Attribute Can be read or written

Return type bool

move_right()
Moves the servo to the right.

move_left()
Moves the servo to the left.

530 Chapter 7. Python

kRPC, Release 0.3.5

move_center()
Moves the servo to the center.

move_next_preset()
Moves the servo to the next preset.

move_prev_preset()
Moves the servo to the previous preset.

move_to(position, speed)
Moves the servo to position and sets the speed mul-
tiplier to speed.

Parameters

• position (float) – The position to move the
servo to.

• speed (float) – Speed multiplier for the move-
ment.

stop()
Stops the servo.

7.5.4 Example

The following example gets the control group named
“MyGroup”, prints out the names and positions of
all of the servos in the group, then moves all of the
servos to the right for 1 second.

import krpc, time
conn = krpc.connect(name='InfernalRobotics Example')
vessel = conn.space_center.active_vessel

group = conn.infernal_robotics.servo_group_with_name(vessel, 'MyGroup')
if group is None:

print('Group not found')
exit(1)

for servo in group.servos:
print servo.name, servo.position

group.move_right()
time.sleep(1)
group.stop()

7.6 Kerbal Alarm Clock API

Provides RPCs to interact with the Kerbal Alarm
Clock mod. Provides the following classes:

7.6. Kerbal Alarm Clock API 531

http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/
http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/

kRPC, Release 0.3.5

7.6.1 KerbalAlarmClock

This service provides functionality to interact with
Kerbal Alarm Clock.

alarms
A list of all the alarms.

Attribute Read-only, cannot be set

Return type list of Alarm

static alarm_with_name(name)
Get the alarm with the given name, or None if no
alarms have that name. If more than one alarm has
the name, only returns one of them.

Parameters name (str) – Name of the alarm to search
for.

Return type Alarm

static alarms_with_type(type)
Get a list of alarms of the specified type.

Parameters type (AlarmType) – Type of alarm to re-
turn.

Return type list of Alarm

static create_alarm(type, name, ut)
Create a new alarm and return it.

Parameters

• type (AlarmType) – Type of the new alarm.

• name (str) – Name of the new alarm.

• ut (float) – Time at which the new alarm should
trigger.

Return type Alarm

7.6.2 Alarm

class Alarm
Represents an alarm. Obtained by call-
ing alarms, alarm_with_name() or
alarms_with_type().

action
The action that the alarm triggers.

Attribute Can be read or written

Return type AlarmAction

margin
The number of seconds before the event that the
alarm will fire.

Attribute Can be read or written

532 Chapter 7. Python

http://forum.kerbalspaceprogram.com/index.php?/topic/22809-10x-kerbal-alarm-clock-v3500-dec-3/

kRPC, Release 0.3.5

Return type float

time
The time at which the alarm will fire.

Attribute Can be read or written

Return type float

type
The type of the alarm.

Attribute Read-only, cannot be set

Return type AlarmType

id
The unique identifier for the alarm.

Attribute Read-only, cannot be set

Return type str

name
The short name of the alarm.

Attribute Can be read or written

Return type str

notes
The long description of the alarm.

Attribute Can be read or written

Return type str

remaining
The number of seconds until the alarm will fire.

Attribute Read-only, cannot be set

Return type float

repeat
Whether the alarm will be repeated after it has fired.

Attribute Can be read or written

Return type bool

repeat_period
The time delay to automatically create an alarm
after it has fired.

Attribute Can be read or written

Return type float

vessel
The vessel that the alarm is attached to.

Attribute Can be read or written

Return type SpaceCenter.Vessel

xfer_origin_body
The celestial body the vessel is departing from.

7.6. Kerbal Alarm Clock API 533

kRPC, Release 0.3.5

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

xfer_target_body
The celestial body the vessel is arriving at.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

remove()
Removes the alarm.

7.6.3 AlarmType

class AlarmType
The type of an alarm.

raw
An alarm for a specific date/time or a specific period
in the future.

maneuver
An alarm based on the next maneuver node on the
current ships flight path. This node will be stored
and can be restored when you come back to the ship.

maneuver_auto
See AlarmType.maneuver.

apoapsis
An alarm for furthest part of the orbit from the
planet.

periapsis
An alarm for nearest part of the orbit from the planet.

ascending_node
Ascending node for the targeted object, or equatorial
ascending node.

descending_node
Descending node for the targeted object, or equato-
rial descending node.

closest
An alarm based on the closest approach of this ves-
sel to the targeted vessel, some number of orbits
into the future.

contract
An alarm based on the expiry or deadline of con-
tracts in career modes.

contract_auto
See AlarmType.contract.

crew
An alarm that is attached to a crew member.

534 Chapter 7. Python

kRPC, Release 0.3.5

distance
An alarm that is triggered when a selected target
comes within a chosen distance.

earth_time
An alarm based on the time in the “Earth” alternative
Universe (aka the Real World).

launch_rendevous
An alarm that fires as your landed craft passes under
the orbit of your target.

soi_change
An alarm manually based on when the next SOI
point is on the flight path or set to continually
monitor the active flight path and add alarms as it
detects SOI changes.

soi_change_auto
See AlarmType.soi_change.

transfer
An alarm based on Interplanetary Transfer Phase
Angles, i.e. when should I launch to planet X?
Based on Kosmo Not’s post and used in Olex’s
Calculator.

transfer_modelled
See AlarmType.transfer.

7.6.4 AlarmAction

class AlarmAction
The action performed by an alarm when it fires.

do_nothing
Don’t do anything at all...

do_nothing_delete_when_passed
Don’t do anything, and delete the alarm.

kill_warp
Drop out of time warp.

kill_warp_only
Drop out of time warp.

message_only
Display a message.

pause_game
Pause the game.

7.6.5 Example

The following example creates a new alarm for the
active vessel. The alarm is set to trigger after 10 sec-
onds have passed, and display a message.

7.6. Kerbal Alarm Clock API 535

kRPC, Release 0.3.5

import krpc
conn = krpc.connect(name='Kerbal Alarm Clock Example')

alarm = conn.kerbal_alarm_clock.create_alarm(
conn.kerbal_alarm_clock.AlarmType.raw,
'My New Alarm',
conn.space_center.ut+10)

alarm.notes = '10 seconds have now passed since the alarm was created.'
alarm.action = conn.kerbal_alarm_clock.AlarmAction.message_only

7.7 RemoteTech API

7.7.1 RemoteTech

This service provides functionality to interact with
RemoteTech.

ground_stations
The names of the ground stations.

Attribute Read-only, cannot be set

Return type list of str

static comms(vessel)
Get a communications object, representing the com-
munication capability of a particular vessel.

Parameters vessel (SpaceCenter.Vessel) –

Return type Comms

static antenna(part)
Get the antenna object for a particular part.

Parameters part (SpaceCenter.Part) –

Return type Antenna

7.7.2 Comms

class Comms
Communications for a vessel.

vessel
Get the vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Vessel

has_local_control
Whether the vessel can be controlled locally.

Attribute Read-only, cannot be set

Return type bool

536 Chapter 7. Python

http://forum.kerbalspaceprogram.com/index.php?/topic/75245-11-remotetech-v1610-2016-04-12/

kRPC, Release 0.3.5

has_flight_computer
Whether the vessel has a flight computer on board.

Attribute Read-only, cannot be set

Return type bool

has_connection
Whether the vessel has any connection.

Attribute Read-only, cannot be set

Return type bool

has_connection_to_ground_station
Whether the vessel has a connection to a ground
station.

Attribute Read-only, cannot be set

Return type bool

signal_delay
The shortest signal delay to the vessel, in seconds.

Attribute Read-only, cannot be set

Return type float

signal_delay_to_ground_station
The signal delay between the vessel and the closest
ground station, in seconds.

Attribute Read-only, cannot be set

Return type float

signal_delay_to_vessel(other)
The signal delay between the this vessel and another
vessel, in seconds.

Parameters other (SpaceCenter.Vessel) –

Return type float

antennas
The antennas for this vessel.

Attribute Read-only, cannot be set

Return type list of Antenna

7.7.3 Antenna

class Antenna
A RemoteTech antenna. Obtained by calling
Comms.antennas or antenna().

part
Get the part containing this antenna.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

7.7. RemoteTech API 537

kRPC, Release 0.3.5

has_connection
Whether the antenna has a connection.

Attribute Read-only, cannot be set

Return type bool

target
The object that the antenna is targetting.
This property can be used to set the target to
Target.none or Target.active_vessel.
To set the target to a celestial body, ground sta-
tion or vessel see Antenna.target_body ,
Antenna.target_ground_station and
Antenna.target_vessel.

Attribute Can be read or written

Return type Target

target_body
The celestial body the antenna is targetting.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

target_ground_station
The ground station the antenna is targetting.

Attribute Can be read or written

Return type str

target_vessel
The vessel the antenna is targetting.

Attribute Can be read or written

Return type SpaceCenter.Vessel

class Target
The type of object an antenna is targetting. See
Antenna.target.

active_vessel
The active vessel.

celestial_body
A celestial body.

ground_station
A ground station.

vessel
A specific vessel.

none
No target.

538 Chapter 7. Python

kRPC, Release 0.3.5

7.8 User Interface API

7.8.1 UI

Provides functionality for drawing and interacting
with in-game user interface elements.

stock_canvas
The stock UI canvas.

Attribute Read-only, cannot be set

Return type Canvas

static add_canvas()
Add a new canvas.

Return type Canvas

Note: If you want to add UI elements to KSPs stock
UI canvas, use stock_canvas.

static message(content[, duration = 1.0][, position = 1])
Display a message on the screen.

Parameters

• content (str) – Message content.

• duration (float) – Duration before the message
disappears, in seconds.

• position (MessagePosition) – Position to
display the message.

Note: The message appears just like a stock mes-
sage, for example quicksave or quickload messages.

static clear([client_only = False])
Remove all user interface elements.

Parameters client_only (bool) – If true, only re-
move objects created by the calling client.

class MessagePosition
Message position.

top_left
Top left.

top_center
Top center.

top_right
Top right.

bottom_center
Bottom center.

7.8. User Interface API 539

kRPC, Release 0.3.5

7.8.2 Canvas

class Canvas
A canvas for user interface elements. See
stock_canvas and add_canvas().

rect_transform
The rect transform for the canvas.

Attribute Read-only, cannot be set

Return type RectTransform

visible
Whether the UI object is visible.

Attribute Can be read or written

Return type bool

add_panel([visible = True])
Create a new container for user interface elements.

Parameters visible (bool) – Whether the panel is
visible.

Return type Panel

add_text(content[, visible = True])
Add text to the canvas.

Parameters

• content (str) – The text.

• visible (bool) – Whether the text is visible.

Return type Text

add_input_field([visible = True])
Add an input field to the canvas.

Parameters visible (bool) – Whether the input
field is visible.

Return type InputField

add_button(content[, visible = True])
Add a button to the canvas.

Parameters

• content (str) – The label for the button.

• visible (bool) – Whether the button is visible.

Return type Button

remove()
Remove the UI object.

540 Chapter 7. Python

kRPC, Release 0.3.5

7.8.3 Panel

class Panel
A container for user interface elements. See
Canvas.add_panel().

rect_transform
The rect transform for the panel.

Attribute Read-only, cannot be set

Return type RectTransform

visible
Whether the UI object is visible.

Attribute Can be read or written

Return type bool

add_panel([visible = True])
Create a panel within this panel.

Parameters visible (bool) – Whether the new
panel is visible.

Return type Panel

add_text(content[, visible = True])
Add text to the panel.

Parameters

• content (str) – The text.

• visible (bool) – Whether the text is visible.

Return type Text

add_input_field([visible = True])
Add an input field to the panel.

Parameters visible (bool) – Whether the input
field is visible.

Return type InputField

add_button(content[, visible = True])
Add a button to the panel.

Parameters

• content (str) – The label for the button.

• visible (bool) – Whether the button is visible.

Return type Button

remove()
Remove the UI object.

7.8.4 Text

class Text
A text label. See Panel.add_text().

7.8. User Interface API 541

kRPC, Release 0.3.5

rect_transform
The rect transform for the text.

Attribute Read-only, cannot be set

Return type RectTransform

visible
Whether the UI object is visible.

Attribute Can be read or written

Return type bool

content
The text string

Attribute Can be read or written

Return type str

font
Name of the font

Attribute Can be read or written

Return type str

available_fonts
A list of all available fonts.

Attribute Read-only, cannot be set

Return type list of str

size
Font size.

Attribute Can be read or written

Return type int

style
Font style.

Attribute Can be read or written

Return type FontStyle

color
Set the color

Attribute Can be read or written

Return type tuple of (float, float, float)

alignment
Alignment.

Attribute Can be read or written

Return type TextAnchor

line_spacing
Line spacing.

Attribute Can be read or written

542 Chapter 7. Python

kRPC, Release 0.3.5

Return type float

remove()
Remove the UI object.

class FontStyle
Font style.

normal
Normal.

bold
Bold.

italic
Italic.

bold_and_italic
Bold and italic.

class TextAlignment
Text alignment.

left
Left aligned.

right
Right aligned.

center
Center aligned.

class TextAnchor
Text alignment.

lower_center
Lower center.

lower_left
Lower left.

lower_right
Lower right.

middle_center
Middle center.

middle_left
Middle left.

middle_right
Middle right.

upper_center
Upper center.

upper_left
Upper left.

upper_right
Upper right.

7.8. User Interface API 543

kRPC, Release 0.3.5

7.8.5 Button

class Button
A text label. See Panel.add_button().

rect_transform
The rect transform for the text.

Attribute Read-only, cannot be set

Return type RectTransform

visible
Whether the UI object is visible.

Attribute Can be read or written

Return type bool

text
The text for the button.

Attribute Read-only, cannot be set

Return type Text

clicked
Whether the button has been clicked.

Attribute Can be read or written

Return type bool

Note: This property is set to true when the user
clicks the button. A client script should reset the
property to false in order to detect subsequent but-
ton presses.

remove()
Remove the UI object.

7.8.6 InputField

class InputField
An input field. See
Panel.add_input_field().

rect_transform
The rect transform for the input field.

Attribute Read-only, cannot be set

Return type RectTransform

visible
Whether the UI object is visible.

Attribute Can be read or written

Return type bool

544 Chapter 7. Python

kRPC, Release 0.3.5

value
The value of the input field.

Attribute Can be read or written

Return type str

text
The text component of the input field.

Attribute Read-only, cannot be set

Return type Text

Note: Use InputField.value to get and set
the value in the field. This object can be used to alter
the style of the input field’s text.

changed
Whether the input field has been changed.

Attribute Can be read or written

Return type bool

Note: This property is set to true when the user
modifies the value of the input field. A client script
should reset the property to false in order to detect
subsequent changes.

remove()
Remove the UI object.

7.8.7 Rect Transform

class RectTransform
A Unity engine Rect Transform for a UI object. See
the Unity manual for more details.

position
Position of the rectangles pivot point relative to the
anchors.

Attribute Can be read or written

Return type tuple of (float, float)

local_position
Position of the rectangles pivot point relative to the
anchors.

Attribute Can be read or written

Return type tuple of (float, float, float)

size
Width and height of the rectangle.

Attribute Can be read or written

7.8. User Interface API 545

http://docs.unity3d.com/Manual/class-RectTransform.html

kRPC, Release 0.3.5

Return type tuple of (float, float)

upper_right
Position of the rectangles upper right corner relative
to the anchors.

Attribute Can be read or written

Return type tuple of (float, float)

lower_left
Position of the rectangles lower left corner relative
to the anchors.

Attribute Can be read or written

Return type tuple of (float, float)

anchor
Set the minimum and maximum anchor points as a
fraction of the size of the parent rectangle.

Attribute Write-only, cannot be read

Return type tuple of (float, float)

anchor_max
The anchor point for the lower left corner of the
rectangle defined as a fraction of the size of the
parent rectangle.

Attribute Can be read or written

Return type tuple of (float, float)

anchor_min
The anchor point for the upper right corner of the
rectangle defined as a fraction of the size of the
parent rectangle.

Attribute Can be read or written

Return type tuple of (float, float)

pivot
Location of the pivot point around which the rect-
angle rotates, defined as a fraction of the size of the
rectangle itself.

Attribute Can be read or written

Return type tuple of (float, float)

rotation
Rotation, as a quaternion, of the object around its
pivot point.

Attribute Can be read or written

Return type tuple of (float, float, float, float)

scale
Scale factor applied to the object in the x, y and z
dimensions.

546 Chapter 7. Python

kRPC, Release 0.3.5

Attribute Can be read or written

Return type tuple of (float, float, float)

7.8. User Interface API 547

kRPC, Release 0.3.5

548 Chapter 7. Python

CHAPTER

EIGHT

OTHER CLIENTS, SERVICES AND SCRIPTS

This page links to clients, services, scripts, tools and other useful things for kRPC that have been made by others. If
you want your own project added to this page, please feel free to ask on the forum.

8.1 Clients

• Ruby client by TeWu

• Haskell client by Cahu

• Using the plugin in F#

8.2 Services

• krpcmj – remote procedures to interact with MechJeb

8.3 Scripts/Tools/Libraries etc.

• kautopilly – an autopilot primarily intended for planes.

• KNav – a flexible platform for implementing computer-assisted navigation and control of vessels.

• wernher – a toolkit for flight control and orbit analysis.

• A small logging script.

549

http://forum.kerbalspaceprogram.com/index.php?/topic/130742-105-krpc-control-the-game-using-python-c-c-lua-ruby-v021-10th-feb-2016/
https://github.com/TeWu/krpc-rb
https://github.com/TeWu
https://github.com/Cahu/krpc-hs
https://github.com/Cahu
http://fssnip.net/7Pi
https://github.com/artwhaley/krpcmj
https://github.com/Cheaterman/kautopilly
https://github.com/Vivero/KNav
https://github.com/theodoregoetz/wernher
https://gist.github.com/fat-lobyte/4326afa551fa04dd028f

kRPC, Release 0.3.5

550 Chapter 8. Other Clients, Services and Scripts

CHAPTER

NINE

COMPILING KRPC

kRPC uses the Bazel build system.

9.1 Install Dependencies

Bazel automatically downloads most of the required dependencies to build kRPC. However the following will need to
be installed on your system:

• Mono C# compiler and runtime

• Python, including virtualenv and pip

• pdflatex for building the documentation

• RSVG for converting SVGs to PNGs

• libxml, libxslt and Python headers, for building the Java documentation

To install the latest C# compiler and runtime on Ubuntu, follow the instructions on Mono’s website The other depen-
dencies can be installed via apt:

$ sudo apt-get install mono-complete \
python-virtualenv python-pip \
texlive-latex-base texlive-latex-recommended \
texlive-fonts-recommended texlive-latex-extra \
librsvg2-bin libxml2-dev libxslt1-dev python-dev

9.2 Setup your Environment

Before building kRPC you need to make lib/ksp point to a directory containing Kerbal Space Program. For example
on Linux, if your KSP directory is at /path/to/ksp and your kRPC source tree at /path/to/krpc you can
create a symlink using ln -s /path/to/ksp /path/to/krpc/lib/ksp

You may also need to modify the symlink at lib/mono-4.5 to point to the correct location of your Mono installa-
tion.

9.3 Building using Bazel

To build the kRPC release archive, run bazel build //:krpc. The resulting archive containing the GameData
directory, client libraries etc will be created at bazel-out/krpc-<version>.zip.

The build scripts also define specific other targets that may be useful. Build them using bazel build <target>:

551

http://bazel.io
http://www.mono-project.com/download/
http://www.mono-project.com/docs/getting-started/install/linux/#debian-ubuntu-and-derivatives

kRPC, Release 0.3.5

• //server builds the server plugin and associated files

• Targets for building individual clients:

– //client/csharp

– //client/cpp

– //client/java

– //client/lua

– //client/python

• Targets for building individual services:

– //service/SpaceCenter

– //service/InfernalRobotics

– //service/KerbalAlarmClock

– //service/RemoteTech

• Targets for building protobuf definitions for individual languages:

– //protobuf/csharp

– //protobuf/cpp

– //protobuf/java

– //protobuf/lua

– //protobuf/python

• //doc:html builds the HTML documentation

• //doc:pdf builds the PDF documentation

There are also several convenience scripts:

• tools/serve-docs.sh – build the documentation and serve it from http://localhost:8080

• tools/install.sh – build the plugin and the testing tools, and install them into the GameData directory
of the copy of KSP found at lib/ksp.

9.4 Building the C# projects using an IDE

A C# solution file (kRPC.sln) is provided in the root of the project for use with MonoDevelop or a similar C# IDE.

Some of the C# source files it references are generated by the Bazel build scripts. You need to run bazel build
//:csproj to generate these files before the solution can be built.

Alternatively, if you are unable to run Bazel to build these files, you can download them from GitHub. Simply extract
this archive over your copy of the source and you are good to go.

9.4.1 Running the Tests

kRPC contains a suite of tests for the server plugin, services, client libraries and others.

The tests, which do not require KSP to be running, can be executed using: bazel test //:test. Bazel will
automatically download most of the required dependencies to run the tests, however you will also need to install Lua

552 Chapter 9. Compiling kRPC

https://github.com/krpc/krpc/releases/download/v0.3.5/krpc-genfiles-0.3.5.zip

kRPC, Release 0.3.5

and LuaRocks on your system. On Ubuntu, these can be installed using: sudo apt-get install lua5.1
luarocks

Note: You need to install luarocks version 2.2.0 or higher. On older versions of Ubuntu, the version in the apt
repositories is too old and luarocks will need to be installed via other means.

kRPC also includes a suite of tests that require KSP to be running. First run tools/install.sh to build kRPC
and a testing tools DLL, and install them into the GameData directory of the copy of KSP found at lib/ksp. Then
run KSP, load a save game and start the server (with automatically accept client connected enabled). Then install the
krpc python client, and run the scripts found in service/SpaceCenter/test. These tests will automatically
load a save game called test, launch a vessel and run various tests on it.

9.4. Building the C# projects using an IDE 553

kRPC, Release 0.3.5

554 Chapter 9. Compiling kRPC

CHAPTER

TEN

EXTENDING KRPC

10.1 The kRPC Architecture

kRPC consists of two components: a server and a client. The server plugin (provided by KRPC.dll) runs inside KSP.
It provides a collection of procedures that clients can run. These procedures are arranged in groups called services
to keep things organized. It also provides an in-game user interface that can be used to start/stop the server, change
settings and monitor active clients.

Clients run outside of KSP. This gives you the freedom to run scripts in whatever environment you want. A client
communicates with the server to run procedures using a communication protocol. kRPC comes with several client
libraries that implement this communication protocol, making it easier to write programs in these languages.

kRPC comes with a collection of standard functionality for interacting with vessels, contained in a service called
SpaceCenter. This service provides procedures for things like getting flight/orbital data and controlling the active
vessel. This service is provided by KRPC.SpaceCenter.dll.

10.2 Service API

Third party mods can add functionality to kRPC using the Service API. This is done by adding attributes to your own
classes, methods and properties to make them visible through the server. When the kRPC server starts, it scans all the
assemblies loaded by the game, looking for classes, methods and properties with these attributes.

The following example implements a service that can control the throttle and staging of the active vessel. To add this
to the server, compile the code and place the DLL in your GameData directory.

using UnityEngine;
using KRPC.Service;
using KRPC.Service.Attributes;
using KSP.UI.Screens;

namespace LaunchControl {

/// <summary>
/// Service for staging vessels and controlling their throttle.
/// </summary>
[KRPCService (GameScene = GameScene.Flight)]
public static class LaunchControl {

/// <summary>
/// The current throttle setting for the active vessel, between 0 and 1.
/// </summary>
[KRPCProperty]
public static float Throttle {

555

kRPC, Release 0.3.5

get { return FlightInputHandler.state.mainThrottle; }
set { FlightInputHandler.state.mainThrottle = value; }

}

/// <summary>
/// Activate the next stage in the vessel.
/// </summary>
[KRPCProcedure]
public static void ActivateStage ()
{

StageManager.ActivateNextStage ();
}

}
}

The following example shows how this service can then be used from a python client:

import krpc
conn = krpc.connect()
conn.launch_control.throttle = 1
conn.launch_control.activate_stage()

Some of the client libraries automatically pick up changes to the functionality provided by the server, including the
Python and Lua clients. However, some clients require code to be generated from the service assembly so that they
can interact with new or changed functionality. See clientgen for details on how to generate this code.

10.2.1 Attributes

The following C# attributes can be used to add functionality to the kRPC server.

KRPCService (string Name, KRPC.Service.GameScene GameScene)

Parameters

• Name – Optional name for the service. If omitted, the service name is set to the name of the
class this attribute is applied to.

• GameScene – The game scenes in which the services procedures are available.

This attribute is applied to a static class, to indicate that all methods, properties and classes declared within it
are part of the the same service. The name of the service is set to the name of the class, or – if present – the
Name parameter.

Multiple services with the same name can be declared, as long the classes, procedures and methods they contain
have unique names. The classes will be merged to appear as a single service on the server.

The type to which this attribute is applied must satisfy the following criteria:

•The type must be a class.

•The class must be public static.

•The name of the class, or the Name parameter if specified, must be a valid kRPC identifier.

•The class must not be declared within another class that has the KRPCService attribute. Nesting of
services is not permitted.

Services are configured to be available in specific game scenes via the GameScene parameter. If the
GameScene parameter is not specified, the service is available in any scene. If a procedure is called when
the service is not available, it will throw an exception.

556 Chapter 10. Extending kRPC

https://msdn.microsoft.com/en-us/library/aa287992.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/aa287992.aspx

kRPC, Release 0.3.5

Examples

•Declare a service called EVA:

[KRPCService]
public static class EVA {

...
}

•Declare a service called MyEVAService (different to the name of the class):

[KRPCService (Name = "MyEVAService")]
public static class EVA {

...
}

•Declare a service called FlightTools that is only available during the Flight game scene:

[KRPCService (GameScene = GameScene.Flight)]
public static class FlightTools {

...
}

KRPCProcedure
This attribute is applied to static methods, to add them to the server as procedures.

The method to which this attribute is applied must satisfy the following criteria:

•The method must be public static.

•The name of the method must be a valid kRPC identifier.

•The method must be declared inside a class that is a KRPCService.

•The parameter types and return type must be types that kRPC knows how to serialize.

•Parameters can have default arguments.

Example

The following defines a service called EVA with a PlantFlag procedure that takes a name and an optional
description, and returns a Flag object.

[KRPCService]
public static class EVA {

[KRPCProcedure]
public static Flag PlantFlag (string name, string description = "")
{

...
}

}

This can be called from a python client as follows:

import krpc
conn = krpc.connect()
flag = conn.eva.plant_flag('Landing Site', 'One small step for Kerbal-kind')

KRPCClass (string Service)

Parameters

• Service – Optional name of the service to add this class to. If omitted, the class is added to
the service that contains its definition.

10.2. Service API 557

https://msdn.microsoft.com/en-us/library/aa287992.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.3.5

This attribute is applied to non-static classes. It adds the class to the server, so that references to instances of the
class can be passed between client and server.

A KRPCClass must be part of a service, just like a KRPCProcedure. However, it would be restrictive if
the class had to be declared as a nested class inside a class with the KRPCService attribute. Therefore, a
KRPCClass can be declared outside of any service if it has the Service parameter set to the name of the
service that it is part of. Also, the service that the Service parameter refers to does not have to exist. If it does
not exist, a service with the given name is created.

The class to which this attribute is applied must satisfy the following criteria:

•The class must be public and not static.

•The name of the class must be a valid kRPC identifier.

•The class must either be declared inside a class that is a KRPCService, or have its Service parameter
set to the name of the service it is part of.

Examples

•Declare a class called Flag in the EVA service:

[KRPCService]
public static class EVA {

[KRPCClass]
public class Flag {

...
}

}

•Declare a class called Flag, without nesting the class definition in a service class:

[KRPCClass (Service = "EVA")]
public class Flag {

...
}

KRPCMethod
This attribute is applied to methods inside a KRPCClass. This allows a client to call methods on an instance,
or static methods in the class.

The method to which this attribute is applied must satisfy the following criteria:

•The method must be public.

•The name of the method must be a valid kRPC identifier.

•The method must be declared in a KRPCClass.

•The parameter types and return type must be types that kRPC can serialize.

•Parameters can have default arguments.

Example

Declare a Remove method in the Flag class:

[KRPCClass (Service = "EVA")]
public class Flag {

[KRPCMethod]
void Remove()
{

...

558 Chapter 10. Extending kRPC

https://msdn.microsoft.com/en-us/library/aa287992.aspx
https://msdn.microsoft.com/en-us/library/aa287992.aspx

kRPC, Release 0.3.5

}
}

class KRPCProperty
This attribute is applied to class properties, and comes in two flavors:

1.Applied to static properties in a KRPCService. In this case, the property must satisfy the following
criteria:

•Must be public static and have at least one publicly accessible getter or setter.

•The name of the property must be a valid kRPC identifier.

•Must be declared inside a KRPCService.

2.Applied to non-static properties in a KRPCClass. In this case, the property must satisfy the following
criteria:

•Must be public and not static, and have at least one publicly accessible getter or setter.

•The name of the property must be a valid kRPC identifier.

•Must be declared inside a KRPCClass.

Examples

•Applied to a static property in a service:

[KRPCService]
public static class EVA {

[KRPCProperty]
public Flag LastFlag
{

get { ... }
}

}

This property can be accessed from a python client as follows:

import krpc
conn = krpc.connect()
flag = conn.eva.last_flag

•Applied to a non-static property in a class:

[KRPCClass (Service = "EVA")]
public class Flag {

[KRPCProperty]
public void Name { get; set; }

[KRPCProperty]
public void Description { get; set; }

}

KRPCEnum (string Service)

Parameters

• Service – Optional name of the service to add this enum to. If omitted, the enum is added
to the service that contains its definition.

This attribute is applied to enumeration types. It adds the enumeration and its permissible values to the server.
This attribute works similarly to KRPCClass, but is applied to enumeration types.

10.2. Service API 559

https://msdn.microsoft.com/en-us/library/aa287992.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/aa287992.aspx

kRPC, Release 0.3.5

A KRPCEnum must be part of a service, just like a KRPCClass. Similarly, a KRPCEnum can be declared
outside of a service if it has its Service parameter set to the name of the service that it is part of.

The enumeration type to which this attribute is applied must satisfy the following criteria:

•The enumeration must be public.

•The name of the enumeration must be a valid kRPC identifier.

•The enumeration must either be declared inside a KRPCService, or have it’s Service parameter set to
the name of the service it is part of.

•The underlying C# type must be an int.

Examples

•Declare an enumeration type with two values:

[KRPCEnum (Service = "EVA")]
public enum FlagState {

Raised,
Lowered

}

This can be used from a python client as follows:

import krpc
conn = krpc.connect()
state = conn.eva.FlagState.lowered

10.2.2 Identifiers

An identifier must only contain alphanumeric characters and underscores. An identifier must not start with an under-
score. Identifiers should follow CamelCase capitalization conventions.

Note: Although underscores are permitted, they should be avoided as they are used for internal name mangling.

10.2.3 Serializable Types

A type can only be used as a parameter or return type if kRPC knows how to serialize it. The following types are
serializable:

• The C# types double, float, int, long, uint, ulong, bool, string and byte[]

• Any type annotated with KRPCClass

• Any type annotated with KRPCEnum

• Collections of serializable types:

– System.Collections.Generic.IList<T> where T is a serializable type

– System.Collections.Generic.IDictionary<K,V> where K is one of int, long, uint,
ulong, bool or string and V is a serializable type

– System.Collections.HashSet<V> where V is a serializable type

• Return types can be void

• Protocol buffer message types from namespace KRPC.Schema.KRPC

560 Chapter 10. Extending kRPC

https://msdn.microsoft.com/en-gb/library/sbbt4032.aspx
https://en.wikipedia.org/wiki/CamelCase

kRPC, Release 0.3.5

10.2.4 Game Scenes

Each service is configured to be available from a particular game scene, or scenes.

enum KRPC.Service.GameScene

SpaceCenter
The game scene showing the Kerbal Space Center buildings.

Flight
The game scene showing a vessel in flight (or on the launchpad/runway).

TrackingStation
The tracking station.

EditorVAB
The Vehicle Assembly Building.

EditorSPH
The Space Plane Hangar.

Editor
Either the VAB or the SPH.

All
All game scenes.

Examples

• Declare a service that is available in the KRPC.Service.GameScene.Flight game scene:

[KRPCService (GameScene = GameScene.Flight)]
public static class MyService {

...
}

• Declare a service that is available in the KRPC.Service.GameScene.Flight and
KRPC.Service.GameScene.Editor game scenes:

[KRPCService (GameScene = (GameScene.Flight | GameScene.Editor))]
public static class MyService {

...
}

10.3 Documentation

Documentation can be added using C# XML documentation. The documentation will be automatically exported to
clients when they connect.

10.4 Further Examples

See the SpaceCenter service implementation for more extensive examples.

10.3. Documentation 561

https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx
https://github.com/krpc/krpc/tree/latest-version/service/SpaceCenter/src/Services

kRPC, Release 0.3.5

10.5 Generating Service Code for Static Clients

Some of the client libraries dynamically construct the code necessary to interact with the server when they connect.
This means that these libraries will automatically pick up changes to service code. Such client libraries include those
for Python and Lua.

Other client libraries required code to be generated and compiled into them statically. They do not automatically pick
up changes to service code. Such client libraries include those for C++ and C#.

Code for these ‘static’ libraries is generated using the krpc-clientgen tool. This is provided as part of the krpctools
python package. It can be installed using pip:

pip install krpctools

You can then run the script from the command line:

$ krpc-clientgen --help

usage: krpc-clientgen [-h] [-v] [-o OUTPUT] [--ksp KSP]
[--output-defs OUTPUT_DEFS]
{cpp,csharp,java} service input [input ...]

Generate client source code for kRPC services.

positional arguments:
{cpp,csharp,java} Language to generate
service Name of service to generate
input Path to service definition JSON file or assembly

DLL(s)

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit
-o OUTPUT, --output OUTPUT

Path to write source code to. If not specified, writes
source code to standard output.

--ksp KSP Path to Kerbal Space Program directory. Required when
reading from an assembly DLL(s)

--output-defs OUTPUT_DEFS
When generting client code from a DLL, output the
service definitions to the given JSON file

Client code can be generated either directly from an assembly DLL containing the service, or from a JSON file that
has previously been generated from an assembly DLL (using the --output-defs flag).

Generating client code from an assembly DLL requires a copy of Kerbal Space Program and a C# runtime to be
available on the machine. In contrast, generating client code from a JSON file does not have these requirements and
so is more portable.

10.5.1 Example

The following demonstrates how to generate code for the C++ and C# clients to interact with the LaunchControl
service, given in an example previously.

krpc-clientgen expects to be passed the location of your copy of Kerbal Space Program, the name of the language to
generate, the name of the service (from the KRPCService attribute), a path to the assembly containing the service
and the path to write the generated code to.

For C++, run the following:

562 Chapter 10. Extending kRPC

https://pypi.python.org/pypi/krpctools
https://pypi.python.org/pypi/krpctools

kRPC, Release 0.3.5

krpc-clientgen --ksp=/path/to/ksp cpp LaunchControl LaunchControl.dll
launch_control.hpp

To then use the LaunchControl service from C++, you need to link your code against the C++ client library, and
include launch_control.hpp.

For C#, run the following:

krpc-clientgen --ksp=/path/to/ksp csharp LaunchControl LaunchControl.dll
LaunchControl.cs

To then use the LaunchControl service from a C# client, you need to reference the KRPC.Client.dll and include
LaunchControl.cs in your project.

10.5. Generating Service Code for Static Clients 563

kRPC, Release 0.3.5

564 Chapter 10. Extending kRPC

CHAPTER

ELEVEN

COMMUNICATION PROTOCOL

Clients invoke Remote Procedure Calls (RPCs) by communicating with the server using Protocol Buffer v3 mes-
sages sent over a TCP/IP connection. The kRPC download comes with a protocol buffer message definitions file
(schema/krpc.proto) that defines the structure of these messages. It also contains versions of this file for C#, C++,
Java, Lua and Python, compiled using Google’s protocol buffers compiler.

The following sections describe how to communicate with kRPC using snippets of Python code. A complete example
script made from these snippets can be downloaded here.

11.1 Establishing a Connection

kRPC consists of two servers: an RPC server (over which clients send and receive RPCs) and a stream server (over
which clients receive Streams). A client first connects to the RPC Server, then (optionally) to the Stream Server.

11.1.1 Connecting to the RPC Server

To establish a connection to the RPC server, a client must do the following:

1. Open a TCP socket to the server on its RPC port (which defaults to 50000).

2. Send this 12 byte hello message: 0x48 0x45 0x4C 0x4C 0x4F 0x2D 0x52 0x50 0x43 0x00
0x00 0x00

3. Send a 32 byte message containing a name for the connection, that will be displayed on the in-game server
window. This should be a UTF-8 encoded string, up to a maximum of 32 bytes in length. If the string is shorter
than 32 bytes, it should be padded with zeros.

4. Receive a 16 byte unique client identifier. This is sent to the client when the connection is granted, for example
after the user has clicked accept on the in-game UI.

For example, this python code will connect to the RPC server at address 127.0.0.1:50000 using the identifier
Jeb:

import socket
rpc_conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
rpc_conn.connect(('127.0.0.1', 50000))
Send the 12 byte hello message
rpc_conn.sendall(b'\x48\x45\x4C\x4C\x4F\x2D\x52\x50\x43\x00\x00\x00')
Send the 32 byte client name 'Jeb' padded with zeroes
name = 'Jeb'.encode('utf-8')
name += (b'\x00' * (32-len(name)))
rpc_conn.sendall(name)
Receive the 16 byte client identifier

565

https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/krpc/krpc/releases/latest
https://github.com/krpc/krpc/blob/latest-version/protobuf/krpc.proto
https://github.com/google/protobuf

kRPC, Release 0.3.5

identifier = b''
while len(identifier) < 16:

identifier += rpc_conn.recv(16 - len(identifier))
Connection successful. Print out a message along with the client identifier.
import binascii
printable_identifier = binascii.hexlify(bytearray(identifier))
print('Connected to RPC server, client idenfitier = %s' % printable_identifier)

11.1.2 Connecting to the Stream Server

To establish a connection to the stream server, a client must first connect to the RPC Server then do the following:

1. Open a TCP socket to the server on its stream port (which defaults to 50001).

2. Send this 12 byte hello message: 0x48 0x45 0x4C 0x4C 0x4F 0x2D 0x53 0x54 0x52 0x45
0x41 0x4D

3. Send a 16 byte message containing the client’s unique identifier. This identifier is given to the client after it
successfully connects to the RPC server.

4. Receive a 2 byte OK message: 0x4F 0x4B This indicates a successful connection.

Note: Connecting to the Stream Server is optional. If the client doesn’t require stream functionality, there is no need
to connect.

For example, this python code will connect to the stream server at address 127.0.0.1:50001. Note that
identifier is the unique client identifier received when connecting to the RPC server.

stream_conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
stream_conn.connect(('127.0.0.1', 50001))
Send the 12 byte hello message
stream_conn.sendall(b'\x48\x45\x4C\x4C\x4F\x2D\x53\x54\x52\x45\x41\x4D')
Send the 16 byte client identifier
stream_conn.sendall(identifier)
Receive the 2 byte OK message
ok_message = b''
while len(ok_message) < 2:

ok_message += stream_conn.recv(2 - len(ok_message))
Connection successful
print('Connected to stream server')

11.2 Remote Procedures

Remote procedures are arranged into groups called services. These act as a single-level namespacing to keep things
organized. Each service has a unique name used to identify it, and within a service each procedure has a unique name.

11.2.1 Invoking Remote Procedures

Remote procedures are invoked by sending a request message to the RPC server, and waiting for a response message.
These messages are encoded as Protocol Buffer messages.

The request message contains the name of the procedure to invoke, and the values of any arguments to pass it. The
response message contains the value returned by the procedure (if any) and any errors that were encountered.

566 Chapter 11. Communication Protocol

kRPC, Release 0.3.5

Requests are processed in order of receipt. The next request from a client will not be processed until the previous one
completes execution and it’s response has been received by the client. When there are multiple client connections,
requests are processed in round-robin order.

11.2.2 Anatomy of a Request

A request is sent to the server using a Request Protocol Buffer message with the following format:

message Request {
string service = 1;
string procedure = 2;
repeated Argument arguments = 3;

}

message Argument {
uint32 position = 1;
bytes value = 2;

}

The fields are:

• service - The name of the service in which the remote procedure is defined.

• procedure - The name of the remote procedure to invoke.

• arguments - A sequence of Argument messages containing the values of the procedure’s arguments. The
fields are:

– position - The zero-indexed position of the of the argument in the procedure’s signature.

– value - The value of the argument, encoded in Protocol Buffer format.

The Argument messages have a position field to allow values for default arguments to be omitted. See Protocol
Buffer Encoding for details on how to serialize the argument values.

11.2.3 Anatomy of a Response

A response is sent to the client using a Response Protocol Buffer message with the following format:

message Response {
double time = 1;
bool has_error = 2;
string error = 3;
bool has_return_value = 4;
bytes return_value = 5;

}

The fields are:

• time - The universal time (in seconds) when the request completed processing.

• has_error - True if there was an error executing the remote procedure.

• error - If has_error is true, contains a description of the error.

• has_return_value - True if the remote procedure returned a value.

• return_value - If has_return_value is true and has_error is false, contains the value returned by
the remote procedure, encoded in protocol buffer format.

See Protocol Buffer Encoding for details on how to unserialize the return value.

11.2. Remote Procedures 567

kRPC, Release 0.3.5

11.2.4 Encoding and Sending Requests and Responses

To send a request:

1. Encode a Request message using the Protocol Buffer Encoding.

2. Send the size in bytes of the encoded Request message, encoded as a Protocol Buffer varint.

3. Send the message data.

To receive a response:

1. Read a Protocol Buffer varint, which contains the length of the Response message data in bytes.

2. Receive and decode the Response message.

11.2.5 Example RPC invocation

The following Python script invokes the GetStatus procedure from the KRPC service using an already established
connection to the server (the rpc_conn variable).

The krpc.schema.KRPC package contains the Protocol Buffer message formats Request, Response and
Status compiled to python code using the Protocol Buffer compiler. The EncodeVarint and DecodeVarint
functions are used to encode/decode integers to/from the Protocol Buffer varint format.

import the krpc.proto schema
import krpc.schema

Utility functions to encode and decode integers to protobuf format
import google.protobuf

def EncodeVarint(value):
data = []
def write(x):

data.append(x)
google.protobuf.internal.encoder._SignedVarintEncoder()(write, value)
return b''.join(data)

def DecodeVarint(data):
return google.protobuf.internal.decoder._DecodeSignedVarint(data, 0)[0]

Create Request message
request = krpc.schema.KRPC.Request()
request.service = 'KRPC'
request.procedure = 'GetStatus'

Encode and send the request
data = request.SerializeToString()
header = EncodeVarint(len(data))
rpc_conn.sendall(header + data)

Receive the size of the response data
data = b''
while True:

data += rpc_conn.recv(1)
try:

size = DecodeVarint(data)
break

except IndexError:
pass

568 Chapter 11. Communication Protocol

kRPC, Release 0.3.5

Receive the response data
data = b''
while len(data) < size:

data += rpc_conn.recv(size - len(data))

Decode the response message
response = krpc.schema.KRPC.Response()
response.ParseFromString(data)

Check for an error response
if response.has_error:

print('ERROR:', response.error)

Decode the return value as a Status message
else:

status = krpc.schema.KRPC.Status()
assert response.has_return_value
status.ParseFromString(response.return_value)

Print out the version string from the Status message
print(status.version)

11.3 Protocol Buffer Encoding

Values passed as arguments or received as return values are encoded using the Protocol Buffer version 3 serialization
format:

• Documentation for this encoding can be found here: https://developers.google.com/protocol-
buffers/docs/encoding

• Protocol Buffer libraries in many languages are available here: https://github.com/google/protobuf/releases

11.4 Streams

Streams allow the client to repeatedly execute an RPC on the server and receive its results, without needing to repeat-
edly call the RPC directly, avoiding the communication overhead that this would involve.

A client can create a stream on the server by calling AddStream. Once the client is finished with the stream, it can
remove it from the server by calling RemoveStream. Streams are automatically removed when the client that created
it disconnects from the server. Streams are local to each client and there is no way to share a stream between clients.

The RPC for each stream is invoked every fixed update and the return values for all of these RPCs are collected
together into a stream message. This is then sent to the client over the stream server’s TCP/IP connection. If the value
returned by a stream’s RPC does not change since the last update that was sent, its value is omitted from the update
message in order to minimize network traffic.

11.4.1 Anatomy of a Stream Message

A stream message is sent to the client using a StreamMessage Protocol Buffer message with the following format:

message StreamMessage {
repeated StreamResponse responses = 1;

}

11.3. Protocol Buffer Encoding 569

https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding
https://github.com/google/protobuf/releases
http://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html

kRPC, Release 0.3.5

This contains a list of StreamResponse messages, one for each stream that exists on the server for that client, and
whose return value changed since the last update was sent. It has the following format:

message StreamResponse {
uint32 id = 1;
Response response = 2;

}

The fields are:

• id - The identifier of the stream. This is the value returned by AddStream when the stream is created.

• response - A Response message containing the result of the stream’s RPC. This is identical to the
Response message returned when calling the RPC directly. See Anatomy of a Response for details on the
format and contents of this message.

11.5 KRPC Service

The server provides a service called KRPC containing procedures that are used to retrieve information about the server
and to manage streams.

11.5.1 GetStatus

The GetStatus procedure returns status information about the server. It returns a Protocol Buffer message with the
format:

message Status {
string version = 1;
uint64 bytes_read = 2;
uint64 bytes_written = 3;
float bytes_read_rate = 4;
float bytes_written_rate = 5;
uint64 rpcs_executed = 6;
float rpc_rate = 7;
bool one_rpc_per_update = 8;
uint32 max_time_per_update = 9;
bool adaptive_rate_control = 10;
bool blocking_recv = 11;
uint32 recv_timeout = 12;
float time_per_rpc_update = 13;
float poll_time_per_rpc_update = 14;
float exec_time_per_rpc_update = 15;
uint32 stream_rpcs = 16;
uint64 stream_rpcs_executed = 17;
float stream_rpc_rate = 18;
float time_per_stream_update = 19;

}

The version field contains the version string of the server. The remaining fields contain performance information
about the server.

11.5.2 GetServices

The GetServices procedure returns a Protocol Buffer message containing information about all of the services and
procedures provided by the server. It also provides type information about each procedure, in the form of attributes.

570 Chapter 11. Communication Protocol

kRPC, Release 0.3.5

The format of the message is:

message Services {
repeated Service services = 1;

}

This contains a single field, which is a list of Service messages with information about each service provided by
the server. The content of these Service messages are documented below.

11.5.3 AddStream

The AddStream procedure adds a new stream to the server. It takes a single argument containing the RPC to invoke,
encoded as a Request object. See Anatomy of a Request for the format and contents of this object. See Streams for
more information on working with streams.

11.5.4 RemoveStream

The RemoveStream procedure removes a stream from the server. It takes a single argument – the identifier of the
stream to be removed. This is the identifier returned when the stream was added by calling AddStream. See Streams
for more information on working with streams.

11.6 Service Description Message

The GetServices procedure returns information about all of the services provided by the server. Details about a service
are given by a Service message, with the format:

message Service {
string name = 1;
repeated Procedure procedures = 2;
repeated Class classes = 3;
repeated Enumeration enumerations = 4;
string documentation = 5;

}

The fields are:

• name - The name of the service.

• procedures - A list of Procedure messages, one for each procedure defined by the service.

• classes - A list of Class messages, one for each KRPCClass defined by the service.

• enumerations - A list of Enumeration messages, one for each KRPCEnum defined by the service.

• documentation - Documentation for the service, as C# XML documentation.

Note: See the Extending kRPC documentation for more details about KRPCClass and KRPCEnum.

11.6.1 Procedures

Details about a procedure are given by a Procedure message, with the format:

11.6. Service Description Message 571

https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx

kRPC, Release 0.3.5

message Procedure {
string name = 1;
repeated Parameter parameters = 2;
bool has_return_type = 3;
string return_type = 4;
repeated string attributes = 5;
string documentation = 6;

}

message Parameter {
string name = 1;
string type = 2;
bool has_default_value = 3;
bytes default_value = 4;

}

The fields are:

• name - The name of the procedure.

• parameters - A list of Parameter messages containing details of the procedure’s parameters, with the
following fields:

– name - The name of the parameter, to allow parameter passing by name.

– type - The type of the parameter.

– has_default_value - True if the parameter has a default value.

– default_value - If has_default_value is true, contains the value of the default value of the
parameter, encoded using Protocol Buffer format.

• has_return_type - True if the procedure returns a value.

• return_type - If has_return_type is true, contains the return type of the procedure.

• attributes - The procedure’s attributes.

• documentation - Documentation for the procedure, as C# XML documentation.

11.6.2 Classes

Details about each KRPCClass are specified in a Class message, with the format:

message Class {
string name = 1;
string documentation = 2;

}

The fields are:

• name - The name of the class.

• documentation - Documentation for the class, as C# XML documentation.

11.6.3 Enumerations

Details about each KRPCEnum are specified in an Enumeration message, with the format:

572 Chapter 11. Communication Protocol

https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx

kRPC, Release 0.3.5

message Enumeration {
string name = 1;
repeated EnumerationValue values = 2;
string documentation = 3;

}

message EnumerationValue {
string name = 1;
int32 value = 2;
string documentation = 3;

}

The fields are:

• name - The name of the enumeration.

• values - A list of EnumerationValue messages, indicating the values that the enumeration can be as-
signed. The fields are:

– name - The name associated with the value for the enumeration.

– value - The possible value for the enumeration as a 32-bit integer.

– documentation - Documentation for the enumeration value, as C# XML documentation.

• documentation - Documentation for the enumeration, as C# XML documentation.

11.6.4 Attributes

Additional type information about a procedure is encoded as a list of attributes, and included in the Procedure
message. For example, if the procedure implements a method for a class (see proxy objects) this fact will be specified
in the attributes.

The following attributes specify what the procedure implements:

• Property.Get(property-name)

Indicates that the procedure is a property getter (for the service) with the given property-name.

• Property.Set(property-name)

Indicates that the procedure is a property setter (for the service) with the given property-name.

• Class.Method(class-name,method-name)

Indicates that the procedure is a method for a class with the given class-name and method-name.

• Class.StaticMethod(class-name,method-name)

Indicates that the procedure is a static method for a class with the given class-name and method-name.

• Class.Property.Get(class-name,property-name)

Indicates that the procedure is a property getter for a class with the given class-name and property-name.

• Class.Property.Set(class-name,property-name)

Indicates that the procedure is a property setter for a class with the given class-name and property-name.

The following attributes specify more details about the return and parameter types of the procedure.

• ReturnType.type-name

Specifies the actual return type of the procedure, if it differs to the type specified in the Procedure message.
For example, this is used with proxy objects.

11.6. Service Description Message 573

https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx

kRPC, Release 0.3.5

• ParameterType(parameter-position).type-name

Specifies the actual parameter type of the procedure, if it differs to the type of the corresponding parameter
specified in the Parameter message. For example, this is used with proxy objects.

11.6.5 Type Names

The GetServices procedure returns type information about parameters and return values as strings. Type names
can be any of the following:

• A Protocol Buffer value type. One of float, double, int32, int64, uint32, uint64, bool, string
or bytes.

• A KRPCClass in the format Class(ClassName)

• A KRPCEnum in the format Enum(ClassName)

• A Protocol Buffer message type, in the format KRPC.MessageType. Only message types defined in
krpc.proto are permitted.

11.6.6 Proxy Objects

kRPC allows procedures to create objects on the server, and pass a unique identifier for them to the client. This allows
the client to create a proxy object for the actual object, whose methods and properties make remote procedure calls to
the server. Object identifiers have type uint64.

When a procedure returns a proxy object, the procedure will have the attribute ReturnType.Class(ClassName)
where ClassName is the name of the class.

When a procedure takes a proxy object as a parameter, the procedure will have the attribute
ParameterType(n).Class(ClassName) where n is the position of the parameter and ClassName is
the name of the class.

574 Chapter 11. Communication Protocol

CHAPTER

TWELVE

INTERNALS OF KRPC

12.1 Server Performance Settings

Fig. 12.1: Server window showing the advanced settings.

kRPC processes its queue of remote procedures when its FixedUpdate method is invoked. This is called every fixed
framerate frame, typically about 60 times a second. If kRPC were to only execute one RPC per FixedUpdate, it would
only be able to execute at most 60 RPCs per second. In order to achieve a higher RPC throughput, it can execute
multiple RPCs per FixedUpdate. However, if it is allowed to process too many RPCs per FixedUpdate, the game’s
framerate would be adversely affected. The following settings control this behavior, and the resulting tradeoff between
RPC throughput and game FPS:

1. One RPC per update. When this is enabled, the server will execute at most one RPC per client per update.
This will have minimal impact on the games framerate, while still allowing kRPC to execute RPCs. If you don’t
need a high RPC throughput, this is a good option to use.

2. Maximum time per update. When one RPC per update is not enabled, this setting controls the maximum
amount of time (in nanoseconds) that kRPC will spend executing RPCs per FixedUpdate. Setting this to a high

575

kRPC, Release 0.3.5

value, for example 20000 ns, will allow the server to process many RPCs at the expense of the game’s framerate.
A low value, for example 1000 ns, won’t allow the server to execute many RPCs per update, but will allow the
game to run at a much higher framerate.

3. Adaptive rate control. When enabled, kRPC will automatically adjust the maximum time per update parameter,
so that the game has a minimum framerate of 60 FPS. Enabling this setting provides a good tradeoff between
RPC throughput and the game framerate.

Another consideration is the responsiveness of the server. Clients must execute RPCs in sequence, one after another,
and there is usually a (short) delay between them. This means that when the server finishes executing an RPC, if it
were to immediately check for a new RPC it will not find any and will return from the FixedUpdate. This means that
any new RPCs will have to wait until the next FixedUpdate, and results in the server only executing a single RPC per
FixedUpdate regardless of the maximum time per update setting.

Instead, higher RPC throughput can be obtained if the server waits briefly after finishing an RPC to see if any new
RPCs are received. This is done in such a way that the maximum time per update setting (above) is still observed.

This behavior is enabled by the blocking receives option. Receive timeout sets the maximum amount of time the
server will wait for a new RPC from a client.

576 Chapter 12. Internals of kRPC

PYTHON MODULE INDEX

d
Drawing, 522

i
InfernalRobotics, 526

k
KerbalAlarmClock, 532
krpc, 430
KRPC, 432
krpc.client, 431
krpc.stream, 432

r
RemoteTech, 536

s
SpaceCenter, 433

u
UI, 539

577

kRPC, Release 0.3.5

578 Python Module Index

LUA MODULE INDEX

d
Drawing, 402

i
InfernalRobotics, 407

k
KerbalAlarmClock, 412
krpc, 312
KRPC, 313

r
RemoteTech, 417

s
SpaceCenter, 314

u
UI, 419

579

kRPC, Release 0.3.5

580 Lua Module Index

INDEX

Symbols
__call__() (Stream method), 432

A
abort (Control attribute), 342, 461
acceleration (Servo attribute), 411, 530
action (Alarm attribute), 413, 532
actions (Module attribute), 359, 478
activate_next_stage() (Control method), 343, 462
activateNextStage() (Java method), 241
active (Engine attribute), 365, 484
ACTIVE (Java field), 264, 267
active (Light attribute), 374, 493
active (RCS attribute), 380, 499
active (ReactionWheel attribute), 379, 498
active (ResourceHarvester attribute), 378, 497
active (Sensor attribute), 382, 501
active() (ResourceConverter method), 377, 496
active(int) (Java method), 265
active_vessel (in module SpaceCenter), 314, 433
ACTIVE_VESSEL (Java field), 303
add_button() (Canvas method), 421, 540
add_button() (Panel method), 422, 541
add_canvas() (in module UI), 420, 539
add_direction() (in module Drawing), 403, 522
add_input_field() (Canvas method), 421, 540
add_input_field() (Panel method), 422, 541
add_line() (in module Drawing), 402, 522
add_node() (Control method), 343, 462
add_panel() (Canvas method), 421, 540
add_panel() (Panel method), 422, 541
add_polygon() (in module Drawing), 403, 522
add_stream() (Client method), 431
add_stream() (in module KRPC), 313, 432
add_text() (Canvas method), 421, 540
add_text() (in module Drawing), 403, 522
add_text() (Panel method), 422, 541
addButton(String, boolean) (Java method), 304, 305
addCanvas() (Java method), 303
addDirection(org.javatuples.Triplet, SpaceCen-

ter.ReferenceFrame, float, boolean) (Java
method), 288

addInputField(boolean) (Java method), 304, 305
addLine(org.javatuples.Triplet, org.javatuples.Triplet,

SpaceCenter.ReferenceFrame, boolean) (Java
method), 287

addNode(double, float, float, float) (Java method), 241
addPanel(boolean) (Java method), 304, 305
addPolygon(java.util.List, SpaceCenter.ReferenceFrame,

boolean) (Java method), 288
addStream(Class, String, Object) (Java method), 218
addStream(krpc.schema.KRPC.Request) (Java method),

218
addStream(RemoteObject, String, Object) (Java method),

218
addText(String, boolean) (Java method), 304, 305
addText(String, SpaceCenter.ReferenceFrame,

org.javatuples.Triplet, org.javatuples.Quartet,
boolean) (Java method), 288

ADJACENT (Java field), 278
aerodynamic_force (Flight attribute), 335, 454
Alarm (class in KerbalAlarmClock), 413, 532
Alarm (Java class), 297
alarm_with_name() (in module KerbalAlarmClock), 412,

532
AlarmAction (class in KerbalAlarmClock), 416, 535
AlarmAction (Java enum), 300
AlarmAction.do_nothing (in module KerbalAlarmClock),

416, 535
AlarmAction.do_nothing_delete_when_passed (in mod-

ule KerbalAlarmClock), 416, 535
AlarmAction.kill_warp (in module KerbalAlarmClock),

416, 535
AlarmAction.kill_warp_only (in module KerbalAlarm-

Clock), 416, 535
AlarmAction.message_only (in module KerbalAlarm-

Clock), 416, 535
AlarmAction.pause_game (in module KerbalAlarm-

Clock), 416, 535
alarms (in module KerbalAlarmClock), 412, 532
alarms_with_type() (in module KerbalAlarmClock), 413,

532
alarmsWithType(AlarmType) (Java method), 297
AlarmType (class in KerbalAlarmClock), 415, 534

581

kRPC, Release 0.3.5

AlarmType (Java enum), 299
AlarmType.apoapsis (in module KerbalAlarmClock),

415, 534
AlarmType.ascending_node (in module KerbalAlarm-

Clock), 415, 534
AlarmType.closest (in module KerbalAlarmClock), 415,

534
AlarmType.contract (in module KerbalAlarmClock), 415,

534
AlarmType.contract_auto (in module KerbalAlarm-

Clock), 415, 534
AlarmType.crew (in module KerbalAlarmClock), 415,

534
AlarmType.descending_node (in module KerbalAlarm-

Clock), 415, 534
AlarmType.distance (in module KerbalAlarmClock), 415,

534
AlarmType.earth_time (in module KerbalAlarmClock),

415, 535
AlarmType.launch_rendevous (in module KerbalAlarm-

Clock), 415, 535
AlarmType.maneuver (in module KerbalAlarmClock),

415, 534
AlarmType.maneuver_auto (in module KerbalAlarm-

Clock), 415, 534
AlarmType.periapsis (in module KerbalAlarmClock),

415, 534
AlarmType.raw (in module KerbalAlarmClock), 415, 534
AlarmType.soi_change (in module KerbalAlarmClock),

415, 535
AlarmType.soi_change_auto (in module KerbalAlarm-

Clock), 416, 535
AlarmType.transfer (in module KerbalAlarmClock), 416,

535
AlarmType.transfer_modelled (in module KerbalAlarm-

Clock), 416, 535
alarmWithName(String) (Java method), 297
alignment (Text attribute), 407, 423, 526, 542
all (Parts attribute), 345, 464
all (Resources attribute), 389, 509
amount (Resource attribute), 391, 511
amount (ResourceTransfer attribute), 392, 512
amount() (Resources method), 390, 510
amount(String) (Java method), 277
anchor (RectTransform attribute), 427, 546
anchor (Text attribute), 407, 526
anchor_max (RectTransform attribute), 427, 546
anchor_min (RectTransform attribute), 427, 546
angle_of_attack (Flight attribute), 336, 455
angular_velocity() (CelestialBody method), 332, 451
angular_velocity() (Vessel method), 327, 446
angularVelocity(ReferenceFrame) (Java method), 230,

234
Antenna (class in RemoteTech), 418, 537

Antenna (Java class), 302
antenna() (in module RemoteTech), 417, 536
antenna(SpaceCenter.Part) (Java method), 301
antennas (Comms attribute), 418, 537
anti_normal (Flight attribute), 334, 453
ANTI_NORMAL (Java field), 242
anti_radial (Flight attribute), 334, 453
ANTI_RADIAL (Java field), 242
ANTI_TARGET (Java field), 242
APOAPSIS (Java field), 299
apoapsis (Orbit attribute), 338, 457
apoapsis_altitude (Orbit attribute), 338, 457
area (Intake attribute), 372, 491
argument_of_periapsis (Orbit attribute), 340, 459
ASCENDING_NODE (Java field), 299
atmosphere_density (Flight attribute), 335, 453
atmosphere_depth (CelestialBody attribute), 330, 449
attenuation_angle (AutoPilot attribute), 398, 518
auto_mode_switch (Engine attribute), 368, 487
auto_pilot (Vessel attribute), 319, 438
auto_tune (AutoPilot attribute), 399, 518
AUTOMATIC (Java field), 287
AutoPilot (class in SpaceCenter), 396, 515
AutoPilot (Java class), 281
available_control_surface_torque (Vessel attribute), 322,

441
available_engine_torque (Vessel attribute), 322, 441
available_fonts (Text attribute), 406, 423, 525, 542
available_rcs_torque (Vessel attribute), 322, 441
available_reaction_wheel_torque (Vessel attribute), 322,

440
available_thrust (Engine attribute), 366, 485
available_thrust (Vessel attribute), 320, 439
available_torque (ControlSurface attribute), 361, 480
available_torque (Engine attribute), 369, 487
available_torque (RCS attribute), 381, 500
available_torque (ReactionWheel attribute), 380, 499
available_torque (Vessel attribute), 321, 440
axially_attached (Part attribute), 350, 469

B
ballistic_coefficient (Flight attribute), 337, 456
BASE (Java field), 230
bedrock_altitude (Flight attribute), 332, 451
bedrock_height() (CelestialBody method), 329, 448
bedrock_position() (CelestialBody method), 329, 448
bedrockHeight(double, double) (Java method), 231
bedrockPosition(double, double, ReferenceFrame) (Java

method), 232
bodies (in module SpaceCenter), 314, 433
body (Orbit attribute), 338, 457
BOLD (Java field), 307
BOLD_AND_ITALIC (Java field), 307
BOTTOM_CENTER (Java field), 304

582 Index

kRPC, Release 0.3.5

brakes (Control attribute), 342, 461
BROKEN (Java field), 262, 263, 265, 270
broken (ReactionWheel attribute), 379, 498
burn_vector() (Node method), 394, 513
burnVector(ReferenceFrame) (Java method), 279
Button (class in UI), 424, 544
Button (Java class), 308

C
Camera (class in SpaceCenter), 400, 520
camera (in module SpaceCenter), 315, 435
Camera (Java class), 286
CameraMode (class in SpaceCenter), 402, 521
CameraMode (Java enum), 287
CameraMode.automatic (in module SpaceCenter), 402,

521
CameraMode.chase (in module SpaceCenter), 402, 521
CameraMode.free (in module SpaceCenter), 402, 521
CameraMode.iva (in module SpaceCenter), 402, 521
CameraMode.locked (in module SpaceCenter), 402, 521
CameraMode.map (in module SpaceCenter), 402, 521
CameraMode.orbital (in module SpaceCenter), 402, 521
can_rails_warp_at() (in module SpaceCenter), 316, 435
can_restart (Engine attribute), 367, 486
can_shutdown (Engine attribute), 367, 486
canRailsWarpAt(int) (Java method), 221
Canvas (class in UI), 420, 540
Canvas (Java class), 304
CAPACITY (Java field), 266
cargo_bay (Part attribute), 353, 472
cargo_bays (Parts attribute), 346, 465
CargoBay (class in SpaceCenter), 360, 479
CargoBay (Java class), 253
CargoBayState (class in SpaceCenter), 360, 479
CargoBayState (Java enum), 253
CargoBayState.closed (in module SpaceCenter), 360, 479
CargoBayState.closing (in module SpaceCenter), 361,

480
CargoBayState.open (in module SpaceCenter), 360, 479
CargoBayState.opening (in module SpaceCenter), 360,

479
CELESTIAL_BODY (Java field), 303
CelestialBody (class in SpaceCenter), 328, 447
CelestialBody (Java class), 231
CENTER (Java field), 307
center_of_mass (Flight attribute), 333, 452
center_of_mass() (Part method), 355, 474
center_of_mass_reference_frame (Part attribute), 356,

475
centerOfMass(ReferenceFrame) (Java method), 249
changed (InputField attribute), 426, 545
character_size (Text attribute), 406, 526
CHASE (Java field), 287
children (Part attribute), 349, 468

clear() (in module Drawing), 403, 523
clear() (in module UI), 420, 539
clear(boolean) (Java method), 289, 303
clear_target() (in module SpaceCenter), 314, 433
clearTarget() (Java method), 219
clicked (Button attribute), 425, 544
Client (class in krpc), 312
Client (class in krpc.client), 431
close() (Client method), 312, 431
close() (Java method), 218
CLOSED (Java field), 253
CLOSEST (Java field), 299
CLOSING (Java field), 253
color (Light attribute), 374, 493
color (Line attribute), 404, 523
color (Polygon attribute), 405, 524
color (Text attribute), 406, 423, 526, 542
Comms (class in RemoteTech), 417, 536
Comms (Java class), 301
comms() (in module RemoteTech), 417, 536
comms(SpaceCenter.Vessel) (Java method), 301
complete (ResourceTransfer attribute), 392, 512
config_speed (Servo attribute), 410, 530
connect() (in module krpc), 312, 430
connected_resources (Propellant attribute), 370, 489
Connection (Java class), 217
content (Text attribute), 406, 423, 525, 542
CONTRACT (Java field), 299
CONTRACT_AUTO (Java field), 299
Control (class in SpaceCenter), 341, 460
Control (Java class), 239
control (Vessel attribute), 319, 438
control_surface (Part attribute), 353, 472
control_surfaces (Parts attribute), 347, 465
controlling (Parts attribute), 346, 465
ControlSurface (class in SpaceCenter), 361, 480
ControlSurface (Java class), 254
core_temperature (ResourceHarvester attribute), 379, 498
cost (Part attribute), 349, 468
count (ResourceConverter attribute), 377, 496
create_alarm() (in module KerbalAlarmClock), 413, 532
createAlarm(AlarmType, String, double) (Java method),

297
CREW (Java field), 299
crossfeed (Part attribute), 353, 471
current_amount (Propellant attribute), 369, 488
current_game_scene (in module KRPC), 313, 432
current_requirement (Propellant attribute), 369, 488
current_speed (Servo attribute), 410, 530
current_stage (Control attribute), 343, 462
CUT (Java field), 264

D
data (Experiment attribute), 371, 490

Index 583

kRPC, Release 0.3.5

data_amount (ScienceData attribute), 371, 490
DEBRIS (Java field), 230
deceleration_time (AutoPilot attribute), 398, 518
decouple() (Decoupler method), 362, 481
decouple() (Java method), 254
decouple_stage (Part attribute), 350, 469
decoupled (Decoupler attribute), 362, 481
Decoupler (class in SpaceCenter), 362, 481
Decoupler (Java class), 254
decoupler (Part attribute), 353, 472
decouplers (Parts attribute), 347, 466
default_distance (Camera attribute), 401, 520
delta_v (Node attribute), 393, 513
density (Resource attribute), 391, 511
density() (Resources static method), 390, 510
density(String) (Java method), 277
deploy() (Java method), 263
deploy() (Parachute method), 375, 494
deploy_altitude (Parachute attribute), 375, 494
deploy_min_pressure (Parachute attribute), 375, 494
deployable (LandingGear attribute), 372, 491
deployable (Radiator attribute), 376, 495
deployed (ControlSurface attribute), 361, 480
deployed (Experiment attribute), 370, 489
DEPLOYED (Java field), 262, 264, 267
deployed (LandingGear attribute), 373, 492
deployed (LandingLeg attribute), 373, 492
deployed (Parachute attribute), 375, 494
deployed (Radiator attribute), 376, 495
deployed (ResourceHarvester attribute), 378, 497
deployed (SolarPanel attribute), 383, 502
DEPLOYING (Java field), 262, 267
DESCENDING_NODE (Java field), 299
direction (Flight attribute), 333, 452
direction() (CelestialBody method), 332, 451
direction() (DockingPort method), 363, 482
direction() (Node method), 395, 515
direction() (Part method), 356, 475
direction() (Vessel method), 327, 445
direction(ReferenceFrame) (Java method), 230, 234, 249,

255, 281
disengage() (AutoPilot method), 396, 515
disengage() (Java method), 281
distance (Camera attribute), 401, 520
DISTANCE (Java field), 299
DO_NOTHING (Java field), 300
DO_NOTHING_DELETE_WHEN_PASSED (Java

field), 300
DOCKED (Java field), 230, 256
docked_part (DockingPort attribute), 362, 481
DOCKING (Java field), 256
docking_port (Part attribute), 353, 472
docking_port_with_name() (Parts method), 347, 466
docking_ports (Parts attribute), 347, 466

DockingPort (class in SpaceCenter), 362, 481
DockingPort (Java class), 255
DockingPortState (class in SpaceCenter), 364, 483
DockingPortState (Java enum), 256
DockingPortState.docked (in module SpaceCenter), 364,

483
DockingPortState.docking (in module SpaceCenter), 364,

483
DockingPortState.moving (in module SpaceCenter), 365,

483
DockingPortState.ready (in module SpaceCenter), 364,

483
DockingPortState.shielded (in module SpaceCenter), 364,

483
DockingPortState.undocking (in module SpaceCenter),

364, 483
dockingPortWithName(String) (Java method), 244
drag (Flight attribute), 335, 454
drag_coefficient (Flight attribute), 337, 456
draw_stack_gauge (Propellant attribute), 369, 488
Drawing (Java class), 287
Drawing (module), 402, 522
dry_mass (Part attribute), 351, 469
dry_mass (Vessel attribute), 320, 439
dump() (Experiment method), 370, 489
dump() (Java method), 260
dynamic_pressure (Flight attribute), 335, 453
dynamic_pressure (Part attribute), 351, 470

E
EARTH_TIME (Java field), 299
eccentric_anomaly (Orbit attribute), 340, 459
eccentricity (Orbit attribute), 339, 458
EDITOR_SPH (Java field), 219
EDITOR_VAB (Java field), 219
elevation (Flight attribute), 333, 451
enabled (RCS attribute), 380, 499
enabled (Resource attribute), 391, 511
enabled (Resources attribute), 390, 510
end (Line attribute), 404, 523
energy_flow (SolarPanel attribute), 383, 502
engage() (AutoPilot method), 396, 515
engage() (Java method), 281
Engine (class in SpaceCenter), 365, 484
Engine (Java class), 257
engine (Part attribute), 354, 473
engines (Parts attribute), 347, 466
epoch (Orbit attribute), 340, 459
equatorial_radius (CelestialBody attribute), 329, 447
equivalent_air_speed (Flight attribute), 336, 455
error (AutoPilot attribute), 396, 516
ESCAPING (Java field), 230
events (Module attribute), 358, 477
expanded (ServoGroup attribute), 408, 528

584 Index

kRPC, Release 0.3.5

Experiment (class in SpaceCenter), 370, 489
Experiment (Java class), 260
experiment (Part attribute), 354, 473
experiments (Parts attribute), 347, 466
EXTENDED (Java field), 264, 269
EXTENDING (Java field), 264, 269
extraction_rate (ResourceHarvester attribute), 378, 497

F
Fairing (class in SpaceCenter), 371, 490
Fairing (Java class), 261
fairing (Part attribute), 354, 473
fairings (Parts attribute), 347, 466
far_available (in module SpaceCenter), 318, 437
fields (Module attribute), 358, 477
Flight (class in SpaceCenter), 332, 451
Flight (Java class), 234
FLIGHT (Java field), 219
flight() (Vessel method), 319, 438
flight(ReferenceFrame) (Java method), 224
flow (Intake attribute), 372, 491
flow_mode (Resource attribute), 391, 511
flow_mode() (Resources static method), 390, 510
flowMode(String) (Java method), 277
FLYING (Java field), 230
focussed_body (Camera attribute), 401, 521
focussed_node (Camera attribute), 402, 521
focussed_vessel (Camera attribute), 401, 521
font (Text attribute), 406, 423, 525, 542
FontStyle (class in UI), 423, 543
FontStyle (Java enum), 307
FontStyle.bold (in module UI), 424, 543
FontStyle.bold_and_italic (in module UI), 424, 543
FontStyle.italic (in module UI), 424, 543
FontStyle.normal (in module UI), 423, 543
forward (Control attribute), 342, 461
forward_enabled (RCS attribute), 381, 500
forward_key (ServoGroup attribute), 408, 527
FREE (Java field), 287
fuel_lines_from (Part attribute), 353, 472
fuel_lines_to (Part attribute), 353, 472

G
g (in module SpaceCenter), 316, 435
g_force (Flight attribute), 332, 451
GameScene (class in KRPC), 313, 432
GameScene (Java enum), 219
GameScene.editor_sph (in module KRPC), 313, 433
GameScene.editor_vab (in module KRPC), 313, 433
GameScene.flight (in module KRPC), 313, 432
GameScene.space_center (in module KRPC), 313, 432
GameScene.tracking_station (in module KRPC), 313,

433
gear (Control attribute), 342, 460

get() (Java method), 218
get_action_group() (Control method), 343, 462
get_field() (Module method), 358, 477
get_services() (in module KRPC), 313, 432
get_status() (in module KRPC), 313, 432
get_status() (KRPC method), 312, 431
getAbort() (Java method), 240
getAcceleration() (Java method), 295
getAction() (Java method), 297
getActionGroup(int) (Java method), 241
getActions() (Java method), 252
getActive() (Java method), 257, 263, 266, 267, 269
getActiveVessel() (Java method), 219
getAerodynamicForce() (Java method), 236
getAlarms() (Java method), 297
getAlignment() (Java method), 292, 306
getAll() (Java method), 243, 276
getAmount() (Java method), 277, 278
getAnchor() (Java method), 292
getAnchorMax() (Java method), 310
getAnchorMin() (Java method), 310
getAngleOfAttack() (Java method), 237
getAntennas() (Java method), 302
getAntiNormal() (Java method), 235
getAntiRadial() (Java method), 235
getApoapsis() (Java method), 238
getApoapsisAltitude() (Java method), 238
getArea() (Java method), 261
getArgumentOfPeriapsis() (Java method), 239
getAtmosphereDensity() (Java method), 235
getAtmosphereDepth() (Java method), 232
getAttenuationAngle() (Java method), 283
getAutoModeSwitch() (Java method), 259
getAutoPilot() (Java method), 224
getAutoTune() (Java method), 284
getAvailableControlSurfaceTorque() (Java method), 225
getAvailableEngineTorque() (Java method), 225
getAvailableFonts() (Java method), 291, 306
getAvailableRCSTorque() (Java method), 225
getAvailableReactionWheelTorque() (Java method), 225
getAvailableThrust() (Java method), 224, 257
getAvailableTorque() (Java method), 225, 254, 259, 267,

268
getAxiallyAttached() (Java method), 246
getBallisticCoefficient() (Java method), 237
getBedrockAltitude() (Java method), 234
getBodies() (Java method), 219
getBody() (Java method), 238
getBrakes() (Java method), 240
getBroken() (Java method), 267
getCamera() (Java method), 221
getCanRestart() (Java method), 259
getCanShutdown() (Java method), 259
getCargoBay() (Java method), 248

Index 585

kRPC, Release 0.3.5

getCargoBays() (Java method), 244
getCenterOfMass() (Java method), 235
getCenterOfMassReferenceFrame() (Java method), 250
getChanged() (Java method), 309
getCharacterSize() (Java method), 291
getChildren() (Java method), 246
getClicked() (Java method), 308
getColor() (Java method), 263, 289–291, 306
getComplete() (Java method), 278
getConfigSpeed() (Java method), 295
getConnectedResources() (Java method), 260
getContent() (Java method), 291, 306
getControl() (Java method), 224
getControlling() (Java method), 243
getControlSurface() (Java method), 248
getControlSurfaces() (Java method), 244
getCoreTemperature() (Java method), 266
getCost() (Java method), 246
getCount() (Java method), 265
getCrossfeed() (Java method), 248
getCurrentAmount() (Java method), 259
getCurrentGameScene() (Java method), 218
getCurrentRequirement() (Java method), 259
getCurrentSpeed() (Java method), 295
getCurrentStage() (Java method), 241
getData() (Java method), 260
getDataAmount() (Java method), 260
getDecelerationTime() (Java method), 283
getDecoupled() (Java method), 254
getDecoupler() (Java method), 248
getDecouplers() (Java method), 244
getDecoupleStage() (Java method), 246
getDefaultDistance() (Java method), 286
getDeltaV() (Java method), 279
getDensity() (Java method), 277
getDeployable() (Java method), 262, 264
getDeployAltitude() (Java method), 263
getDeployed() (Java method), 254, 260, 262–264, 266,

269
getDeployMinPressure() (Java method), 264
getDirection() (Java method), 235
getDistance() (Java method), 286
getDockedPart() (Java method), 255
getDockingPort() (Java method), 248
getDockingPorts() (Java method), 244
getDrag() (Java method), 236
getDragCoefficient() (Java method), 237
getDrawStackGauge() (Java method), 260
getDryMass() (Java method), 224, 247
getDynamicPressure() (Java method), 235, 247
getEccentricAnomaly() (Java method), 239
getEccentricity() (Java method), 239
getElevation() (Java method), 234
getEnabled() (Java method), 267, 277, 278

getEnd() (Java method), 289
getEnergyFlow() (Java method), 269
getEngine() (Java method), 248
getEngines() (Java method), 245
getEpoch() (Java method), 239
getEquatorialRadius() (Java method), 231
getEquivalentAirSpeed() (Java method), 236
getError() (Java method), 282
getEvents() (Java method), 252
getExpanded() (Java method), 293
getExperiment() (Java method), 248
getExperiments() (Java method), 245
getExtractionRate() (Java method), 266
getFairing() (Java method), 248
getFairings() (Java method), 245
getFARAvailable() (Java method), 223
getField(String) (Java method), 251
getFields() (Java method), 251
getFlow() (Java method), 261
getFlowMode() (Java method), 278
getFocussedBody() (Java method), 286
getFocussedNode() (Java method), 287
getFocussedVessel() (Java method), 286
getFont() (Java method), 291, 306
getForward() (Java method), 241
getForwardEnabled() (Java method), 268
getForwardKey() (Java method), 293
getFuelLinesFrom() (Java method), 248
getFuelLinesTo() (Java method), 248
getG() (Java method), 221
getGear() (Java method), 240
getGForce() (Java method), 234
getGimbalAngle() (Java method), 271
getGimballed() (Java method), 259, 270
getGimbalLimit() (Java method), 259
getGimbalLocked() (Java method), 259
getGimbalRange() (Java method), 259
getGravitationalParameter() (Java method), 231
getGroundStations() (Java method), 301
getHasAtmosphere() (Java method), 232
getHasAtmosphericOxygen() (Java method), 232
getHasConnection() (Java method), 301, 302
getHasConnectionToGroundStation() (Java method), 301
getHasData() (Java method), 260
getHasFlightComputer() (Java method), 301
getHasFuel() (Java method), 258, 268
getHasLocalControl() (Java method), 301
getHasModes() (Java method), 259
getHasShield() (Java method), 255
getHeading() (Java method), 235, 286
getHeadingError() (Java method), 282
getHorizontalSpeed() (Java method), 235
getID() (Java method), 298
getIgnoreForIsp() (Java method), 260

586 Index

kRPC, Release 0.3.5

getIgnoreForThrustCurve() (Java method), 260
getImpactTolerance() (Java method), 247
getImpulse() (Java method), 254
getInclination() (Java method), 239
getInertiaTensor() (Java method), 225, 250
getInoperable() (Java method), 260
getIntake() (Java method), 248
getIntakes() (Java method), 245
getInverted() (Java method), 254
getIsAxisInverted() (Java method), 295
getIsDeprived() (Java method), 260
getIsFreeMoving() (Java method), 295
getIsFuelLine() (Java method), 248
getIsLocked() (Java method), 295
getIsMoving() (Java method), 295
getJettisoned() (Java method), 261
getKerbinSeaLevelSpecificImpulse() (Java method), 225,

258, 268
getLandingGear() (Java method), 245, 249
getLandingLeg() (Java method), 249
getLandingLegs() (Java method), 245
getLatitude() (Java method), 235
getLaunchClamp() (Java method), 249
getLaunchClamps() (Java method), 245
getLift() (Java method), 236
getLiftCoefficient() (Java method), 237
getLight() (Java method), 249
getLights() (Java method), 240, 245
getLineSpacing() (Java method), 292, 306
getLocalPosition() (Java method), 309
getLongitude() (Java method), 235
getLongitudeOfAscendingNode() (Java method), 239
getLowerLeft() (Java method), 309
getMach() (Java method), 236
getMargin() (Java method), 298
getMass() (Java method), 224, 231, 247
getMassless() (Java method), 247
getMaterial() (Java method), 289, 290, 292
getMax() (Java method), 277
getMaxConfigPosition() (Java method), 294
getMaxDistance() (Java method), 286
getMaximumRailsWarpFactor() (Java method), 221
getMaxPitch() (Java method), 286
getMaxPosition() (Java method), 295
getMaxSkinTemperature() (Java method), 247
getMaxTemperature() (Java method), 247
getMaxThrust() (Java method), 225, 258, 268
getMaxTorque() (Java method), 267
getMaxVacuumThrust() (Java method), 225, 258, 268
getMeanAltitude() (Java method), 234
getMeanAnomaly() (Java method), 239
getMeanAnomalyAtEpoch() (Java method), 239
getMET() (Java method), 224
getMinConfigPosition() (Java method), 294

getMinDistance() (Java method), 286
getMinPitch() (Java method), 286
getMinPosition() (Java method), 295
getMode() (Java method), 259, 286
getModes() (Java method), 259
getModules() (Java method), 248
getMomentOfInertia() (Java method), 225, 250
getName() (Java method), 223, 231, 246, 251, 255, 259,

277, 293, 294, 298
getNames() (Java method), 276
getNextOrbit() (Java method), 239
getNodes() (Java method), 242
getNonRotatingReferenceFrame() (Java method), 233
getNormal() (Java method), 235, 279
getNotes() (Java method), 298
getOpen() (Java method), 253, 261
getOptimumCoreTemperature() (Java method), 266
getOrbit() (Java method), 224, 231, 280
getOrbitalReferenceFrame() (Java method), 226, 233, 280
getOvershoot() (Java method), 284
getParachute() (Java method), 249
getParachutes() (Java method), 245
getParent() (Java method), 246
getPart() (Java method), 251, 253–255, 257, 260–267,

269, 270, 277, 294, 302
getParts() (Java method), 224, 294
getPeriapsis() (Java method), 238
getPeriapsisAltitude() (Java method), 238
getPeriod() (Java method), 238
getPhysicsWarpFactor() (Java method), 221
getPitch() (Java method), 235, 240, 286
getPitchEnabled() (Java method), 254, 268
getPitchError() (Java method), 282
getPitchPIDGains() (Java method), 284
getPivot() (Java method), 310
getPosition() (Java method), 291, 294, 309
getPowerUsage() (Java method), 263, 269
getPrograde() (Java method), 235, 279
getPropellantNames() (Java method), 258
getPropellantRatios() (Java method), 258, 268
getPropellants() (Java method), 258, 268
getRadial() (Java method), 235, 279
getRadiallyAttached() (Java method), 246
getRadiator() (Java method), 249
getRadiators() (Java method), 245
getRadius() (Java method), 238
getRailsWarpFactor() (Java method), 221
getRatio() (Java method), 260
getRCS() (Java method), 240, 245, 249
getReactionWheel() (Java method), 249
getReactionWheels() (Java method), 245
getRecoverable() (Java method), 223
getRectTransform() (Java method), 304–306, 308
getReengageDistance() (Java method), 255

Index 587

kRPC, Release 0.3.5

getReferenceFrame() (Java method), 226, 232, 250, 255,
280, 282, 289–291

getRemaining() (Java method), 298
getRemainingDeltaV() (Java method), 279
getRepeat() (Java method), 298
getRepeatPeriod() (Java method), 298
getRerunnable() (Java method), 260
getResourceConverter() (Java method), 249
getResourceConverters() (Java method), 245
getResourceHarvester() (Java method), 249
getResourceHarvesters() (Java method), 245
getResources() (Java method), 224, 248
getRetrograde() (Java method), 235
getReverseKey() (Java method), 293
getRight() (Java method), 241
getRightEnabled() (Java method), 268
getRoll() (Java method), 235, 241
getRollEnabled() (Java method), 254, 268
getRollError() (Java method), 282
getRollPIDGains() (Java method), 284
getRollThreshold() (Java method), 283
getRoot() (Java method), 243
getRotation() (Java method), 235, 291, 310
getRotationalPeriod() (Java method), 231
getRotationalSpeed() (Java method), 231
getSAS() (Java method), 240, 283
getSASMode() (Java method), 240, 283
getSatellites() (Java method), 231
getScale() (Java method), 310
getScienceValue() (Java method), 261
getSemiMajorAxis() (Java method), 238
getSemiMinorAxis() (Java method), 238
getSensor() (Java method), 249
getSensors() (Java method), 245
getServices() (Java method), 218
getServos() (Java method), 293
getShielded() (Java method), 247, 255
getSideslipAngle() (Java method), 237
getSignalDelay() (Java method), 302
getSignalDelayToGroundStation() (Java method), 302
getSituation() (Java method), 223
getSize() (Java method), 291, 306, 309
getSkinTemperature() (Java method), 247
getSolarPanel() (Java method), 249
getSolarPanels() (Java method), 245
getSpecificImpulse() (Java method), 225, 258, 268
getSpeed() (Java method), 235, 238, 261, 293, 295
getSpeedMode() (Java method), 240
getSpeedOfSound() (Java method), 236
getSphereOfInfluence() (Java method), 232
getStage() (Java method), 246
getStallFraction() (Java method), 237
getStart() (Java method), 289
getState() (Java method), 253, 255, 261–264, 266, 269

getStaticAirTemperature() (Java method), 237
getStaticPressure() (Java method), 236
getStatus() (Java method), 218
getStockCanvas() (Java method), 303
getStoppingTime() (Java method), 283
getStyle() (Java method), 291, 306
getSunExposure() (Java method), 269
getSurfaceAltitude() (Java method), 234
getSurfaceArea() (Java method), 254
getSurfaceGravity() (Java method), 231
getSurfaceReferenceFrame() (Java method), 226
getSurfaceVelocityReferenceFrame() (Java method), 228
getTarget() (Java method), 302
getTargetBody() (Java method), 219, 302
getTargetDirection() (Java method), 282
getTargetDockingPort() (Java method), 219
getTargetGroundStation() (Java method), 302
getTargetHeading() (Java method), 282
getTargetPitch() (Java method), 282
getTargetRoll() (Java method), 282
getTargetVessel() (Java method), 219, 302
getTemperature() (Java method), 247
getTerminalVelocity() (Java method), 236
getText() (Java method), 308
getThermalConductionFlux() (Java method), 247
getThermalConvectionFlux() (Java method), 247
getThermalEfficiency() (Java method), 266
getThermalInternalFlux() (Java method), 247
getThermalMass() (Java method), 247
getThermalRadiationFlux() (Java method), 247
getThermalResourceMass() (Java method), 247
getThermalSkinMass() (Java method), 247
getThermalSkinToInternalFlux() (Java method), 248
getThickness() (Java method), 289, 290
getThrottle() (Java method), 240, 258
getThrottleLocked() (Java method), 258
getThrust() (Java method), 224, 257
getThrusters() (Java method), 258, 268
getThrustLimit() (Java method), 258
getThrustReferenceFrame() (Java method), 270
getThrustSpecificFuelConsumption() (Java method), 237
getTime() (Java method), 298
getTimeTo() (Java method), 280
getTimeToApoapsis() (Java method), 238
getTimeToPeak() (Java method), 284
getTimeToPeriapsis() (Java method), 239
getTimeToSOIChange() (Java method), 239
getTitle() (Java method), 246
getTotalAirTemperature() (Java method), 237
getTotalResourceAvailable() (Java method), 259
getTotalResourceCapacity() (Java method), 260
getTransmitValue() (Java method), 261
getType() (Java method), 223, 298
getUp() (Java method), 241

588 Index

kRPC, Release 0.3.5

getUpEnabled() (Java method), 268
getUpperRight() (Java method), 309
getUT() (Java method), 221, 280
getVacuumSpecificImpulse() (Java method), 225, 258,

268
getValue() (Java method), 269, 308
getVelocity() (Java method), 235
getVerticalSpeed() (Java method), 235
getVertices() (Java method), 290
getVessel() (Java method), 246, 298, 301
getVessels() (Java method), 219
getVisible() (Java method), 289–291, 304–306, 308
getWarpFactor() (Java method), 221
getWarpMode() (Java method), 221
getWarpRate() (Java method), 221
getWheelSteering() (Java method), 241
getWheelThrottle() (Java method), 241
getXferOriginBody() (Java method), 298
getXferTargetBody() (Java method), 298
getYaw() (Java method), 240
getYawEnabled() (Java method), 254, 268
getYawPIDGains() (Java method), 284
gimbal_angle (Thruster attribute), 385, 503
gimbal_limit (Engine attribute), 368, 487
gimbal_locked (Engine attribute), 368, 487
gimbal_position() (Thruster method), 384, 503
gimbal_range (Engine attribute), 368, 487
gimballed (Engine attribute), 368, 487
gimballed (Thruster attribute), 384, 503
gimbalPosition(ReferenceFrame) (Java method), 270
gravitational_parameter (CelestialBody attribute), 328,

447
GROUND_STATION (Java field), 303
ground_stations (in module RemoteTech), 417, 536

H
has_action() (Module method), 359, 478
has_atmosphere (CelestialBody attribute), 330, 449
has_atmospheric_oxygen (CelestialBody attribute), 330,

449
has_connection (Antenna attribute), 418, 537
has_connection (Comms attribute), 417, 537
has_connection_to_ground_station (Comms attribute),

417, 537
has_data (Experiment attribute), 371, 489
has_event() (Module method), 358, 477
has_field() (Module method), 358, 477
has_flight_computer (Comms attribute), 417, 536
has_fuel (Engine attribute), 367, 486
has_fuel (RCS attribute), 382, 501
has_local_control (Comms attribute), 417, 536
has_modes (Engine attribute), 368, 487
has_resource() (Resources method), 390, 510
has_shield (DockingPort attribute), 363, 482

hasAction(String) (Java method), 252
hasEvent(String) (Java method), 252
hasField(String) (Java method), 251
hasResource(String) (Java method), 276
heading (Camera attribute), 400, 520
heading (Flight attribute), 334, 453
heading_error (AutoPilot attribute), 396, 516
highlight (Servo attribute), 410, 529
horizontal_speed (Flight attribute), 333, 452

I
id (Alarm attribute), 413, 533
IDLE (Java field), 266
ignore_for_isp (Propellant attribute), 369, 488
ignore_for_thrust_curve (Propellant attribute), 369, 488
impact_tolerance (Part attribute), 351, 470
impulse (Decoupler attribute), 362, 481
in_decouple_stage() (Parts method), 346, 465
in_stage() (Parts method), 346, 465
inclination (Orbit attribute), 340, 458
inDecoupleStage(int) (Java method), 244
inertia_tensor (Part attribute), 356, 475
inertia_tensor (Vessel attribute), 321, 440
InfernalRobotics (Java class), 292
InfernalRobotics (module), 407, 526
initial_thrust_direction() (Thruster method), 385, 504
initial_thrust_position() (Thruster method), 385, 504
initialThrustDirection(ReferenceFrame) (Java method),

271
initialThrustPosition(ReferenceFrame) (Java method),

271
inoperable (Experiment attribute), 370, 489
InputField (class in UI), 425, 544
InputField (Java class), 308
inputs() (ResourceConverter method), 377, 496
inputs(int) (Java method), 265
inStage(int) (Java method), 244
Intake (class in SpaceCenter), 372, 491
Intake (Java class), 261
intake (Part attribute), 354, 473
intakes (Parts attribute), 347, 466
inverted (ControlSurface attribute), 361, 480
is_axis_inverted (Servo attribute), 411, 530
is_deprived (Propellant attribute), 370, 488
is_free_moving (Servo attribute), 411, 530
is_fuel_line (Part attribute), 353, 472
is_locked (Servo attribute), 411, 530
is_moving (Servo attribute), 411, 530
ITALIC (Java field), 307
IVA (Java field), 287

J
jettison() (Fairing method), 371, 490
jettison() (Java method), 261

Index 589

kRPC, Release 0.3.5

jettisoned (Fairing attribute), 371, 490

K
KerbalAlarmClock (Java class), 297
KerbalAlarmClock (module), 412, 532
kerbin_sea_level_specific_impulse (Engine attribute),

366, 485
kerbin_sea_level_specific_impulse (RCS attribute), 382,

500
kerbin_sea_level_specific_impulse (Vessel attribute),

321, 440
KILL_WARP (Java field), 300
KILL_WARP_ONLY (Java field), 300
KRPC (class in krpc), 312
KRPC (class in krpc.client), 431
krpc (Client attribute), 312, 431
KRPC (Java class), 218
KRPC (module), 313, 432
krpc (module), 312, 430
krpc.client (module), 431
krpc.client (package), 217
krpc.client.services.Drawing (package), 287, 289, 290
krpc.client.services.InfernalRobotics (package), 292–294
krpc.client.services.KerbalAlarmClock (package), 297,

299, 300
krpc.client.services.KRPC (package), 218
krpc.client.services.RemoteTech (package), 301, 302
krpc.client.services.SpaceCenter (package), 219, 223,

231, 234, 237, 239, 242, 276, 279, 281, 285
krpc.client.services.UI (package), 303–309
krpc.stream (module), 432
krpc::Client (C++ class), 122
krpc::connect (C++ function), 122
krpc::services::Drawing (C++ class), 191
krpc::services::Drawing::add_direction (C++ function),

191
krpc::services::Drawing::add_line (C++ function), 191
krpc::services::Drawing::add_polygon (C++ function),

192
krpc::services::Drawing::add_text (C++ function), 192
krpc::services::Drawing::clear (C++ function), 192
krpc::services::Drawing::Drawing (C++ function), 191
krpc::services::Drawing::Line (C++ class), 192
krpc::services::Drawing::Line::color (C++ function), 193
krpc::services::Drawing::Line::end (C++ function), 192
krpc::services::Drawing::Line::material (C++ function),

193
krpc::services::Drawing::Line::reference_frame (C++

function), 193
krpc::services::Drawing::Line::remove (C++ function),

193
krpc::services::Drawing::Line::set_color (C++ function),

193

krpc::services::Drawing::Line::set_end (C++ function),
192

krpc::services::Drawing::Line::set_material (C++ func-
tion), 193

krpc::services::Drawing::Line::set_reference_frame
(C++ function), 193

krpc::services::Drawing::Line::set_start (C++ function),
192

krpc::services::Drawing::Line::set_thickness (C++ func-
tion), 193

krpc::services::Drawing::Line::set_visible (C++ func-
tion), 193

krpc::services::Drawing::Line::start (C++ function), 192
krpc::services::Drawing::Line::thickness (C++ function),

193
krpc::services::Drawing::Line::visible (C++ function),

193
krpc::services::Drawing::Polygon (C++ class), 193
krpc::services::Drawing::Polygon::color (C++ function),

193
krpc::services::Drawing::Polygon::material (C++ func-

tion), 194
krpc::services::Drawing::Polygon::reference_frame (C++

function), 193
krpc::services::Drawing::Polygon::remove (C++ func-

tion), 193
krpc::services::Drawing::Polygon::set_color (C++ func-

tion), 194
krpc::services::Drawing::Polygon::set_material (C++

function), 194
krpc::services::Drawing::Polygon::set_reference_frame

(C++ function), 193
krpc::services::Drawing::Polygon::set_thickness (C++

function), 194
krpc::services::Drawing::Polygon::set_vertices (C++

function), 193
krpc::services::Drawing::Polygon::set_visible (C++ func-

tion), 193
krpc::services::Drawing::Polygon::thickness (C++ func-

tion), 194
krpc::services::Drawing::Polygon::vertices (C++ func-

tion), 193
krpc::services::Drawing::Polygon::visible (C++ func-

tion), 193
krpc::services::Drawing::Text (C++ class), 194
krpc::services::Drawing::Text::alignment (C++ function),

195
krpc::services::Drawing::Text::anchor (C++ function),

195
krpc::services::Drawing::Text::available_fonts (C++

function), 194
krpc::services::Drawing::Text::character_size (C++ func-

tion), 195
krpc::services::Drawing::Text::color (C++ function), 195

590 Index

kRPC, Release 0.3.5

krpc::services::Drawing::Text::content (C++ function),
194

krpc::services::Drawing::Text::font (C++ function), 194
krpc::services::Drawing::Text::line_spacing (C++ func-

tion), 195
krpc::services::Drawing::Text::material (C++ function),

195
krpc::services::Drawing::Text::position (C++ function),

194
krpc::services::Drawing::Text::reference_frame (C++

function), 194
krpc::services::Drawing::Text::remove (C++ function),

194
krpc::services::Drawing::Text::rotation (C++ function),

194
krpc::services::Drawing::Text::set_alignment (C++ func-

tion), 195
krpc::services::Drawing::Text::set_anchor (C++ func-

tion), 195
krpc::services::Drawing::Text::set_character_size (C++

function), 195
krpc::services::Drawing::Text::set_color (C++ function),

195
krpc::services::Drawing::Text::set_content (C++ func-

tion), 194
krpc::services::Drawing::Text::set_font (C++ function),

194
krpc::services::Drawing::Text::set_line_spacing (C++

function), 195
krpc::services::Drawing::Text::set_material (C++ func-

tion), 195
krpc::services::Drawing::Text::set_position (C++ func-

tion), 194
krpc::services::Drawing::Text::set_reference_frame (C++

function), 194
krpc::services::Drawing::Text::set_rotation (C++ func-

tion), 194
krpc::services::Drawing::Text::set_size (C++ function),

195
krpc::services::Drawing::Text::set_style (C++ function),

195
krpc::services::Drawing::Text::set_visible (C++ func-

tion), 194
krpc::services::Drawing::Text::size (C++ function), 195
krpc::services::Drawing::Text::style (C++ function), 195
krpc::services::Drawing::Text::visible (C++ function),

194
krpc::services::InfernalRobotics (C++ class), 196
krpc::services::InfernalRobotics::InfernalRobotics (C++

function), 196
krpc::services::InfernalRobotics::Servo (C++ class), 197
krpc::services::InfernalRobotics::Servo::acceleration

(C++ function), 198
krpc::services::InfernalRobotics::Servo::config_speed

(C++ function), 198
krpc::services::InfernalRobotics::Servo::current_speed

(C++ function), 198
krpc::services::InfernalRobotics::Servo::is_axis_inverted

(C++ function), 199
krpc::services::InfernalRobotics::Servo::is_free_moving

(C++ function), 198
krpc::services::InfernalRobotics::Servo::is_locked (C++

function), 198
krpc::services::InfernalRobotics::Servo::is_moving (C++

function), 198
krpc::services::InfernalRobotics::Servo::max_config_position

(C++ function), 198
krpc::services::InfernalRobotics::Servo::max_position

(C++ function), 198
krpc::services::InfernalRobotics::Servo::min_config_position

(C++ function), 198
krpc::services::InfernalRobotics::Servo::min_position

(C++ function), 198
krpc::services::InfernalRobotics::Servo::move_center

(C++ function), 199
krpc::services::InfernalRobotics::Servo::move_left (C++

function), 199
krpc::services::InfernalRobotics::Servo::move_next_preset

(C++ function), 199
krpc::services::InfernalRobotics::Servo::move_prev_preset

(C++ function), 199
krpc::services::InfernalRobotics::Servo::move_right

(C++ function), 199
krpc::services::InfernalRobotics::Servo::move_to (C++

function), 199
krpc::services::InfernalRobotics::Servo::name (C++

function), 197
krpc::services::InfernalRobotics::Servo::part (C++ func-

tion), 198
krpc::services::InfernalRobotics::Servo::position (C++

function), 198
krpc::services::InfernalRobotics::Servo::set_acceleration

(C++ function), 198
krpc::services::InfernalRobotics::Servo::set_current_speed

(C++ function), 198
krpc::services::InfernalRobotics::Servo::set_highlight

(C++ function), 198
krpc::services::InfernalRobotics::Servo::set_is_axis_inverted

(C++ function), 199
krpc::services::InfernalRobotics::Servo::set_is_locked

(C++ function), 199
krpc::services::InfernalRobotics::Servo::set_max_position

(C++ function), 198
krpc::services::InfernalRobotics::Servo::set_min_position

(C++ function), 198
krpc::services::InfernalRobotics::Servo::set_name (C++

function), 197
krpc::services::InfernalRobotics::Servo::set_speed (C++

Index 591

kRPC, Release 0.3.5

function), 198
krpc::services::InfernalRobotics::Servo::speed (C++

function), 198
krpc::services::InfernalRobotics::Servo::stop (C++ func-

tion), 199
krpc::services::InfernalRobotics::servo_group_with_name

(C++ function), 196
krpc::services::InfernalRobotics::servo_groups (C++

function), 196
krpc::services::InfernalRobotics::servo_with_name (C++

function), 196
krpc::services::InfernalRobotics::ServoGroup (C++

class), 196
krpc::services::InfernalRobotics::ServoGroup::expanded

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::forward_key

(C++ function), 196
krpc::services::InfernalRobotics::ServoGroup::move_center

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::move_left

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::move_next_preset

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::move_prev_preset

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::move_right

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::name

(C++ function), 196
krpc::services::InfernalRobotics::ServoGroup::parts

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::reverse_key

(C++ function), 196
krpc::services::InfernalRobotics::ServoGroup::servo_with_name

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::servos

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::set_expanded

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::set_forward_key

(C++ function), 196
krpc::services::InfernalRobotics::ServoGroup::set_name

(C++ function), 196
krpc::services::InfernalRobotics::ServoGroup::set_reverse_key

(C++ function), 196
krpc::services::InfernalRobotics::ServoGroup::set_speed

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::speed

(C++ function), 197
krpc::services::InfernalRobotics::ServoGroup::stop (C++

function), 197
krpc::services::KerbalAlarmClock (C++ class), 200
krpc::services::KerbalAlarmClock::Alarm (C++ class),

201

krpc::services::KerbalAlarmClock::Alarm::action (C++
function), 201

krpc::services::KerbalAlarmClock::Alarm::id (C++ func-
tion), 201

krpc::services::KerbalAlarmClock::Alarm::margin (C++
function), 201

krpc::services::KerbalAlarmClock::Alarm::name (C++
function), 201

krpc::services::KerbalAlarmClock::Alarm::notes (C++
function), 201

krpc::services::KerbalAlarmClock::Alarm::remaining
(C++ function), 201

krpc::services::KerbalAlarmClock::Alarm::remove (C++
function), 202

krpc::services::KerbalAlarmClock::Alarm::repeat (C++
function), 201

krpc::services::KerbalAlarmClock::Alarm::repeat_period
(C++ function), 201

krpc::services::KerbalAlarmClock::Alarm::set_action
(C++ function), 201

krpc::services::KerbalAlarmClock::Alarm::set_margin
(C++ function), 201

krpc::services::KerbalAlarmClock::Alarm::set_name
(C++ function), 201

krpc::services::KerbalAlarmClock::Alarm::set_notes
(C++ function), 201

krpc::services::KerbalAlarmClock::Alarm::set_repeat
(C++ function), 201

krpc::services::KerbalAlarmClock::Alarm::set_repeat_period
(C++ function), 201

krpc::services::KerbalAlarmClock::Alarm::set_time
(C++ function), 201

krpc::services::KerbalAlarmClock::Alarm::set_vessel
(C++ function), 201

krpc::services::KerbalAlarmClock::Alarm::set_xfer_origin_body
(C++ function), 202

krpc::services::KerbalAlarmClock::Alarm::set_xfer_target_body
(C++ function), 202

krpc::services::KerbalAlarmClock::Alarm::time (C++
function), 201

krpc::services::KerbalAlarmClock::Alarm::type (C++
function), 201

krpc::services::KerbalAlarmClock::Alarm::vessel (C++
function), 201

krpc::services::KerbalAlarmClock::Alarm::xfer_origin_body
(C++ function), 202

krpc::services::KerbalAlarmClock::Alarm::xfer_target_body
(C++ function), 202

krpc::services::KerbalAlarmClock::alarm_with_name
(C++ function), 200

krpc::services::KerbalAlarmClock::AlarmAction (C++
enum), 203

krpc::services::KerbalAlarmClock::AlarmAction::do_nothing
(C++ enumerator), 203

592 Index

kRPC, Release 0.3.5

krpc::services::KerbalAlarmClock::AlarmAction::do_nothing_delete_when_passed
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::AlarmAction::kill_warp
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::AlarmAction::kill_warp_only
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::AlarmAction::message_only
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::AlarmAction::pause_game
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::alarms (C++ func-
tion), 200

krpc::services::KerbalAlarmClock::alarms_with_type
(C++ function), 200

krpc::services::KerbalAlarmClock::AlarmType (C++
enum), 202

krpc::services::KerbalAlarmClock::AlarmType::apoapsis
(C++ enumerator), 202

krpc::services::KerbalAlarmClock::AlarmType::ascending_node
(C++ enumerator), 202

krpc::services::KerbalAlarmClock::AlarmType::closest
(C++ enumerator), 202

krpc::services::KerbalAlarmClock::AlarmType::contract
(C++ enumerator), 202

krpc::services::KerbalAlarmClock::AlarmType::contract_auto
(C++ enumerator), 202

krpc::services::KerbalAlarmClock::AlarmType::crew
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::AlarmType::descending_node
(C++ enumerator), 202

krpc::services::KerbalAlarmClock::AlarmType::distance
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::AlarmType::earth_time
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::AlarmType::launch_rendevous
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::AlarmType::maneuver
(C++ enumerator), 202

krpc::services::KerbalAlarmClock::AlarmType::maneuver_auto
(C++ enumerator), 202

krpc::services::KerbalAlarmClock::AlarmType::periapsis
(C++ enumerator), 202

krpc::services::KerbalAlarmClock::AlarmType::raw
(C++ enumerator), 202

krpc::services::KerbalAlarmClock::AlarmType::soi_change
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::AlarmType::soi_change_auto
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::AlarmType::transfer
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::AlarmType::transfer_modelled
(C++ enumerator), 203

krpc::services::KerbalAlarmClock::create_alarm (C++
function), 200

krpc::services::KerbalAlarmClock::KerbalAlarmClock
(C++ function), 200

krpc::services::KRPC (C++ class), 122, 123
krpc::services::KRPC::add_stream (C++ function), 123
krpc::services::KRPC::current_game_scene (C++ func-

tion), 123
krpc::services::KRPC::GameScene (C++ enum), 124
krpc::services::KRPC::GameScene::editor_sph (C++

enumerator), 124
krpc::services::KRPC::GameScene::editor_vab (C++

enumerator), 124
krpc::services::KRPC::GameScene::flight (C++ enumer-

ator), 124
krpc::services::KRPC::GameScene::space_center (C++

enumerator), 124
krpc::services::KRPC::GameScene::tracking_station

(C++ enumerator), 124
krpc::services::KRPC::get_services (C++ function), 123
krpc::services::KRPC::get_status (C++ function), 122,

123
krpc::services::KRPC::KRPC (C++ function), 122, 123
krpc::services::KRPC::remove_stream (C++ function),

124
krpc::services::RemoteTech (C++ class), 204
krpc::services::RemoteTech::Antenna (C++ class), 205
krpc::services::RemoteTech::antenna (C++ function), 204
krpc::services::RemoteTech::Antenna::has_connection

(C++ function), 205
krpc::services::RemoteTech::Antenna::part (C++ func-

tion), 205
krpc::services::RemoteTech::Antenna::set_target (C++

function), 205
krpc::services::RemoteTech::Antenna::set_target_body

(C++ function), 205
krpc::services::RemoteTech::Antenna::set_target_ground_station

(C++ function), 206
krpc::services::RemoteTech::Antenna::set_target_vessel

(C++ function), 206
krpc::services::RemoteTech::Antenna::target (C++ func-

tion), 205
krpc::services::RemoteTech::Antenna::target_body (C++

function), 205
krpc::services::RemoteTech::Antenna::target_ground_station

(C++ function), 206
krpc::services::RemoteTech::Antenna::target_vessel

(C++ function), 206
krpc::services::RemoteTech::Comms (C++ class), 204
krpc::services::RemoteTech::comms (C++ function), 204
krpc::services::RemoteTech::Comms::antennas (C++

function), 205
krpc::services::RemoteTech::Comms::has_connection

(C++ function), 205
krpc::services::RemoteTech::Comms::has_connection_to_ground_station

(C++ function), 205

Index 593

kRPC, Release 0.3.5

krpc::services::RemoteTech::Comms::has_flight_computer
(C++ function), 205

krpc::services::RemoteTech::Comms::has_local_control
(C++ function), 205

krpc::services::RemoteTech::Comms::signal_delay (C++
function), 205

krpc::services::RemoteTech::Comms::signal_delay_to_ground_station
(C++ function), 205

krpc::services::RemoteTech::Comms::signal_delay_to_vessel
(C++ function), 205

krpc::services::RemoteTech::Comms::vessel (C++ func-
tion), 204

krpc::services::RemoteTech::ground_stations (C++ func-
tion), 204

krpc::services::RemoteTech::RemoteTech (C++ func-
tion), 204

krpc::services::RemoteTech::Target (C++ enum), 206
krpc::services::RemoteTech::Target::active_vessel (C++

enumerator), 206
krpc::services::RemoteTech::Target::celestial_body (C++

enumerator), 206
krpc::services::RemoteTech::Target::ground_station

(C++ enumerator), 206
krpc::services::RemoteTech::Target::none (C++ enumer-

ator), 206
krpc::services::RemoteTech::Target::vessel (C++ enu-

merator), 206
krpc::services::SpaceCenter (C++ class), 124
krpc::services::SpaceCenter::active_vessel (C++ func-

tion), 124
krpc::services::SpaceCenter::AutoPilot (C++ class), 185
krpc::services::SpaceCenter::AutoPilot::attenuation_angle

(C++ function), 187
krpc::services::SpaceCenter::AutoPilot::auto_tune (C++

function), 187
krpc::services::SpaceCenter::AutoPilot::deceleration_time

(C++ function), 187
krpc::services::SpaceCenter::AutoPilot::disengage (C++

function), 185
krpc::services::SpaceCenter::AutoPilot::engage (C++

function), 185
krpc::services::SpaceCenter::AutoPilot::error (C++ func-

tion), 185
krpc::services::SpaceCenter::AutoPilot::heading_error

(C++ function), 185
krpc::services::SpaceCenter::AutoPilot::overshoot (C++

function), 188
krpc::services::SpaceCenter::AutoPilot::pitch_error (C++

function), 185
krpc::services::SpaceCenter::AutoPilot::pitch_pid_gains

(C++ function), 188
krpc::services::SpaceCenter::AutoPilot::reference_frame

(C++ function), 186
krpc::services::SpaceCenter::AutoPilot::roll_error (C++

function), 186
krpc::services::SpaceCenter::AutoPilot::roll_pid_gains

(C++ function), 188
krpc::services::SpaceCenter::AutoPilot::roll_threshold

(C++ function), 187
krpc::services::SpaceCenter::AutoPilot::sas (C++ func-

tion), 186
krpc::services::SpaceCenter::AutoPilot::sas_mode (C++

function), 186
krpc::services::SpaceCenter::AutoPilot::set_attenuation_angle

(C++ function), 187
krpc::services::SpaceCenter::AutoPilot::set_auto_tune

(C++ function), 187
krpc::services::SpaceCenter::AutoPilot::set_deceleration_time

(C++ function), 187
krpc::services::SpaceCenter::AutoPilot::set_overshoot

(C++ function), 188
krpc::services::SpaceCenter::AutoPilot::set_pitch_pid_gains

(C++ function), 188
krpc::services::SpaceCenter::AutoPilot::set_reference_frame

(C++ function), 186
krpc::services::SpaceCenter::AutoPilot::set_roll_pid_gains

(C++ function), 188
krpc::services::SpaceCenter::AutoPilot::set_roll_threshold

(C++ function), 187
krpc::services::SpaceCenter::AutoPilot::set_sas (C++

function), 186
krpc::services::SpaceCenter::AutoPilot::set_sas_mode

(C++ function), 187
krpc::services::SpaceCenter::AutoPilot::set_stopping_time

(C++ function), 187
krpc::services::SpaceCenter::AutoPilot::set_target_direction

(C++ function), 186
krpc::services::SpaceCenter::AutoPilot::set_target_heading

(C++ function), 186
krpc::services::SpaceCenter::AutoPilot::set_target_pitch

(C++ function), 186
krpc::services::SpaceCenter::AutoPilot::set_target_roll

(C++ function), 186
krpc::services::SpaceCenter::AutoPilot::set_time_to_peak

(C++ function), 188
krpc::services::SpaceCenter::AutoPilot::set_yaw_pid_gains

(C++ function), 188
krpc::services::SpaceCenter::AutoPilot::stopping_time

(C++ function), 187
krpc::services::SpaceCenter::AutoPilot::target_direction

(C++ function), 186
krpc::services::SpaceCenter::AutoPilot::target_heading

(C++ function), 186
krpc::services::SpaceCenter::AutoPilot::target_pitch

(C++ function), 186
krpc::services::SpaceCenter::AutoPilot::target_pitch_and_heading

(C++ function), 186
krpc::services::SpaceCenter::AutoPilot::target_roll (C++

594 Index

kRPC, Release 0.3.5

function), 186
krpc::services::SpaceCenter::AutoPilot::time_to_peak

(C++ function), 188
krpc::services::SpaceCenter::AutoPilot::wait (C++ func-

tion), 185
krpc::services::SpaceCenter::AutoPilot::yaw_pid_gains

(C++ function), 188
krpc::services::SpaceCenter::bodies (C++ function), 124
krpc::services::SpaceCenter::Camera (C++ class), 189
krpc::services::SpaceCenter::camera (C++ function), 126
krpc::services::SpaceCenter::Camera::default_distance

(C++ function), 190
krpc::services::SpaceCenter::Camera::distance (C++

function), 190
krpc::services::SpaceCenter::Camera::focussed_body

(C++ function), 190
krpc::services::SpaceCenter::Camera::focussed_node

(C++ function), 190
krpc::services::SpaceCenter::Camera::focussed_vessel

(C++ function), 190
krpc::services::SpaceCenter::Camera::heading (C++

function), 190
krpc::services::SpaceCenter::Camera::max_distance

(C++ function), 190
krpc::services::SpaceCenter::Camera::max_pitch (C++

function), 190
krpc::services::SpaceCenter::Camera::min_distance

(C++ function), 190
krpc::services::SpaceCenter::Camera::min_pitch (C++

function), 190
krpc::services::SpaceCenter::Camera::mode (C++ func-

tion), 189
krpc::services::SpaceCenter::Camera::pitch (C++ func-

tion), 189
krpc::services::SpaceCenter::Camera::set_distance (C++

function), 190
krpc::services::SpaceCenter::Camera::set_focussed_body

(C++ function), 190
krpc::services::SpaceCenter::Camera::set_focussed_node

(C++ function), 190
krpc::services::SpaceCenter::Camera::set_focussed_vessel

(C++ function), 190
krpc::services::SpaceCenter::Camera::set_heading (C++

function), 190
krpc::services::SpaceCenter::Camera::set_mode (C++

function), 189
krpc::services::SpaceCenter::Camera::set_pitch (C++

function), 189
krpc::services::SpaceCenter::CameraMode (C++ enum),

190
krpc::services::SpaceCenter::CameraMode::automatic

(C++ enumerator), 191
krpc::services::SpaceCenter::CameraMode::chase (C++

enumerator), 191

krpc::services::SpaceCenter::CameraMode::free (C++
enumerator), 191

krpc::services::SpaceCenter::CameraMode::iva (C++
enumerator), 191

krpc::services::SpaceCenter::CameraMode::locked (C++
enumerator), 191

krpc::services::SpaceCenter::CameraMode::map (C++
enumerator), 191

krpc::services::SpaceCenter::CameraMode::orbital (C++
enumerator), 191

krpc::services::SpaceCenter::can_rails_warp_at (C++
function), 126

krpc::services::SpaceCenter::CargoBay (C++ class), 157
krpc::services::SpaceCenter::CargoBay::open (C++ func-

tion), 157
krpc::services::SpaceCenter::CargoBay::part (C++ func-

tion), 157
krpc::services::SpaceCenter::CargoBay::set_open (C++

function), 157
krpc::services::SpaceCenter::CargoBay::state (C++ func-

tion), 157
krpc::services::SpaceCenter::CargoBayState (C++

enum), 157
krpc::services::SpaceCenter::CargoBayState::closed

(C++ enumerator), 158
krpc::services::SpaceCenter::CargoBayState::closing

(C++ enumerator), 158
krpc::services::SpaceCenter::CargoBayState::open (C++

enumerator), 158
krpc::services::SpaceCenter::CargoBayState::opening

(C++ enumerator), 158
krpc::services::SpaceCenter::CelestialBody (C++ class),

135
krpc::services::SpaceCenter::CelestialBody::angular_velocity

(C++ function), 138
krpc::services::SpaceCenter::CelestialBody::atmosphere_depth

(C++ function), 137
krpc::services::SpaceCenter::CelestialBody::bedrock_height

(C++ function), 136
krpc::services::SpaceCenter::CelestialBody::bedrock_position

(C++ function), 137
krpc::services::SpaceCenter::CelestialBody::direction

(C++ function), 138
krpc::services::SpaceCenter::CelestialBody::equatorial_radius

(C++ function), 136
krpc::services::SpaceCenter::CelestialBody::gravitational_parameter

(C++ function), 136
krpc::services::SpaceCenter::CelestialBody::has_atmosphere

(C++ function), 137
krpc::services::SpaceCenter::CelestialBody::has_atmospheric_oxygen

(C++ function), 137
krpc::services::SpaceCenter::CelestialBody::mass (C++

function), 136
krpc::services::SpaceCenter::CelestialBody::msl_position

Index 595

kRPC, Release 0.3.5

(C++ function), 136
krpc::services::SpaceCenter::CelestialBody::name (C++

function), 135
krpc::services::SpaceCenter::CelestialBody::non_rotating_reference_frame

(C++ function), 137
krpc::services::SpaceCenter::CelestialBody::orbit (C++

function), 136
krpc::services::SpaceCenter::CelestialBody::orbital_reference_frame

(C++ function), 137
krpc::services::SpaceCenter::CelestialBody::position

(C++ function), 138
krpc::services::SpaceCenter::CelestialBody::reference_frame

(C++ function), 137
krpc::services::SpaceCenter::CelestialBody::rotation

(C++ function), 138
krpc::services::SpaceCenter::CelestialBody::rotational_period

(C++ function), 136
krpc::services::SpaceCenter::CelestialBody::rotational_speed

(C++ function), 136
krpc::services::SpaceCenter::CelestialBody::satellites

(C++ function), 136
krpc::services::SpaceCenter::CelestialBody::sphere_of_influence

(C++ function), 137
krpc::services::SpaceCenter::CelestialBody::surface_gravity

(C++ function), 136
krpc::services::SpaceCenter::CelestialBody::surface_height

(C++ function), 136
krpc::services::SpaceCenter::CelestialBody::surface_position

(C++ function), 136
krpc::services::SpaceCenter::CelestialBody::velocity

(C++ function), 138
krpc::services::SpaceCenter::clear_target (C++ function),

125
krpc::services::SpaceCenter::Control (C++ class), 144
krpc::services::SpaceCenter::Control::abort (C++ func-

tion), 145
krpc::services::SpaceCenter::Control::activate_next_stage

(C++ function), 145
krpc::services::SpaceCenter::Control::add_node (C++

function), 146
krpc::services::SpaceCenter::Control::brakes (C++ func-

tion), 145
krpc::services::SpaceCenter::Control::current_stage

(C++ function), 145
krpc::services::SpaceCenter::Control::forward (C++

function), 145
krpc::services::SpaceCenter::Control::gear (C++ func-

tion), 144
krpc::services::SpaceCenter::Control::get_action_group

(C++ function), 146
krpc::services::SpaceCenter::Control::lights (C++ func-

tion), 144
krpc::services::SpaceCenter::Control::nodes (C++ func-

tion), 146

krpc::services::SpaceCenter::Control::pitch (C++ func-
tion), 145

krpc::services::SpaceCenter::Control::rcs (C++ function),
144

krpc::services::SpaceCenter::Control::remove_nodes
(C++ function), 146

krpc::services::SpaceCenter::Control::right (C++ func-
tion), 145

krpc::services::SpaceCenter::Control::roll (C++ func-
tion), 145

krpc::services::SpaceCenter::Control::sas (C++ function),
144

krpc::services::SpaceCenter::Control::sas_mode (C++
function), 144

krpc::services::SpaceCenter::Control::set_abort (C++
function), 145

krpc::services::SpaceCenter::Control::set_action_group
(C++ function), 146

krpc::services::SpaceCenter::Control::set_brakes (C++
function), 145

krpc::services::SpaceCenter::Control::set_forward (C++
function), 145

krpc::services::SpaceCenter::Control::set_gear (C++
function), 144

krpc::services::SpaceCenter::Control::set_lights (C++
function), 145

krpc::services::SpaceCenter::Control::set_pitch (C++
function), 145

krpc::services::SpaceCenter::Control::set_rcs (C++ func-
tion), 144

krpc::services::SpaceCenter::Control::set_right (C++
function), 145

krpc::services::SpaceCenter::Control::set_roll (C++ func-
tion), 145

krpc::services::SpaceCenter::Control::set_sas (C++ func-
tion), 144

krpc::services::SpaceCenter::Control::set_sas_mode
(C++ function), 144

krpc::services::SpaceCenter::Control::set_speed_mode
(C++ function), 144

krpc::services::SpaceCenter::Control::set_throttle (C++
function), 145

krpc::services::SpaceCenter::Control::set_up (C++ func-
tion), 145

krpc::services::SpaceCenter::Control::set_wheel_steering
(C++ function), 145

krpc::services::SpaceCenter::Control::set_wheel_throttle
(C++ function), 145

krpc::services::SpaceCenter::Control::set_yaw (C++
function), 145

krpc::services::SpaceCenter::Control::speed_mode (C++
function), 144

krpc::services::SpaceCenter::Control::throttle (C++ func-
tion), 145

596 Index

kRPC, Release 0.3.5

krpc::services::SpaceCenter::Control::toggle_action_group
(C++ function), 146

krpc::services::SpaceCenter::Control::up (C++ function),
145

krpc::services::SpaceCenter::Control::wheel_steering
(C++ function), 145

krpc::services::SpaceCenter::Control::wheel_throttle
(C++ function), 145

krpc::services::SpaceCenter::Control::yaw (C++ func-
tion), 145

krpc::services::SpaceCenter::ControlSurface (C++ class),
158

krpc::services::SpaceCenter::ControlSurface::available_torque
(C++ function), 158

krpc::services::SpaceCenter::ControlSurface::deployed
(C++ function), 158

krpc::services::SpaceCenter::ControlSurface::inverted
(C++ function), 158

krpc::services::SpaceCenter::ControlSurface::part (C++
function), 158

krpc::services::SpaceCenter::ControlSurface::pitch_enabled
(C++ function), 158

krpc::services::SpaceCenter::ControlSurface::roll_enabled
(C++ function), 158

krpc::services::SpaceCenter::ControlSurface::set_deployed
(C++ function), 158

krpc::services::SpaceCenter::ControlSurface::set_inverted
(C++ function), 158

krpc::services::SpaceCenter::ControlSurface::set_pitch_enabled
(C++ function), 158

krpc::services::SpaceCenter::ControlSurface::set_roll_enabled
(C++ function), 158

krpc::services::SpaceCenter::ControlSurface::set_yaw_enabled
(C++ function), 158

krpc::services::SpaceCenter::ControlSurface::surface_area
(C++ function), 158

krpc::services::SpaceCenter::ControlSurface::yaw_enabled
(C++ function), 158

krpc::services::SpaceCenter::Decoupler (C++ class), 158
krpc::services::SpaceCenter::Decoupler::decouple (C++

function), 159
krpc::services::SpaceCenter::Decoupler::decoupled (C++

function), 159
krpc::services::SpaceCenter::Decoupler::impulse (C++

function), 159
krpc::services::SpaceCenter::Decoupler::part (C++ func-

tion), 158
krpc::services::SpaceCenter::DockingPort (C++ class),

159
krpc::services::SpaceCenter::DockingPort::direction

(C++ function), 159
krpc::services::SpaceCenter::DockingPort::docked_part

(C++ function), 159
krpc::services::SpaceCenter::DockingPort::has_shield

(C++ function), 159
krpc::services::SpaceCenter::DockingPort::name (C++

function), 159
krpc::services::SpaceCenter::DockingPort::part (C++

function), 159
krpc::services::SpaceCenter::DockingPort::position (C++

function), 159
krpc::services::SpaceCenter::DockingPort::reengage_distance

(C++ function), 159
krpc::services::SpaceCenter::DockingPort::reference_frame

(C++ function), 160
krpc::services::SpaceCenter::DockingPort::rotation (C++

function), 160
krpc::services::SpaceCenter::DockingPort::set_name

(C++ function), 159
krpc::services::SpaceCenter::DockingPort::set_shielded

(C++ function), 159
krpc::services::SpaceCenter::DockingPort::shielded

(C++ function), 159
krpc::services::SpaceCenter::DockingPort::state (C++

function), 159
krpc::services::SpaceCenter::DockingPort::undock (C++

function), 159
krpc::services::SpaceCenter::DockingPortState (C++

enum), 160
krpc::services::SpaceCenter::DockingPortState::docked

(C++ enumerator), 160
krpc::services::SpaceCenter::DockingPortState::docking

(C++ enumerator), 161
krpc::services::SpaceCenter::DockingPortState::moving

(C++ enumerator), 161
krpc::services::SpaceCenter::DockingPortState::ready

(C++ enumerator), 160
krpc::services::SpaceCenter::DockingPortState::shielded

(C++ enumerator), 161
krpc::services::SpaceCenter::DockingPortState::undocking

(C++ enumerator), 161
krpc::services::SpaceCenter::Engine (C++ class), 161
krpc::services::SpaceCenter::Engine::active (C++ func-

tion), 161
krpc::services::SpaceCenter::Engine::auto_mode_switch

(C++ function), 163
krpc::services::SpaceCenter::Engine::available_thrust

(C++ function), 162
krpc::services::SpaceCenter::Engine::available_torque

(C++ function), 163
krpc::services::SpaceCenter::Engine::can_restart (C++

function), 163
krpc::services::SpaceCenter::Engine::can_shutdown

(C++ function), 163
krpc::services::SpaceCenter::Engine::gimbal_limit (C++

function), 163
krpc::services::SpaceCenter::Engine::gimbal_locked

(C++ function), 163

Index 597

kRPC, Release 0.3.5

krpc::services::SpaceCenter::Engine::gimbal_range (C++
function), 163

krpc::services::SpaceCenter::Engine::gimballed (C++
function), 163

krpc::services::SpaceCenter::Engine::has_fuel (C++
function), 162

krpc::services::SpaceCenter::Engine::has_modes (C++
function), 163

krpc::services::SpaceCenter::Engine::kerbin_sea_level_specific_impulse
(C++ function), 162

krpc::services::SpaceCenter::Engine::max_thrust (C++
function), 162

krpc::services::SpaceCenter::Engine::max_vacuum_thrust
(C++ function), 162

krpc::services::SpaceCenter::Engine::mode (C++ func-
tion), 163

krpc::services::SpaceCenter::Engine::modes (C++ func-
tion), 163

krpc::services::SpaceCenter::Engine::part (C++ func-
tion), 161

krpc::services::SpaceCenter::Engine::propellant_names
(C++ function), 162

krpc::services::SpaceCenter::Engine::propellant_ratios
(C++ function), 162

krpc::services::SpaceCenter::Engine::propellants (C++
function), 162

krpc::services::SpaceCenter::Engine::set_active (C++
function), 161

krpc::services::SpaceCenter::Engine::set_auto_mode_switch
(C++ function), 163

krpc::services::SpaceCenter::Engine::set_gimbal_limit
(C++ function), 163

krpc::services::SpaceCenter::Engine::set_gimbal_locked
(C++ function), 163

krpc::services::SpaceCenter::Engine::set_mode (C++
function), 163

krpc::services::SpaceCenter::Engine::set_thrust_limit
(C++ function), 162

krpc::services::SpaceCenter::Engine::specific_impulse
(C++ function), 162

krpc::services::SpaceCenter::Engine::throttle (C++ func-
tion), 163

krpc::services::SpaceCenter::Engine::throttle_locked
(C++ function), 163

krpc::services::SpaceCenter::Engine::thrust (C++ func-
tion), 162

krpc::services::SpaceCenter::Engine::thrust_limit (C++
function), 162

krpc::services::SpaceCenter::Engine::thrusters (C++
function), 162

krpc::services::SpaceCenter::Engine::toggle_mode (C++
function), 163

krpc::services::SpaceCenter::Engine::vacuum_specific_impulse
(C++ function), 162

krpc::services::SpaceCenter::Experiment (C++ class),
164

krpc::services::SpaceCenter::Experiment::data (C++
function), 165

krpc::services::SpaceCenter::Experiment::deployed (C++
function), 164

krpc::services::SpaceCenter::Experiment::dump (C++
function), 164

krpc::services::SpaceCenter::Experiment::has_data (C++
function), 165

krpc::services::SpaceCenter::Experiment::inoperable
(C++ function), 164

krpc::services::SpaceCenter::Experiment::part (C++
function), 164

krpc::services::SpaceCenter::Experiment::rerunnable
(C++ function), 164

krpc::services::SpaceCenter::Experiment::reset (C++
function), 164

krpc::services::SpaceCenter::Experiment::run (C++ func-
tion), 164

krpc::services::SpaceCenter::Experiment::transmit (C++
function), 164

krpc::services::SpaceCenter::Fairing (C++ class), 165
krpc::services::SpaceCenter::Fairing::jettison (C++ func-

tion), 165
krpc::services::SpaceCenter::Fairing::jettisoned (C++

function), 165
krpc::services::SpaceCenter::Fairing::part (C++ func-

tion), 165
krpc::services::SpaceCenter::far_available (C++ func-

tion), 128
krpc::services::SpaceCenter::Flight (C++ class), 138
krpc::services::SpaceCenter::Flight::aerodynamic_force

(C++ function), 140
krpc::services::SpaceCenter::Flight::angle_of_attack

(C++ function), 141
krpc::services::SpaceCenter::Flight::anti_normal (C++

function), 140
krpc::services::SpaceCenter::Flight::anti_radial (C++

function), 140
krpc::services::SpaceCenter::Flight::atmosphere_density

(C++ function), 140
krpc::services::SpaceCenter::Flight::ballistic_coefficient

(C++ function), 142
krpc::services::SpaceCenter::Flight::bedrock_altitude

(C++ function), 139
krpc::services::SpaceCenter::Flight::center_of_mass

(C++ function), 139
krpc::services::SpaceCenter::Flight::direction (C++ func-

tion), 139
krpc::services::SpaceCenter::Flight::drag (C++ function),

140
krpc::services::SpaceCenter::Flight::drag_coefficient

(C++ function), 141

598 Index

kRPC, Release 0.3.5

krpc::services::SpaceCenter::Flight::dynamic_pressure
(C++ function), 140

krpc::services::SpaceCenter::Flight::elevation (C++ func-
tion), 139

krpc::services::SpaceCenter::Flight::equivalent_air_speed
(C++ function), 141

krpc::services::SpaceCenter::Flight::g_force (C++ func-
tion), 139

krpc::services::SpaceCenter::Flight::heading (C++ func-
tion), 139

krpc::services::SpaceCenter::Flight::horizontal_speed
(C++ function), 139

krpc::services::SpaceCenter::Flight::latitude (C++ func-
tion), 139

krpc::services::SpaceCenter::Flight::lift (C++ function),
140

krpc::services::SpaceCenter::Flight::lift_coefficient (C++
function), 141

krpc::services::SpaceCenter::Flight::longitude (C++
function), 139

krpc::services::SpaceCenter::Flight::mach (C++ func-
tion), 141

krpc::services::SpaceCenter::Flight::mean_altitude (C++
function), 139

krpc::services::SpaceCenter::Flight::normal (C++ func-
tion), 140

krpc::services::SpaceCenter::Flight::pitch (C++ func-
tion), 139

krpc::services::SpaceCenter::Flight::prograde (C++ func-
tion), 139

krpc::services::SpaceCenter::Flight::radial (C++ func-
tion), 140

krpc::services::SpaceCenter::Flight::retrograde (C++
function), 139

krpc::services::SpaceCenter::Flight::roll (C++ function),
139

krpc::services::SpaceCenter::Flight::rotation (C++ func-
tion), 139

krpc::services::SpaceCenter::Flight::sideslip_angle (C++
function), 141

krpc::services::SpaceCenter::Flight::speed (C++ func-
tion), 139

krpc::services::SpaceCenter::Flight::speed_of_sound
(C++ function), 140

krpc::services::SpaceCenter::Flight::stall_fraction (C++
function), 141

krpc::services::SpaceCenter::Flight::static_air_temperature
(C++ function), 141

krpc::services::SpaceCenter::Flight::static_pressure (C++
function), 140

krpc::services::SpaceCenter::Flight::surface_altitude
(C++ function), 139

krpc::services::SpaceCenter::Flight::terminal_velocity
(C++ function), 141

krpc::services::SpaceCenter::Flight::thrust_specific_fuel_consumption
(C++ function), 142

krpc::services::SpaceCenter::Flight::total_air_temperature
(C++ function), 141

krpc::services::SpaceCenter::Flight::velocity (C++ func-
tion), 139

krpc::services::SpaceCenter::Flight::vertical_speed (C++
function), 139

krpc::services::SpaceCenter::g (C++ function), 126
krpc::services::SpaceCenter::Intake (C++ class), 165
krpc::services::SpaceCenter::Intake::area (C++ function),

165
krpc::services::SpaceCenter::Intake::flow (C++ function),

165
krpc::services::SpaceCenter::Intake::open (C++ func-

tion), 165
krpc::services::SpaceCenter::Intake::part (C++ function),

165
krpc::services::SpaceCenter::Intake::set_open (C++ func-

tion), 165
krpc::services::SpaceCenter::Intake::speed (C++ func-

tion), 165
krpc::services::SpaceCenter::LandingGear (C++ class),

166
krpc::services::SpaceCenter::LandingGear::deployable

(C++ function), 166
krpc::services::SpaceCenter::LandingGear::deployed

(C++ function), 166
krpc::services::SpaceCenter::LandingGear::part (C++

function), 166
krpc::services::SpaceCenter::LandingGear::set_deployed

(C++ function), 166
krpc::services::SpaceCenter::LandingGear::state (C++

function), 166
krpc::services::SpaceCenter::LandingGearState (C++

enum), 166
krpc::services::SpaceCenter::LandingGearState::broken

(C++ enumerator), 166
krpc::services::SpaceCenter::LandingGearState::deployed

(C++ enumerator), 166
krpc::services::SpaceCenter::LandingGearState::deploying

(C++ enumerator), 166
krpc::services::SpaceCenter::LandingGearState::retracted

(C++ enumerator), 166
krpc::services::SpaceCenter::LandingGearState::retracting

(C++ enumerator), 166
krpc::services::SpaceCenter::LandingLeg (C++ class),

166
krpc::services::SpaceCenter::LandingLeg::deployed

(C++ function), 166
krpc::services::SpaceCenter::LandingLeg::part (C++

function), 166
krpc::services::SpaceCenter::LandingLeg::set_deployed

(C++ function), 166

Index 599

kRPC, Release 0.3.5

krpc::services::SpaceCenter::LandingLeg::state (C++
function), 166

krpc::services::SpaceCenter::LandingLegState (C++
enum), 167

krpc::services::SpaceCenter::LandingLegState::broken
(C++ enumerator), 167

krpc::services::SpaceCenter::LandingLegState::deployed
(C++ enumerator), 167

krpc::services::SpaceCenter::LandingLegState::deploying
(C++ enumerator), 167

krpc::services::SpaceCenter::LandingLegState::retracted
(C++ enumerator), 167

krpc::services::SpaceCenter::LandingLegState::retracting
(C++ enumerator), 167

krpc::services::SpaceCenter::launch_vessel (C++ func-
tion), 125

krpc::services::SpaceCenter::launch_vessel_from_sph
(C++ function), 125

krpc::services::SpaceCenter::launch_vessel_from_vab
(C++ function), 125

krpc::services::SpaceCenter::launchable_vessels (C++
function), 125

krpc::services::SpaceCenter::LaunchClamp (C++ class),
167

krpc::services::SpaceCenter::LaunchClamp::part (C++
function), 167

krpc::services::SpaceCenter::LaunchClamp::release
(C++ function), 167

krpc::services::SpaceCenter::Light (C++ class), 167
krpc::services::SpaceCenter::Light::active (C++ func-

tion), 167
krpc::services::SpaceCenter::Light::color (C++ function),

167
krpc::services::SpaceCenter::Light::part (C++ function),

167
krpc::services::SpaceCenter::Light::power_usage (C++

function), 167
krpc::services::SpaceCenter::Light::set_active (C++

function), 167
krpc::services::SpaceCenter::Light::set_color (C++ func-

tion), 167
krpc::services::SpaceCenter::load (C++ function), 125
krpc::services::SpaceCenter::maximum_rails_warp_factor

(C++ function), 126
krpc::services::SpaceCenter::Module (C++ class), 155
krpc::services::SpaceCenter::Module::actions (C++ func-

tion), 156
krpc::services::SpaceCenter::Module::events (C++ func-

tion), 156
krpc::services::SpaceCenter::Module::fields (C++ func-

tion), 155
krpc::services::SpaceCenter::Module::get_field (C++

function), 156
krpc::services::SpaceCenter::Module::has_action (C++

function), 157
krpc::services::SpaceCenter::Module::has_event (C++

function), 156
krpc::services::SpaceCenter::Module::has_field (C++

function), 156
krpc::services::SpaceCenter::Module::name (C++ func-

tion), 155
krpc::services::SpaceCenter::Module::part (C++ func-

tion), 155
krpc::services::SpaceCenter::Module::reset_field (C++

function), 156
krpc::services::SpaceCenter::Module::set_action (C++

function), 157
krpc::services::SpaceCenter::Module::set_field_float

(C++ function), 156
krpc::services::SpaceCenter::Module::set_field_int (C++

function), 156
krpc::services::SpaceCenter::Module::set_field_string

(C++ function), 156
krpc::services::SpaceCenter::Module::trigger_event

(C++ function), 156
krpc::services::SpaceCenter::Node (C++ class), 183
krpc::services::SpaceCenter::Node::burn_vector (C++

function), 183
krpc::services::SpaceCenter::Node::delta_v (C++ func-

tion), 183
krpc::services::SpaceCenter::Node::direction (C++ func-

tion), 184
krpc::services::SpaceCenter::Node::normal (C++ func-

tion), 183
krpc::services::SpaceCenter::Node::orbit (C++ function),

184
krpc::services::SpaceCenter::Node::orbital_reference_frame

(C++ function), 184
krpc::services::SpaceCenter::Node::position (C++ func-

tion), 184
krpc::services::SpaceCenter::Node::prograde (C++ func-

tion), 183
krpc::services::SpaceCenter::Node::radial (C++ func-

tion), 183
krpc::services::SpaceCenter::Node::reference_frame

(C++ function), 184
krpc::services::SpaceCenter::Node::remaining_burn_vector

(C++ function), 183
krpc::services::SpaceCenter::Node::remaining_delta_v

(C++ function), 183
krpc::services::SpaceCenter::Node::remove (C++ func-

tion), 184
krpc::services::SpaceCenter::Node::set_delta_v (C++

function), 183
krpc::services::SpaceCenter::Node::set_normal (C++

function), 183
krpc::services::SpaceCenter::Node::set_prograde (C++

function), 183

600 Index

kRPC, Release 0.3.5

krpc::services::SpaceCenter::Node::set_radial (C++ func-
tion), 183

krpc::services::SpaceCenter::Node::set_ut (C++ func-
tion), 184

krpc::services::SpaceCenter::Node::time_to (C++ func-
tion), 184

krpc::services::SpaceCenter::Node::ut (C++ function),
184

krpc::services::SpaceCenter::Orbit (C++ class), 142
krpc::services::SpaceCenter::Orbit::apoapsis (C++ func-

tion), 142
krpc::services::SpaceCenter::Orbit::apoapsis_altitude

(C++ function), 142
krpc::services::SpaceCenter::Orbit::argument_of_periapsis

(C++ function), 143
krpc::services::SpaceCenter::Orbit::body (C++ function),

142
krpc::services::SpaceCenter::Orbit::eccentric_anomaly

(C++ function), 143
krpc::services::SpaceCenter::Orbit::eccentricity (C++

function), 143
krpc::services::SpaceCenter::Orbit::epoch (C++ func-

tion), 143
krpc::services::SpaceCenter::Orbit::inclination (C++

function), 143
krpc::services::SpaceCenter::Orbit::longitude_of_ascending_node

(C++ function), 143
krpc::services::SpaceCenter::Orbit::mean_anomaly (C++

function), 143
krpc::services::SpaceCenter::Orbit::mean_anomaly_at_epoch

(C++ function), 143
krpc::services::SpaceCenter::Orbit::next_orbit (C++

function), 144
krpc::services::SpaceCenter::Orbit::periapsis (C++ func-

tion), 142
krpc::services::SpaceCenter::Orbit::periapsis_altitude

(C++ function), 142
krpc::services::SpaceCenter::Orbit::period (C++ func-

tion), 143
krpc::services::SpaceCenter::Orbit::radius (C++ func-

tion), 143
krpc::services::SpaceCenter::Orbit::reference_plane_direction

(C++ function), 143
krpc::services::SpaceCenter::Orbit::reference_plane_normal

(C++ function), 143
krpc::services::SpaceCenter::Orbit::semi_major_axis

(C++ function), 142
krpc::services::SpaceCenter::Orbit::semi_minor_axis

(C++ function), 143
krpc::services::SpaceCenter::Orbit::speed (C++ func-

tion), 143
krpc::services::SpaceCenter::Orbit::time_to_apoapsis

(C++ function), 143
krpc::services::SpaceCenter::Orbit::time_to_periapsis

(C++ function), 143
krpc::services::SpaceCenter::Orbit::time_to_soi_change

(C++ function), 144
krpc::services::SpaceCenter::Parachute (C++ class), 167
krpc::services::SpaceCenter::Parachute::deploy (C++

function), 168
krpc::services::SpaceCenter::Parachute::deploy_altitude

(C++ function), 168
krpc::services::SpaceCenter::Parachute::deploy_min_pressure

(C++ function), 168
krpc::services::SpaceCenter::Parachute::deployed (C++

function), 168
krpc::services::SpaceCenter::Parachute::part (C++ func-

tion), 167
krpc::services::SpaceCenter::Parachute::set_deploy_altitude

(C++ function), 168
krpc::services::SpaceCenter::Parachute::set_deploy_min_pressure

(C++ function), 168
krpc::services::SpaceCenter::Parachute::state (C++ func-

tion), 168
krpc::services::SpaceCenter::ParachuteState (C++ enum),

168
krpc::services::SpaceCenter::ParachuteState::active (C++

enumerator), 168
krpc::services::SpaceCenter::ParachuteState::cut (C++

enumerator), 168
krpc::services::SpaceCenter::ParachuteState::deployed

(C++ enumerator), 168
krpc::services::SpaceCenter::ParachuteState::semi_deployed

(C++ enumerator), 168
krpc::services::SpaceCenter::ParachuteState::stowed

(C++ enumerator), 168
krpc::services::SpaceCenter::Part (C++ class), 150
krpc::services::SpaceCenter::Part::axially_attached (C++

function), 151
krpc::services::SpaceCenter::Part::cargo_bay (C++ func-

tion), 153
krpc::services::SpaceCenter::Part::center_of_mass (C++

function), 154
krpc::services::SpaceCenter::Part::center_of_mass_reference_frame

(C++ function), 155
krpc::services::SpaceCenter::Part::children (C++ func-

tion), 151
krpc::services::SpaceCenter::Part::control_surface (C++

function), 153
krpc::services::SpaceCenter::Part::cost (C++ function),

150
krpc::services::SpaceCenter::Part::crossfeed (C++ func-

tion), 152
krpc::services::SpaceCenter::Part::decouple_stage (C++

function), 151
krpc::services::SpaceCenter::Part::decoupler (C++ func-

tion), 153
krpc::services::SpaceCenter::Part::direction (C++ func-

Index 601

kRPC, Release 0.3.5

tion), 154
krpc::services::SpaceCenter::Part::docking_port (C++

function), 153
krpc::services::SpaceCenter::Part::dry_mass (C++ func-

tion), 151
krpc::services::SpaceCenter::Part::dynamic_pressure

(C++ function), 151
krpc::services::SpaceCenter::Part::engine (C++ function),

153
krpc::services::SpaceCenter::Part::experiment (C++ func-

tion), 153
krpc::services::SpaceCenter::Part::fairing (C++ function),

153
krpc::services::SpaceCenter::Part::fuel_lines_from (C++

function), 152
krpc::services::SpaceCenter::Part::fuel_lines_to (C++

function), 153
krpc::services::SpaceCenter::Part::impact_tolerance

(C++ function), 151
krpc::services::SpaceCenter::Part::inertia_tensor (C++

function), 154
krpc::services::SpaceCenter::Part::intake (C++ function),

153
krpc::services::SpaceCenter::Part::is_fuel_line (C++

function), 152
krpc::services::SpaceCenter::Part::landing_gear (C++

function), 153
krpc::services::SpaceCenter::Part::landing_leg (C++

function), 153
krpc::services::SpaceCenter::Part::launch_clamp (C++

function), 153
krpc::services::SpaceCenter::Part::light (C++ function),

153
krpc::services::SpaceCenter::Part::mass (C++ function),

151
krpc::services::SpaceCenter::Part::massless (C++ func-

tion), 151
krpc::services::SpaceCenter::Part::max_skin_temperature

(C++ function), 152
krpc::services::SpaceCenter::Part::max_temperature

(C++ function), 152
krpc::services::SpaceCenter::Part::modules (C++ func-

tion), 153
krpc::services::SpaceCenter::Part::moment_of_inertia

(C++ function), 154
krpc::services::SpaceCenter::Part::name (C++ function),

150
krpc::services::SpaceCenter::Part::parachute (C++ func-

tion), 153
krpc::services::SpaceCenter::Part::parent (C++ function),

150
krpc::services::SpaceCenter::Part::position (C++ func-

tion), 154
krpc::services::SpaceCenter::Part::radially_attached

(C++ function), 151
krpc::services::SpaceCenter::Part::radiator (C++ func-

tion), 153
krpc::services::SpaceCenter::Part::rcs (C++ function),

153
krpc::services::SpaceCenter::Part::reaction_wheel (C++

function), 153
krpc::services::SpaceCenter::Part::reference_frame (C++

function), 154
krpc::services::SpaceCenter::Part::resource_converter

(C++ function), 154
krpc::services::SpaceCenter::Part::resource_harvester

(C++ function), 154
krpc::services::SpaceCenter::Part::resources (C++ func-

tion), 152
krpc::services::SpaceCenter::Part::rotation (C++ func-

tion), 154
krpc::services::SpaceCenter::Part::sensor (C++ function),

154
krpc::services::SpaceCenter::Part::shielded (C++ func-

tion), 151
krpc::services::SpaceCenter::Part::skin_temperature

(C++ function), 152
krpc::services::SpaceCenter::Part::solar_panel (C++

function), 154
krpc::services::SpaceCenter::Part::stage (C++ function),

151
krpc::services::SpaceCenter::Part::temperature (C++

function), 151
krpc::services::SpaceCenter::Part::thermal_conduction_flux

(C++ function), 152
krpc::services::SpaceCenter::Part::thermal_convection_flux

(C++ function), 152
krpc::services::SpaceCenter::Part::thermal_internal_flux

(C++ function), 152
krpc::services::SpaceCenter::Part::thermal_mass (C++

function), 152
krpc::services::SpaceCenter::Part::thermal_radiation_flux

(C++ function), 152
krpc::services::SpaceCenter::Part::thermal_resource_mass

(C++ function), 152
krpc::services::SpaceCenter::Part::thermal_skin_mass

(C++ function), 152
krpc::services::SpaceCenter::Part::thermal_skin_to_internal_flux

(C++ function), 152
krpc::services::SpaceCenter::Part::title (C++ function),

150
krpc::services::SpaceCenter::Part::velocity (C++ func-

tion), 154
krpc::services::SpaceCenter::Part::vessel (C++ function),

150
krpc::services::SpaceCenter::Parts (C++ class), 148
krpc::services::SpaceCenter::Parts::all (C++ function),

148

602 Index

kRPC, Release 0.3.5

krpc::services::SpaceCenter::Parts::cargo_bays (C++
function), 149

krpc::services::SpaceCenter::Parts::control_surfaces
(C++ function), 149

krpc::services::SpaceCenter::Parts::controlling (C++
function), 148

krpc::services::SpaceCenter::Parts::decouplers (C++
function), 149

krpc::services::SpaceCenter::Parts::docking_port_with_name
(C++ function), 149

krpc::services::SpaceCenter::Parts::docking_ports (C++
function), 149

krpc::services::SpaceCenter::Parts::engines (C++ func-
tion), 149

krpc::services::SpaceCenter::Parts::experiments (C++
function), 149

krpc::services::SpaceCenter::Parts::fairings (C++ func-
tion), 149

krpc::services::SpaceCenter::Parts::in_decouple_stage
(C++ function), 149

krpc::services::SpaceCenter::Parts::in_stage (C++ func-
tion), 149

krpc::services::SpaceCenter::Parts::intakes (C++ func-
tion), 149

krpc::services::SpaceCenter::Parts::landing_gear (C++
function), 150

krpc::services::SpaceCenter::Parts::landing_legs (C++
function), 150

krpc::services::SpaceCenter::Parts::launch_clamps (C++
function), 150

krpc::services::SpaceCenter::Parts::lights (C++ function),
150

krpc::services::SpaceCenter::Parts::modules_with_name
(C++ function), 149

krpc::services::SpaceCenter::Parts::parachutes (C++
function), 150

krpc::services::SpaceCenter::Parts::radiators (C++ func-
tion), 150

krpc::services::SpaceCenter::Parts::rcs (C++ function),
150

krpc::services::SpaceCenter::Parts::reaction_wheels
(C++ function), 150

krpc::services::SpaceCenter::Parts::resource_converters
(C++ function), 150

krpc::services::SpaceCenter::Parts::resource_harvesters
(C++ function), 150

krpc::services::SpaceCenter::Parts::root (C++ function),
148

krpc::services::SpaceCenter::Parts::sensors (C++ func-
tion), 150

krpc::services::SpaceCenter::Parts::set_controlling (C++
function), 148

krpc::services::SpaceCenter::Parts::solar_panels (C++
function), 150

krpc::services::SpaceCenter::Parts::with_module (C++
function), 149

krpc::services::SpaceCenter::Parts::with_name (C++
function), 148

krpc::services::SpaceCenter::Parts::with_title (C++ func-
tion), 148

krpc::services::SpaceCenter::physics_warp_factor (C++
function), 126

krpc::services::SpaceCenter::Propellant (C++ class), 163
krpc::services::SpaceCenter::Propellant::connected_resources

(C++ function), 164
krpc::services::SpaceCenter::Propellant::current_amount

(C++ function), 164
krpc::services::SpaceCenter::Propellant::current_requirement

(C++ function), 164
krpc::services::SpaceCenter::Propellant::draw_stack_gauge

(C++ function), 164
krpc::services::SpaceCenter::Propellant::ignore_for_isp

(C++ function), 164
krpc::services::SpaceCenter::Propellant::ignore_for_thrust_curve

(C++ function), 164
krpc::services::SpaceCenter::Propellant::is_deprived

(C++ function), 164
krpc::services::SpaceCenter::Propellant::name (C++

function), 164
krpc::services::SpaceCenter::Propellant::ratio (C++ func-

tion), 164
krpc::services::SpaceCenter::Propellant::total_resource_available

(C++ function), 164
krpc::services::SpaceCenter::Propellant::total_resource_capacity

(C++ function), 164
krpc::services::SpaceCenter::Quaternion (C++ class), 189
krpc::services::SpaceCenter::quickload (C++ function),

126
krpc::services::SpaceCenter::quicksave (C++ function),

126
krpc::services::SpaceCenter::Radiator (C++ class), 168
krpc::services::SpaceCenter::Radiator::deployable (C++

function), 168
krpc::services::SpaceCenter::Radiator::deployed (C++

function), 168
krpc::services::SpaceCenter::Radiator::part (C++ func-

tion), 168
krpc::services::SpaceCenter::Radiator::set_deployed

(C++ function), 168
krpc::services::SpaceCenter::Radiator::state (C++ func-

tion), 168
krpc::services::SpaceCenter::RadiatorState (C++ enum),

168
krpc::services::SpaceCenter::RadiatorState::broken (C++

enumerator), 169
krpc::services::SpaceCenter::RadiatorState::extended

(C++ enumerator), 169
krpc::services::SpaceCenter::RadiatorState::extending

Index 603

kRPC, Release 0.3.5

(C++ enumerator), 169
krpc::services::SpaceCenter::RadiatorState::retracted

(C++ enumerator), 169
krpc::services::SpaceCenter::RadiatorState::retracting

(C++ enumerator), 169
krpc::services::SpaceCenter::rails_warp_factor (C++

function), 126
krpc::services::SpaceCenter::RCS (C++ class), 171
krpc::services::SpaceCenter::RCS::active (C++ function),

172
krpc::services::SpaceCenter::RCS::available_torque

(C++ function), 172
krpc::services::SpaceCenter::RCS::enabled (C++ func-

tion), 172
krpc::services::SpaceCenter::RCS::forward_enabled

(C++ function), 172
krpc::services::SpaceCenter::RCS::has_fuel (C++ func-

tion), 173
krpc::services::SpaceCenter::RCS::kerbin_sea_level_specific_impulse

(C++ function), 172
krpc::services::SpaceCenter::RCS::max_thrust (C++

function), 172
krpc::services::SpaceCenter::RCS::max_vacuum_thrust

(C++ function), 172
krpc::services::SpaceCenter::RCS::part (C++ function),

171
krpc::services::SpaceCenter::RCS::pitch_enabled (C++

function), 172
krpc::services::SpaceCenter::RCS::propellant_ratios

(C++ function), 173
krpc::services::SpaceCenter::RCS::propellants (C++

function), 172
krpc::services::SpaceCenter::RCS::right_enabled (C++

function), 172
krpc::services::SpaceCenter::RCS::roll_enabled (C++

function), 172
krpc::services::SpaceCenter::RCS::set_enabled (C++

function), 172
krpc::services::SpaceCenter::RCS::set_forward_enabled

(C++ function), 172
krpc::services::SpaceCenter::RCS::set_pitch_enabled

(C++ function), 172
krpc::services::SpaceCenter::RCS::set_right_enabled

(C++ function), 172
krpc::services::SpaceCenter::RCS::set_roll_enabled

(C++ function), 172
krpc::services::SpaceCenter::RCS::set_up_enabled (C++

function), 172
krpc::services::SpaceCenter::RCS::set_yaw_enabled

(C++ function), 172
krpc::services::SpaceCenter::RCS::specific_impulse

(C++ function), 172
krpc::services::SpaceCenter::RCS::thrusters (C++ func-

tion), 172

krpc::services::SpaceCenter::RCS::up_enabled (C++
function), 172

krpc::services::SpaceCenter::RCS::vacuum_specific_impulse
(C++ function), 172

krpc::services::SpaceCenter::RCS::yaw_enabled (C++
function), 172

krpc::services::SpaceCenter::ReactionWheel (C++ class),
171

krpc::services::SpaceCenter::ReactionWheel::active
(C++ function), 171

krpc::services::SpaceCenter::ReactionWheel::available_torque
(C++ function), 171

krpc::services::SpaceCenter::ReactionWheel::broken
(C++ function), 171

krpc::services::SpaceCenter::ReactionWheel::max_torque
(C++ function), 171

krpc::services::SpaceCenter::ReactionWheel::part (C++
function), 171

krpc::services::SpaceCenter::ReactionWheel::set_active
(C++ function), 171

krpc::services::SpaceCenter::ReferenceFrame (C++
class), 185

krpc::services::SpaceCenter::Resource (C++ class), 181
krpc::services::SpaceCenter::Resource::amount (C++

function), 181
krpc::services::SpaceCenter::Resource::density (C++

function), 181
krpc::services::SpaceCenter::Resource::enabled (C++

function), 182
krpc::services::SpaceCenter::Resource::flow_mode (C++

function), 182
krpc::services::SpaceCenter::Resource::max (C++ func-

tion), 181
krpc::services::SpaceCenter::Resource::name (C++ func-

tion), 181
krpc::services::SpaceCenter::Resource::part (C++ func-

tion), 181
krpc::services::SpaceCenter::Resource::set_enabled

(C++ function), 182
krpc::services::SpaceCenter::ResourceConverter (C++

class), 169
krpc::services::SpaceCenter::ResourceConverter::active

(C++ function), 169
krpc::services::SpaceCenter::ResourceConverter::count

(C++ function), 169
krpc::services::SpaceCenter::ResourceConverter::inputs

(C++ function), 170
krpc::services::SpaceCenter::ResourceConverter::name

(C++ function), 169
krpc::services::SpaceCenter::ResourceConverter::outputs

(C++ function), 170
krpc::services::SpaceCenter::ResourceConverter::part

(C++ function), 169
krpc::services::SpaceCenter::ResourceConverter::start

604 Index

kRPC, Release 0.3.5

(C++ function), 169
krpc::services::SpaceCenter::ResourceConverter::state

(C++ function), 169
krpc::services::SpaceCenter::ResourceConverter::status_info

(C++ function), 169
krpc::services::SpaceCenter::ResourceConverter::stop

(C++ function), 169
krpc::services::SpaceCenter::ResourceConverterState

(C++ enum), 170
krpc::services::SpaceCenter::ResourceConverterState::capacity

(C++ enumerator), 170
krpc::services::SpaceCenter::ResourceConverterState::idle

(C++ enumerator), 170
krpc::services::SpaceCenter::ResourceConverterState::missing_resource

(C++ enumerator), 170
krpc::services::SpaceCenter::ResourceConverterState::running

(C++ enumerator), 170
krpc::services::SpaceCenter::ResourceConverterState::storage_full

(C++ enumerator), 170
krpc::services::SpaceCenter::ResourceConverterState::unknown

(C++ enumerator), 170
krpc::services::SpaceCenter::ResourceFlowMode (C++

enum), 182
krpc::services::SpaceCenter::ResourceFlowMode::adjacent

(C++ enumerator), 182
krpc::services::SpaceCenter::ResourceFlowMode::none

(C++ enumerator), 182
krpc::services::SpaceCenter::ResourceFlowMode::stage

(C++ enumerator), 182
krpc::services::SpaceCenter::ResourceFlowMode::vessel

(C++ enumerator), 182
krpc::services::SpaceCenter::ResourceHarvester (C++

class), 170
krpc::services::SpaceCenter::ResourceHarvester::active

(C++ function), 170
krpc::services::SpaceCenter::ResourceHarvester::core_temperature

(C++ function), 171
krpc::services::SpaceCenter::ResourceHarvester::deployed

(C++ function), 170
krpc::services::SpaceCenter::ResourceHarvester::extraction_rate

(C++ function), 170
krpc::services::SpaceCenter::ResourceHarvester::optimum_core_temperature

(C++ function), 171
krpc::services::SpaceCenter::ResourceHarvester::part

(C++ function), 170
krpc::services::SpaceCenter::ResourceHarvester::set_active

(C++ function), 170
krpc::services::SpaceCenter::ResourceHarvester::set_deployed

(C++ function), 170
krpc::services::SpaceCenter::ResourceHarvester::state

(C++ function), 170
krpc::services::SpaceCenter::ResourceHarvester::thermal_efficiency

(C++ function), 171
krpc::services::SpaceCenter::ResourceHarvesterState

(C++ enum), 171
krpc::services::SpaceCenter::ResourceHarvesterState::active

(C++ enumerator), 171
krpc::services::SpaceCenter::ResourceHarvesterState::deployed

(C++ enumerator), 171
krpc::services::SpaceCenter::ResourceHarvesterState::deploying

(C++ enumerator), 171
krpc::services::SpaceCenter::ResourceHarvesterState::retracted

(C++ enumerator), 171
krpc::services::SpaceCenter::ResourceHarvesterState::retracting

(C++ enumerator), 171
krpc::services::SpaceCenter::Resources (C++ class), 180
krpc::services::SpaceCenter::Resources::all (C++ func-

tion), 180
krpc::services::SpaceCenter::Resources::amount (C++

function), 181
krpc::services::SpaceCenter::Resources::density (C++

function), 181
krpc::services::SpaceCenter::Resources::enabled (C++

function), 181
krpc::services::SpaceCenter::Resources::flow_mode

(C++ function), 181
krpc::services::SpaceCenter::Resources::has_resource

(C++ function), 180
krpc::services::SpaceCenter::Resources::max (C++ func-

tion), 181
krpc::services::SpaceCenter::Resources::names (C++

function), 180
krpc::services::SpaceCenter::Resources::set_enabled

(C++ function), 181
krpc::services::SpaceCenter::Resources::with_resource

(C++ function), 180
krpc::services::SpaceCenter::ResourceTransfer (C++

class), 182
krpc::services::SpaceCenter::ResourceTransfer::amount

(C++ function), 182
krpc::services::SpaceCenter::ResourceTransfer::complete

(C++ function), 182
krpc::services::SpaceCenter::ResourceTransfer::start

(C++ function), 182
krpc::services::SpaceCenter::SASMode (C++ enum), 146
krpc::services::SpaceCenter::SASMode::anti_normal

(C++ enumerator), 146
krpc::services::SpaceCenter::SASMode::anti_radial

(C++ enumerator), 147
krpc::services::SpaceCenter::SASMode::anti_target

(C++ enumerator), 147
krpc::services::SpaceCenter::SASMode::maneuver (C++

enumerator), 146
krpc::services::SpaceCenter::SASMode::normal (C++

enumerator), 146
krpc::services::SpaceCenter::SASMode::prograde (C++

enumerator), 146
krpc::services::SpaceCenter::SASMode::radial (C++

Index 605

kRPC, Release 0.3.5

enumerator), 147
krpc::services::SpaceCenter::SASMode::retrograde (C++

enumerator), 146
krpc::services::SpaceCenter::SASMode::stability_assist

(C++ enumerator), 146
krpc::services::SpaceCenter::SASMode::target (C++ enu-

merator), 147
krpc::services::SpaceCenter::save (C++ function), 125
krpc::services::SpaceCenter::ScienceData (C++ class),

165
krpc::services::SpaceCenter::ScienceData::data_amount

(C++ function), 165
krpc::services::SpaceCenter::ScienceData::science_value

(C++ function), 165
krpc::services::SpaceCenter::ScienceData::transmit_value

(C++ function), 165
krpc::services::SpaceCenter::Sensor (C++ class), 173
krpc::services::SpaceCenter::Sensor::active (C++ func-

tion), 173
krpc::services::SpaceCenter::Sensor::part (C++ function),

173
krpc::services::SpaceCenter::Sensor::power_usage (C++

function), 173
krpc::services::SpaceCenter::Sensor::set_active (C++

function), 173
krpc::services::SpaceCenter::Sensor::value (C++ func-

tion), 173
krpc::services::SpaceCenter::set_active_vessel (C++

function), 124
krpc::services::SpaceCenter::set_physics_warp_factor

(C++ function), 126
krpc::services::SpaceCenter::set_rails_warp_factor (C++

function), 126
krpc::services::SpaceCenter::set_target_body (C++ func-

tion), 124
krpc::services::SpaceCenter::set_target_docking_port

(C++ function), 125
krpc::services::SpaceCenter::set_target_vessel (C++

function), 124
krpc::services::SpaceCenter::SolarPanel (C++ class), 173
krpc::services::SpaceCenter::SolarPanel::deployed (C++

function), 173
krpc::services::SpaceCenter::SolarPanel::energy_flow

(C++ function), 173
krpc::services::SpaceCenter::SolarPanel::part (C++ func-

tion), 173
krpc::services::SpaceCenter::SolarPanel::set_deployed

(C++ function), 173
krpc::services::SpaceCenter::SolarPanel::state (C++

function), 173
krpc::services::SpaceCenter::SolarPanel::sun_exposure

(C++ function), 173
krpc::services::SpaceCenter::SolarPanelState (C++

enum), 173

krpc::services::SpaceCenter::SolarPanelState::broken
(C++ enumerator), 174

krpc::services::SpaceCenter::SolarPanelState::extended
(C++ enumerator), 173

krpc::services::SpaceCenter::SolarPanelState::extending
(C++ enumerator), 174

krpc::services::SpaceCenter::SolarPanelState::retracted
(C++ enumerator), 174

krpc::services::SpaceCenter::SolarPanelState::retracting
(C++ enumerator), 174

krpc::services::SpaceCenter::SpaceCenter (C++ func-
tion), 124

krpc::services::SpaceCenter::SpeedMode (C++ enum),
147

krpc::services::SpaceCenter::SpeedMode::orbit (C++
enumerator), 147

krpc::services::SpaceCenter::SpeedMode::surface (C++
enumerator), 147

krpc::services::SpaceCenter::SpeedMode::target (C++
enumerator), 147

krpc::services::SpaceCenter::target_body (C++ function),
124

krpc::services::SpaceCenter::target_docking_port (C++
function), 125

krpc::services::SpaceCenter::target_vessel (C++ func-
tion), 124

krpc::services::SpaceCenter::Thruster (C++ class), 174
krpc::services::SpaceCenter::Thruster::gimbal_angle

(C++ function), 175
krpc::services::SpaceCenter::Thruster::gimbal_position

(C++ function), 174
krpc::services::SpaceCenter::Thruster::gimballed (C++

function), 174
krpc::services::SpaceCenter::Thruster::initial_thrust_direction

(C++ function), 175
krpc::services::SpaceCenter::Thruster::initial_thrust_position

(C++ function), 175
krpc::services::SpaceCenter::Thruster::part (C++ func-

tion), 174
krpc::services::SpaceCenter::Thruster::thrust_direction

(C++ function), 174
krpc::services::SpaceCenter::Thruster::thrust_position

(C++ function), 174
krpc::services::SpaceCenter::Thruster::thrust_reference_frame

(C++ function), 174
krpc::services::SpaceCenter::transform_direction (C++

function), 127
krpc::services::SpaceCenter::transform_position (C++

function), 127
krpc::services::SpaceCenter::transform_rotation (C++

function), 127
krpc::services::SpaceCenter::transform_velocity (C++

function), 127
krpc::services::SpaceCenter::ut (C++ function), 126

606 Index

kRPC, Release 0.3.5

krpc::services::SpaceCenter::Vector3 (C++ class), 189
krpc::services::SpaceCenter::Vessel (C++ class), 128
krpc::services::SpaceCenter::Vessel::angular_velocity

(C++ function), 133
krpc::services::SpaceCenter::Vessel::auto_pilot (C++

function), 129
krpc::services::SpaceCenter::Vessel::available_control_surface_torque

(C++ function), 130
krpc::services::SpaceCenter::Vessel::available_engine_torque

(C++ function), 130
krpc::services::SpaceCenter::Vessel::available_rcs_torque

(C++ function), 130
krpc::services::SpaceCenter::Vessel::available_reaction_wheel_torque

(C++ function), 130
krpc::services::SpaceCenter::Vessel::available_thrust

(C++ function), 129
krpc::services::SpaceCenter::Vessel::available_torque

(C++ function), 130
krpc::services::SpaceCenter::Vessel::control (C++ func-

tion), 129
krpc::services::SpaceCenter::Vessel::direction (C++

function), 133
krpc::services::SpaceCenter::Vessel::dry_mass (C++

function), 129
krpc::services::SpaceCenter::Vessel::flight (C++ func-

tion), 128
krpc::services::SpaceCenter::Vessel::inertia_tensor (C++

function), 130
krpc::services::SpaceCenter::Vessel::kerbin_sea_level_specific_impulse

(C++ function), 130
krpc::services::SpaceCenter::Vessel::mass (C++ func-

tion), 129
krpc::services::SpaceCenter::Vessel::max_thrust (C++

function), 129
krpc::services::SpaceCenter::Vessel::max_vacuum_thrust

(C++ function), 129
krpc::services::SpaceCenter::Vessel::met (C++ function),

128
krpc::services::SpaceCenter::Vessel::moment_of_inertia

(C++ function), 130
krpc::services::SpaceCenter::Vessel::name (C++ func-

tion), 128
krpc::services::SpaceCenter::Vessel::orbit (C++ func-

tion), 129
krpc::services::SpaceCenter::Vessel::orbital_reference_frame

(C++ function), 131
krpc::services::SpaceCenter::Vessel::parts (C++ func-

tion), 129
krpc::services::SpaceCenter::Vessel::position (C++ func-

tion), 133
krpc::services::SpaceCenter::Vessel::recover (C++ func-

tion), 128
krpc::services::SpaceCenter::Vessel::recoverable (C++

function), 128

krpc::services::SpaceCenter::Vessel::reference_frame
(C++ function), 130

krpc::services::SpaceCenter::Vessel::resources (C++
function), 129

krpc::services::SpaceCenter::Vessel::resources_in_decouple_stage
(C++ function), 129

krpc::services::SpaceCenter::Vessel::rotation (C++ func-
tion), 133

krpc::services::SpaceCenter::Vessel::set_name (C++
function), 128

krpc::services::SpaceCenter::Vessel::set_type (C++ func-
tion), 128

krpc::services::SpaceCenter::Vessel::situation (C++ func-
tion), 128

krpc::services::SpaceCenter::Vessel::specific_impulse
(C++ function), 130

krpc::services::SpaceCenter::Vessel::surface_reference_frame
(C++ function), 131

krpc::services::SpaceCenter::Vessel::surface_velocity_reference_frame
(C++ function), 133

krpc::services::SpaceCenter::Vessel::thrust (C++ func-
tion), 129

krpc::services::SpaceCenter::Vessel::type (C++ function),
128

krpc::services::SpaceCenter::Vessel::vacuum_specific_impulse
(C++ function), 130

krpc::services::SpaceCenter::Vessel::velocity (C++ func-
tion), 133

krpc::services::SpaceCenter::vessels (C++ function), 124
krpc::services::SpaceCenter::VesselSituation (C++

enum), 135
krpc::services::SpaceCenter::VesselSituation::docked

(C++ enumerator), 135
krpc::services::SpaceCenter::VesselSituation::escaping

(C++ enumerator), 135
krpc::services::SpaceCenter::VesselSituation::flying

(C++ enumerator), 135
krpc::services::SpaceCenter::VesselSituation::landed

(C++ enumerator), 135
krpc::services::SpaceCenter::VesselSituation::orbiting

(C++ enumerator), 135
krpc::services::SpaceCenter::VesselSituation::pre_launch

(C++ enumerator), 135
krpc::services::SpaceCenter::VesselSituation::splashed

(C++ enumerator), 135
krpc::services::SpaceCenter::VesselSituation::sub_orbital

(C++ enumerator), 135
krpc::services::SpaceCenter::VesselType (C++ enum),

135
krpc::services::SpaceCenter::VesselType::base (C++ enu-

merator), 135
krpc::services::SpaceCenter::VesselType::debris (C++

enumerator), 135
krpc::services::SpaceCenter::VesselType::lander (C++

Index 607

kRPC, Release 0.3.5

enumerator), 135
krpc::services::SpaceCenter::VesselType::probe (C++

enumerator), 135
krpc::services::SpaceCenter::VesselType::rover (C++

enumerator), 135
krpc::services::SpaceCenter::VesselType::ship (C++ enu-

merator), 135
krpc::services::SpaceCenter::VesselType::station (C++

enumerator), 135
krpc::services::SpaceCenter::warp_factor (C++ function),

126
krpc::services::SpaceCenter::warp_mode (C++ function),

126
krpc::services::SpaceCenter::warp_rate (C++ function),

126
krpc::services::SpaceCenter::warp_to (C++ function),

127
krpc::services::SpaceCenter::WarpMode (C++ enum),

128
krpc::services::SpaceCenter::WarpMode::none (C++ enu-

merator), 128
krpc::services::SpaceCenter::WarpMode::physics (C++

enumerator), 128
krpc::services::SpaceCenter::WarpMode::rails (C++ enu-

merator), 128
krpc::services::UI (C++ class), 206
krpc::services::UI::add_canvas (C++ function), 206
krpc::services::UI::Button (C++ class), 211
krpc::services::UI::Button::clicked (C++ function), 211
krpc::services::UI::Button::rect_transform (C++ func-

tion), 211
krpc::services::UI::Button::remove (C++ function), 211
krpc::services::UI::Button::set_clicked (C++ function),

211
krpc::services::UI::Button::set_visible (C++ function),

211
krpc::services::UI::Button::text (C++ function), 211
krpc::services::UI::Button::visible (C++ function), 211
krpc::services::UI::Canvas (C++ class), 207
krpc::services::UI::Canvas::add_button (C++ function),

208
krpc::services::UI::Canvas::add_input_field (C++ func-

tion), 208
krpc::services::UI::Canvas::add_panel (C++ function),

207
krpc::services::UI::Canvas::add_text (C++ function), 207
krpc::services::UI::Canvas::rect_transform (C++ func-

tion), 207
krpc::services::UI::Canvas::remove (C++ function), 208
krpc::services::UI::Canvas::set_visible (C++ function),

207
krpc::services::UI::Canvas::visible (C++ function), 207
krpc::services::UI::clear (C++ function), 207
krpc::services::UI::FontStyle (C++ enum), 210

krpc::services::UI::FontStyle::bold (C++ enumerator),
210

krpc::services::UI::FontStyle::bold_and_italic (C++ enu-
merator), 210

krpc::services::UI::FontStyle::italic (C++ enumerator),
210

krpc::services::UI::FontStyle::normal (C++ enumerator),
210

krpc::services::UI::InputField (C++ class), 211
krpc::services::UI::InputField::changed (C++ function),

212
krpc::services::UI::InputField::rect_transform (C++ func-

tion), 211
krpc::services::UI::InputField::remove (C++ function),

212
krpc::services::UI::InputField::set_changed (C++ func-

tion), 212
krpc::services::UI::InputField::set_value (C++ function),

211
krpc::services::UI::InputField::set_visible (C++ func-

tion), 211
krpc::services::UI::InputField::text (C++ function), 211
krpc::services::UI::InputField::value (C++ function), 211
krpc::services::UI::InputField::visible (C++ function),

211
krpc::services::UI::message (C++ function), 206
krpc::services::UI::MessagePosition (C++ enum), 207
krpc::services::UI::MessagePosition::bottom_center

(C++ enumerator), 207
krpc::services::UI::MessagePosition::top_center (C++

enumerator), 207
krpc::services::UI::MessagePosition::top_left (C++ enu-

merator), 207
krpc::services::UI::MessagePosition::top_right (C++

enumerator), 207
krpc::services::UI::Panel (C++ class), 208
krpc::services::UI::Panel::add_button (C++ function),

208
krpc::services::UI::Panel::add_input_field (C++ func-

tion), 208
krpc::services::UI::Panel::add_panel (C++ function), 208
krpc::services::UI::Panel::add_text (C++ function), 208
krpc::services::UI::Panel::rect_transform (C++ function),

208
krpc::services::UI::Panel::remove (C++ function), 209
krpc::services::UI::Panel::set_visible (C++ function), 208
krpc::services::UI::Panel::visible (C++ function), 208
krpc::services::UI::RectTransform (C++ class), 212
krpc::services::UI::RectTransform::anchor_max (C++

function), 213
krpc::services::UI::RectTransform::anchor_min (C++

function), 213
krpc::services::UI::RectTransform::local_position (C++

function), 212

608 Index

kRPC, Release 0.3.5

krpc::services::UI::RectTransform::lower_left (C++
function), 212

krpc::services::UI::RectTransform::pivot (C++ function),
213

krpc::services::UI::RectTransform::position (C++ func-
tion), 212

krpc::services::UI::RectTransform::rotation (C++ func-
tion), 213

krpc::services::UI::RectTransform::scale (C++ function),
213

krpc::services::UI::RectTransform::set_anchor (C++
function), 212

krpc::services::UI::RectTransform::set_anchor_max
(C++ function), 213

krpc::services::UI::RectTransform::set_anchor_min
(C++ function), 213

krpc::services::UI::RectTransform::set_local_position
(C++ function), 212

krpc::services::UI::RectTransform::set_lower_left (C++
function), 212

krpc::services::UI::RectTransform::set_pivot (C++ func-
tion), 213

krpc::services::UI::RectTransform::set_position (C++
function), 212

krpc::services::UI::RectTransform::set_rotation (C++
function), 213

krpc::services::UI::RectTransform::set_scale (C++ func-
tion), 213

krpc::services::UI::RectTransform::set_size (C++ func-
tion), 212

krpc::services::UI::RectTransform::set_upper_right (C++
function), 212

krpc::services::UI::RectTransform::size (C++ function),
212

krpc::services::UI::RectTransform::upper_right (C++
function), 212

krpc::services::UI::stock_canvas (C++ function), 206
krpc::services::UI::Text (C++ class), 209
krpc::services::UI::Text::alignment (C++ function), 209
krpc::services::UI::Text::available_fonts (C++ function),

209
krpc::services::UI::Text::color (C++ function), 209
krpc::services::UI::Text::content (C++ function), 209
krpc::services::UI::Text::font (C++ function), 209
krpc::services::UI::Text::line_spacing (C++ function),

209
krpc::services::UI::Text::rect_transform (C++ function),

209
krpc::services::UI::Text::remove (C++ function), 210
krpc::services::UI::Text::set_alignment (C++ function),

209
krpc::services::UI::Text::set_color (C++ function), 209
krpc::services::UI::Text::set_content (C++ function), 209
krpc::services::UI::Text::set_font (C++ function), 209

krpc::services::UI::Text::set_line_spacing (C++ func-
tion), 209

krpc::services::UI::Text::set_size (C++ function), 209
krpc::services::UI::Text::set_style (C++ function), 209
krpc::services::UI::Text::set_visible (C++ function), 209
krpc::services::UI::Text::size (C++ function), 209
krpc::services::UI::Text::style (C++ function), 209
krpc::services::UI::Text::visible (C++ function), 209
krpc::services::UI::TextAlignment (C++ enum), 210
krpc::services::UI::TextAlignment::center (C++ enumer-

ator), 210
krpc::services::UI::TextAlignment::left (C++ enumera-

tor), 210
krpc::services::UI::TextAlignment::right (C++ enumera-

tor), 210
krpc::services::UI::TextAnchor (C++ enum), 210
krpc::services::UI::TextAnchor::lower_center (C++ enu-

merator), 210
krpc::services::UI::TextAnchor::lower_left (C++ enumer-

ator), 210
krpc::services::UI::TextAnchor::lower_right (C++ enu-

merator), 210
krpc::services::UI::TextAnchor::middle_center (C++

enumerator), 210
krpc::services::UI::TextAnchor::middle_left (C++ enu-

merator), 210
krpc::services::UI::TextAnchor::middle_right (C++ enu-

merator), 210
krpc::services::UI::TextAnchor::upper_center (C++ enu-

merator), 210
krpc::services::UI::TextAnchor::upper_left (C++ enumer-

ator), 210
krpc::services::UI::TextAnchor::upper_right (C++ enu-

merator), 210
krpc::services::UI::UI (C++ function), 206
krpc::Stream<T> (C++ class), 123
krpc::Stream<T>::operator() (C++ function), 123
krpc::Stream<T>::remove (C++ function), 123

L
LANDED (Java field), 230
LANDER (Java field), 230
landing_gear (Part attribute), 354, 473
landing_gear (Parts attribute), 347, 466
landing_leg (Part attribute), 354, 473
landing_legs (Parts attribute), 348, 467
LandingGear (class in SpaceCenter), 372, 491
LandingGear (Java class), 261
LandingGearState (class in SpaceCenter), 373, 492
LandingGearState (Java enum), 262
LandingGearState.broken (in module SpaceCenter), 373,

492
LandingGearState.deployed (in module SpaceCenter),

373, 492

Index 609

kRPC, Release 0.3.5

LandingGearState.deploying (in module SpaceCenter),
373, 492

LandingGearState.retracted (in module SpaceCenter),
373, 492

LandingGearState.retracting (in module SpaceCenter),
373, 492

LandingLeg (class in SpaceCenter), 373, 492
LandingLeg (Java class), 262
LandingLegState (class in SpaceCenter), 374, 493
LandingLegState (Java enum), 262
LandingLegState.broken (in module SpaceCenter), 374,

493
LandingLegState.deployed (in module SpaceCenter),

374, 493
LandingLegState.deploying (in module SpaceCenter),

374, 493
LandingLegState.retracted (in module SpaceCenter), 374,

493
LandingLegState.retracting (in module SpaceCenter),

374, 493
latitude (Flight attribute), 333, 452
launch_clamp (Part attribute), 354, 473
launch_clamps (Parts attribute), 348, 467
LAUNCH_RENDEVOUS (Java field), 299
launch_vessel() (in module SpaceCenter), 314, 434
launch_vessel_from_sph() (in module SpaceCenter), 315,

434
launch_vessel_from_vab() (in module SpaceCenter), 315,

434
launchable_vessels() (in module SpaceCenter), 314, 433
launchableVessels(String) (Java method), 219
LaunchClamp (class in SpaceCenter), 374, 493
LaunchClamp (Java class), 263
launchVessel(String, String, String) (Java method), 220
launchVesselFromSPH(String) (Java method), 220
launchVesselFromVAB(String) (Java method), 220
LEFT (Java field), 307
lift (Flight attribute), 335, 454
lift_coefficient (Flight attribute), 337, 456
Light (class in SpaceCenter), 374, 493
Light (Java class), 263
light (Part attribute), 354, 473
lights (Control attribute), 342, 461
lights (Parts attribute), 348, 467
Line (class in Drawing), 404, 523
Line (Java class), 289
line_spacing (Text attribute), 407, 423, 526, 542
load() (in module SpaceCenter), 315, 434
load(String) (Java method), 220
local_position (RectTransform attribute), 426, 545
LOCKED (Java field), 287
longitude (Flight attribute), 333, 452
longitude_of_ascending_node (Orbit attribute), 340, 459
LOWER_CENTER (Java field), 307

LOWER_LEFT (Java field), 307
lower_left (RectTransform attribute), 426, 546
LOWER_RIGHT (Java field), 307

M
mach (Flight attribute), 336, 455
MANEUVER (Java field), 242, 299
MANEUVER_AUTO (Java field), 299
MAP (Java field), 287
margin (Alarm attribute), 413, 532
mass (CelestialBody attribute), 328, 447
mass (Part attribute), 350, 469
mass (Vessel attribute), 320, 439
massless (Part attribute), 350, 469
material (Line attribute), 404, 523
material (Polygon attribute), 405, 524
material (Text attribute), 406, 526
max (Resource attribute), 391, 511
max() (Resources method), 390, 510
max(String) (Java method), 277
max_config_position (Servo attribute), 410, 529
max_distance (Camera attribute), 401, 520
max_pitch (Camera attribute), 401, 520
max_position (Servo attribute), 410, 529
max_skin_temperature (Part attribute), 351, 470
max_temperature (Part attribute), 351, 470
max_thrust (Engine attribute), 366, 485
max_thrust (RCS attribute), 381, 500
max_thrust (Vessel attribute), 320, 439
max_torque (ReactionWheel attribute), 380, 499
max_vacuum_thrust (Engine attribute), 366, 485
max_vacuum_thrust (RCS attribute), 381, 500
max_vacuum_thrust (Vessel attribute), 321, 440
maximum_rails_warp_factor (in module SpaceCenter),

316, 436
mean_altitude (Flight attribute), 332, 451
mean_anomaly (Orbit attribute), 340, 459
mean_anomaly_at_epoch (Orbit attribute), 340, 459
message() (in module UI), 420, 539
message(String, float, MessagePosition) (Java method),

303
MESSAGE_ONLY (Java field), 300
MessagePosition (class in UI), 420, 539
MessagePosition (Java enum), 304
MessagePosition.bottom_center (in module UI), 420, 539
MessagePosition.top_center (in module UI), 420, 539
MessagePosition.top_left (in module UI), 420, 539
MessagePosition.top_right (in module UI), 420, 539
met (Vessel attribute), 319, 438
MIDDLE_CENTER (Java field), 307
MIDDLE_LEFT (Java field), 307
MIDDLE_RIGHT (Java field), 307
min_config_position (Servo attribute), 410, 529
min_distance (Camera attribute), 401, 520

610 Index

kRPC, Release 0.3.5

min_pitch (Camera attribute), 401, 520
min_position (Servo attribute), 410, 529
MISSING_RESOURCE (Java field), 266
mode (Camera attribute), 400, 520
mode (Engine attribute), 368, 487
modes (Engine attribute), 368, 487
Module (class in SpaceCenter), 357, 476
Module (Java class), 250
modules (Part attribute), 353, 472
modules_with_name() (Parts method), 346, 465
modulesWithName(String) (Java method), 244
moment_of_inertia (Part attribute), 356, 475
moment_of_inertia (Vessel attribute), 321, 440
move_center() (Servo method), 411, 530
move_center() (ServoGroup method), 409, 528
move_left() (Servo method), 411, 530
move_left() (ServoGroup method), 409, 528
move_next_preset() (Servo method), 411, 531
move_next_preset() (ServoGroup method), 409, 528
move_prev_preset() (Servo method), 411, 531
move_prev_preset() (ServoGroup method), 409, 528
move_right() (Servo method), 411, 530
move_right() (ServoGroup method), 409, 528
move_to() (Servo method), 411, 531
moveCenter() (Java method), 294, 296
moveLeft() (Java method), 294, 295
moveNextPreset() (Java method), 294, 296
movePrevPreset() (Java method), 294, 296
moveRight() (Java method), 294, 295
moveTo(float, float) (Java method), 296
MOVING (Java field), 257
msl_position() (CelestialBody method), 329, 448
mSLPosition(double, double, ReferenceFrame) (Java

method), 232

N
name (Alarm attribute), 414, 533
name (CelestialBody attribute), 328, 447
name (DockingPort attribute), 362, 481
name (Module attribute), 357, 476
name (Part attribute), 349, 468
name (Propellant attribute), 369, 488
name (Resource attribute), 391, 510
name (Servo attribute), 409, 529
name (ServoGroup attribute), 408, 527
name (Vessel attribute), 318, 437
name() (ResourceConverter method), 377, 496
name(int) (Java method), 265
names (Resources attribute), 390, 510
newInstance() (Java method), 217
newInstance(String) (Java method), 217
newInstance(String, java.net.InetAddress) (Java method),

217

newInstance(String, java.net.InetAddress, int, int) (Java
method), 217

newInstance(String, String) (Java method), 217
newInstance(String, String, int, int) (Java method), 217
next_orbit (Orbit attribute), 341, 460
Node (class in SpaceCenter), 393, 512
Node (Java class), 279
nodes (Control attribute), 344, 463
non_rotating_reference_frame (CelestialBody attribute),

330, 449
NONE (Java field), 223, 278, 303
normal (Flight attribute), 334, 453
NORMAL (Java field), 242, 307
normal (Node attribute), 393, 512
notes (Alarm attribute), 414, 533

O
open (CargoBay attribute), 360, 479
open (Intake attribute), 372, 491
OPEN (Java field), 253
OPENING (Java field), 253
optimum_core_temperature (ResourceHarvester at-

tribute), 379, 498
orbit (CelestialBody attribute), 328, 447
Orbit (class in SpaceCenter), 338, 457
Orbit (Java class), 238
ORBIT (Java field), 242
orbit (Node attribute), 394, 514
orbit (Vessel attribute), 319, 438
ORBITAL (Java field), 287
orbital_reference_frame (CelestialBody attribute), 331,

450
orbital_reference_frame (Node attribute), 395, 514
orbital_reference_frame (Vessel attribute), 322, 441
ORBITING (Java field), 231
outputs() (ResourceConverter method), 377, 496
outputs(int) (Java method), 265
overshoot (AutoPilot attribute), 399, 518

P
Panel (class in UI), 421, 541
Panel (Java class), 305
Parachute (class in SpaceCenter), 375, 494
Parachute (Java class), 263
parachute (Part attribute), 354, 473
parachutes (Parts attribute), 348, 467
ParachuteState (class in SpaceCenter), 375, 494
ParachuteState (Java enum), 264
ParachuteState.active (in module SpaceCenter), 375, 494
ParachuteState.cut (in module SpaceCenter), 375, 494
ParachuteState.deployed (in module SpaceCenter), 375,

494
ParachuteState.semi_deployed (in module SpaceCenter),

375, 494

Index 611

kRPC, Release 0.3.5

ParachuteState.stowed (in module SpaceCenter), 375, 494
parent (Part attribute), 349, 468
part (Antenna attribute), 418, 537
part (CargoBay attribute), 360, 479
Part (class in SpaceCenter), 349, 468
part (ControlSurface attribute), 361, 480
part (Decoupler attribute), 362, 481
part (DockingPort attribute), 362, 481
part (Engine attribute), 365, 484
part (Experiment attribute), 370, 489
part (Fairing attribute), 371, 490
part (Intake attribute), 372, 491
Part (Java class), 246
part (LandingGear attribute), 372, 491
part (LandingLeg attribute), 373, 492
part (LaunchClamp attribute), 374, 493
part (Light attribute), 374, 493
part (Module attribute), 358, 476
part (Parachute attribute), 375, 494
part (Radiator attribute), 376, 495
part (RCS attribute), 380, 499
part (ReactionWheel attribute), 379, 498
part (Resource attribute), 391, 510
part (ResourceConverter attribute), 377, 496
part (ResourceHarvester attribute), 378, 497
part (Sensor attribute), 382, 501
part (Servo attribute), 409, 529
part (SolarPanel attribute), 383, 502
part (Thruster attribute), 384, 503
Parts (class in SpaceCenter), 345, 464
Parts (Java class), 243
parts (ServoGroup attribute), 409, 528
parts (Vessel attribute), 320, 439
PAUSE_GAME (Java field), 300
PERIAPSIS (Java field), 299
periapsis (Orbit attribute), 338, 457
periapsis_altitude (Orbit attribute), 338, 457
period (Orbit attribute), 339, 458
PHYSICS (Java field), 223
physics_warp_factor (in module SpaceCenter), 316, 435
pitch (Camera attribute), 400, 520
pitch (Control attribute), 342, 461
pitch (Flight attribute), 334, 452
pitch_enabled (ControlSurface attribute), 361, 480
pitch_enabled (RCS attribute), 380, 499
pitch_error (AutoPilot attribute), 396, 516
pitch_pid_gains (AutoPilot attribute), 399, 518
pivot (RectTransform attribute), 427, 546
Polygon (class in Drawing), 404, 524
Polygon (Java class), 290
position (RectTransform attribute), 426, 545
position (Servo attribute), 410, 529
position (Text attribute), 405, 525
position() (CelestialBody method), 331, 450

position() (DockingPort method), 363, 482
position() (Node method), 395, 514
position() (Part method), 355, 474
position() (Vessel method), 325, 445
position(ReferenceFrame) (Java method), 228, 233, 249,

255, 281
power_usage (Light attribute), 375, 494
power_usage (Sensor attribute), 382, 501
PRE_LAUNCH (Java field), 231
PROBE (Java field), 230
prograde (Flight attribute), 334, 453
PROGRADE (Java field), 242
prograde (Node attribute), 393, 512
Propellant (class in SpaceCenter), 369, 488
Propellant (Java class), 259
propellant_names (Engine attribute), 367, 486
propellant_ratios (Engine attribute), 367, 486
propellant_ratios (RCS attribute), 382, 501
propellants (Engine attribute), 367, 486
propellants (RCS attribute), 382, 501

Q
Quaternion (class in SpaceCenter), 400, 519
quickload() (in module SpaceCenter), 315, 434
quickload() (Java method), 220
quicksave() (in module SpaceCenter), 315, 434
quicksave() (Java method), 220

R
radial (Flight attribute), 334, 453
RADIAL (Java field), 242
radial (Node attribute), 393, 513
radially_attached (Part attribute), 350, 469
Radiator (class in SpaceCenter), 376, 495
Radiator (Java class), 264
radiator (Part attribute), 355, 474
radiators (Parts attribute), 348, 467
RadiatorState (class in SpaceCenter), 376, 495
RadiatorState (Java enum), 264
RadiatorState.broken (in module SpaceCenter), 376, 495
RadiatorState.extended (in module SpaceCenter), 376,

495
RadiatorState.extending (in module SpaceCenter), 376,

495
RadiatorState.retracted (in module SpaceCenter), 376,

495
RadiatorState.retracting (in module SpaceCenter), 376,

495
radius (Orbit attribute), 339, 458
RAILS (Java field), 223
rails_warp_factor (in module SpaceCenter), 316, 435
ratio (Propellant attribute), 370, 489
RAW (Java field), 299
RCS (class in SpaceCenter), 380, 499

612 Index

kRPC, Release 0.3.5

rcs (Control attribute), 341, 460
RCS (Java class), 267
rcs (Part attribute), 355, 474
rcs (Parts attribute), 348, 467
reaction_wheel (Part attribute), 355, 474
reaction_wheels (Parts attribute), 348, 467
ReactionWheel (class in SpaceCenter), 379, 498
ReactionWheel (Java class), 267
READY (Java field), 256
recover() (Java method), 223
recover() (Vessel method), 319, 438
recoverable (Vessel attribute), 319, 438
rect_transform (Button attribute), 424, 544
rect_transform (Canvas attribute), 420, 540
rect_transform (InputField attribute), 425, 544
rect_transform (Panel attribute), 421, 541
rect_transform (Text attribute), 422, 541
RectTransform (class in UI), 426, 545
RectTransform (Java class), 309
reengage_distance (DockingPort attribute), 363, 482
reference_frame (AutoPilot attribute), 397, 516
reference_frame (CelestialBody attribute), 330, 449
reference_frame (DockingPort attribute), 363, 482
reference_frame (Line attribute), 404, 523
reference_frame (Node attribute), 394, 514
reference_frame (Part attribute), 356, 475
reference_frame (Polygon attribute), 405, 524
reference_frame (Text attribute), 405, 525
reference_frame (Vessel attribute), 322, 441
reference_plane_direction() (Orbit static method), 340,

459
reference_plane_normal() (Orbit static method), 340, 459
ReferenceFrame (class in SpaceCenter), 395, 515
ReferenceFrame (Java class), 281
referencePlaneDirection(ReferenceFrame) (Java

method), 239
referencePlaneNormal(ReferenceFrame) (Java method),

239
release() (Java method), 263
release() (LaunchClamp method), 374, 493
remaining (Alarm attribute), 414, 533
remaining_burn_vector() (Node method), 394, 513
remaining_delta_v (Node attribute), 393, 513
remainingBurnVector(ReferenceFrame) (Java method),

280
RemoteObject (Java class), 218
RemoteTech (Java class), 301
RemoteTech (module), 417, 536
remove() (Alarm method), 414, 534
remove() (Button method), 425, 544
remove() (Canvas method), 421, 540
remove() (InputField method), 426, 545
remove() (Java method), 218, 280, 290, 291, 299, 305,

306, 308, 309

remove() (Line method), 404, 524
remove() (Node method), 394, 514
remove() (Panel method), 422, 541
remove() (Polygon method), 405, 524
remove() (Stream method), 432
remove() (Text method), 406, 423, 525, 543
remove_nodes() (Control method), 344, 463
remove_stream() (in module KRPC), 313, 432
removeNodes() (Java method), 242
removeStream(int) (Java method), 218
repeat (Alarm attribute), 414, 533
repeat_period (Alarm attribute), 414, 533
rerunnable (Experiment attribute), 370, 489
reset() (Experiment method), 370, 489
reset() (Java method), 260
reset_field() (Module method), 358, 477
resetField(String) (Java method), 252
Resource (class in SpaceCenter), 391, 510
Resource (Java class), 277
resource_converter (Part attribute), 355, 474
resource_converters (Parts attribute), 348, 467
resource_harvester (Part attribute), 355, 474
resource_harvesters (Parts attribute), 348, 467
ResourceConverter (class in SpaceCenter), 377, 496
ResourceConverter (Java class), 265
ResourceConverterState (class in SpaceCenter), 378, 497
ResourceConverterState (Java enum), 266
ResourceConverterState.capacity (in module SpaceCen-

ter), 378, 497
ResourceConverterState.idle (in module SpaceCenter),

378, 497
ResourceConverterState.missing_resource (in module

SpaceCenter), 378, 497
ResourceConverterState.running (in module SpaceCen-

ter), 378, 497
ResourceConverterState.storage_full (in module Space-

Center), 378, 497
ResourceConverterState.unknown (in module SpaceCen-

ter), 378, 497
ResourceFlowMode (class in SpaceCenter), 392, 512
ResourceFlowMode (Java enum), 278
ResourceFlowMode.adjacent (in module SpaceCenter),

393, 512
ResourceFlowMode.none (in module SpaceCenter), 393,

512
ResourceFlowMode.stage (in module SpaceCenter), 392,

512
ResourceFlowMode.vessel (in module SpaceCenter),

392, 512
ResourceHarvester (class in SpaceCenter), 378, 497
ResourceHarvester (Java class), 266
ResourceHarvesterState (class in SpaceCenter), 379, 498
ResourceHarvesterState (Java enum), 266

Index 613

kRPC, Release 0.3.5

ResourceHarvesterState.active (in module SpaceCenter),
379, 498

ResourceHarvesterState.deployed (in module SpaceCen-
ter), 379, 498

ResourceHarvesterState.deploying (in module SpaceCen-
ter), 379, 498

ResourceHarvesterState.retracted (in module SpaceCen-
ter), 379, 498

ResourceHarvesterState.retracting (in module SpaceCen-
ter), 379, 498

Resources (class in SpaceCenter), 389, 509
Resources (Java class), 276
resources (Part attribute), 352, 471
resources (Vessel attribute), 319, 438
resources_in_decouple_stage() (Vessel method), 320, 439
resourcesInDecoupleStage(int, boolean) (Java method),

224
ResourceTransfer (class in SpaceCenter), 391, 511
ResourceTransfer (Java class), 278
RETRACTED (Java field), 262, 264, 267, 269
RETRACTING (Java field), 262–264, 267, 269
retrograde (Flight attribute), 334, 453
RETROGRADE (Java field), 242
reverse_key (ServoGroup attribute), 408, 527
right (Control attribute), 343, 461
RIGHT (Java field), 307
right_enabled (RCS attribute), 381, 500
roll (Control attribute), 342, 461
roll (Flight attribute), 334, 453
roll_enabled (ControlSurface attribute), 361, 480
roll_enabled (RCS attribute), 380, 499
roll_error (AutoPilot attribute), 397, 516
roll_pid_gains (AutoPilot attribute), 399, 519
roll_threshold (AutoPilot attribute), 398, 517
root (Parts attribute), 345, 464
rotation (Flight attribute), 333, 452
rotation (RectTransform attribute), 427, 546
rotation (Text attribute), 405, 525
rotation() (CelestialBody method), 332, 450
rotation() (DockingPort method), 363, 482
rotation() (Part method), 356, 475
rotation() (Vessel method), 325, 445
rotation(ReferenceFrame) (Java method), 230, 234, 250,

255
rotational_period (CelestialBody attribute), 328, 447
rotational_speed (CelestialBody attribute), 328, 447
ROVER (Java field), 230
run() (Experiment method), 370, 489
run() (Java method), 260
RUNNING (Java field), 266

S
sas (AutoPilot attribute), 397, 517
sas (Control attribute), 341, 460

sas_mode (AutoPilot attribute), 398, 517
sas_mode (Control attribute), 341, 460
SASMode (class in SpaceCenter), 344, 463
SASMode (Java enum), 242
SASMode.anti_normal (in module SpaceCenter), 344,

463
SASMode.anti_radial (in module SpaceCenter), 344, 463
SASMode.anti_target (in module SpaceCenter), 344, 463
SASMode.maneuver (in module SpaceCenter), 344, 463
SASMode.normal (in module SpaceCenter), 344, 463
SASMode.prograde (in module SpaceCenter), 344, 463
SASMode.radial (in module SpaceCenter), 344, 463
SASMode.retrograde (in module SpaceCenter), 344, 463
SASMode.stability_assist (in module SpaceCenter), 344,

463
SASMode.target (in module SpaceCenter), 344, 463
satellites (CelestialBody attribute), 328, 447
save() (in module SpaceCenter), 315, 434
save(String) (Java method), 220
scale (RectTransform attribute), 427, 546
science_value (ScienceData attribute), 371, 490
ScienceData (class in SpaceCenter), 371, 490
ScienceData (Java class), 260
SEMI_DEPLOYED (Java field), 264
semi_major_axis (Orbit attribute), 339, 457
semi_minor_axis (Orbit attribute), 339, 458
Sensor (class in SpaceCenter), 382, 501
Sensor (Java class), 269
sensor (Part attribute), 355, 474
sensors (Parts attribute), 349, 467
Servo (class in InfernalRobotics), 409, 529
Servo (Java class), 294
servo_group_with_name() (in module InfernalRobotics),

407, 527
servo_groups() (in module InfernalRobotics), 407, 526
servo_with_name() (in module InfernalRobotics), 407,

527
servo_with_name() (ServoGroup method), 409, 528
ServoGroup (class in InfernalRobotics), 408, 527
ServoGroup (Java class), 293
servoGroups(SpaceCenter.Vessel) (Java method), 292
servoGroupWithName(SpaceCenter.Vessel, String) (Java

method), 292
servos (ServoGroup attribute), 408, 528
servoWithName(SpaceCenter.Vessel, String) (Java

method), 293
servoWithName(String) (Java method), 293
set_action() (Module method), 359, 478
set_action_group() (Control method), 343, 462
set_field_float() (Module method), 358, 477
set_field_int() (Module method), 358, 477
set_field_string() (Module method), 358, 477
setAbort(boolean) (Java method), 240
setAcceleration(float) (Java method), 295

614 Index

kRPC, Release 0.3.5

setAction(AlarmAction) (Java method), 297
setAction(String, boolean) (Java method), 252
setActionGroup(int, boolean) (Java method), 241
setActive(boolean) (Java method), 257, 263, 266, 267,

269
setActiveVessel(Vessel) (Java method), 219
setAlignment(TextAnchor) (Java method), 306
setAlignment(UI.TextAlignment) (Java method), 292
setAnchor(org.javatuples.Pair) (Java method), 310
setAnchor(UI.TextAnchor) (Java method), 292
setAnchorMax(org.javatuples.Pair) (Java method), 310
setAnchorMin(org.javatuples.Pair) (Java method), 310
setAttenuationAngle(org.javatuples.Triplet) (Java

method), 283
setAutoModeSwitch(boolean) (Java method), 259
setAutoTune(boolean) (Java method), 284
setBrakes(boolean) (Java method), 240
setChanged(boolean) (Java method), 309
setCharacterSize(float) (Java method), 291
setClicked(boolean) (Java method), 308
setColor(org.javatuples.Triplet) (Java method), 263, 289,

290, 292, 306
setContent(String) (Java method), 291, 306
setControlling(Part) (Java method), 243
setCurrentSpeed(float) (Java method), 295
setDecelerationTime(org.javatuples.Triplet) (Java

method), 283
setDeltaV(float) (Java method), 279
setDeployAltitude(float) (Java method), 263
setDeployed(boolean) (Java method), 254, 262, 264, 266,

269
setDeployMinPressure(float) (Java method), 264
setDistance(float) (Java method), 286
setEnabled(boolean) (Java method), 267, 277, 278
setEnd(org.javatuples.Triplet) (Java method), 289
setExpanded(boolean) (Java method), 293
setFieldFloat(String, float) (Java method), 251
setFieldInt(String, int) (Java method), 251
setFieldString(String, String) (Java method), 252
setFocussedBody(CelestialBody) (Java method), 286
setFocussedNode(Node) (Java method), 287
setFocussedVessel(Vessel) (Java method), 286
setFont(String) (Java method), 291, 306
setForward(float) (Java method), 241
setForwardEnabled(boolean) (Java method), 268
setForwardKey(String) (Java method), 293
setGear(boolean) (Java method), 240
setGimbalLimit(float) (Java method), 259
setGimbalLocked(boolean) (Java method), 259
setHeading(float) (Java method), 286
setHighlight(boolean) (Java method), 294
setInverted(boolean) (Java method), 254
setIsAxisInverted(boolean) (Java method), 295
setIsLocked(boolean) (Java method), 295

setLights(boolean) (Java method), 240
setLineSpacing(float) (Java method), 292, 306
setLocalPosition(org.javatuples.Triplet) (Java method),

309
setLowerLeft(org.javatuples.Pair) (Java method), 309
setMargin(double) (Java method), 298
setMaterial(String) (Java method), 289, 290, 292
setMaxPosition(float) (Java method), 295
setMinPosition(float) (Java method), 295
setMode(CameraMode) (Java method), 286
setMode(String) (Java method), 259
setName(String) (Java method), 223, 255, 293, 294, 298
setNormal(float) (Java method), 279
setNotes(String) (Java method), 298
setOpen(boolean) (Java method), 253, 261
setOvershoot(org.javatuples.Triplet) (Java method), 284
setPhysicsWarpFactor(int) (Java method), 221
setPitch(float) (Java method), 240, 286
setPitchEnabled(boolean) (Java method), 254, 268
setPitchPIDGains(org.javatuples.Triplet) (Java method),

284
setPivot(org.javatuples.Pair) (Java method), 310
setPosition(org.javatuples.Pair) (Java method), 309
setPosition(org.javatuples.Triplet) (Java method), 291
setPrograde(float) (Java method), 279
setRadial(float) (Java method), 279
setRailsWarpFactor(int) (Java method), 221
setRCS(boolean) (Java method), 240
setReferenceFrame(ReferenceFrame) (Java method), 282
setReferenceFrame(SpaceCenter.ReferenceFrame) (Java

method), 289–291
setRepeat(boolean) (Java method), 298
setRepeatPeriod(double) (Java method), 298
setReverseKey(String) (Java method), 293
setRight(float) (Java method), 241
setRightEnabled(boolean) (Java method), 268
setRoll(float) (Java method), 241
setRollEnabled(boolean) (Java method), 254, 268
setRollPIDGains(org.javatuples.Triplet) (Java method),

284
setRollThreshold(double) (Java method), 283
setRotation(org.javatuples.Quartet) (Java method), 291,

310
setSAS(boolean) (Java method), 240, 283
setSASMode(SASMode) (Java method), 240, 283
setScale(org.javatuples.Triplet) (Java method), 310
setShielded(boolean) (Java method), 255
setSize(int) (Java method), 291, 306
setSize(org.javatuples.Pair) (Java method), 309
setSpeed(float) (Java method), 293, 295
setSpeedMode(SpeedMode) (Java method), 240
setStart(org.javatuples.Triplet) (Java method), 289
setStoppingTime(org.javatuples.Triplet) (Java method),

283

Index 615

kRPC, Release 0.3.5

setStyle(FontStyle) (Java method), 306
setStyle(UI.FontStyle) (Java method), 291
setTarget(Target) (Java method), 302
setTargetBody(CelestialBody) (Java method), 219
setTargetBody(SpaceCenter.CelestialBody) (Java

method), 302
setTargetDirection(org.javatuples.Triplet) (Java method),

282
setTargetDockingPort(DockingPort) (Java method), 219
setTargetGroundStation(String) (Java method), 302
setTargetHeading(float) (Java method), 282
setTargetPitch(float) (Java method), 282
setTargetRoll(float) (Java method), 282
setTargetVessel(SpaceCenter.Vessel) (Java method), 302
setTargetVessel(Vessel) (Java method), 219
setThickness(float) (Java method), 289, 290
setThrottle(float) (Java method), 240
setThrustLimit(float) (Java method), 258
setTime(double) (Java method), 298
setTimeToPeak(org.javatuples.Triplet) (Java method),

284
setType(VesselType) (Java method), 223
setUp(float) (Java method), 241
setUpEnabled(boolean) (Java method), 268
setUpperRight(org.javatuples.Pair) (Java method), 309
setUT(double) (Java method), 280
setValue(String) (Java method), 308
setVertices(java.util.List) (Java method), 290
setVessel(SpaceCenter.Vessel) (Java method), 298
setVisible(boolean) (Java method), 289–291, 304–306,

308
setWheelSteering(float) (Java method), 241
setWheelThrottle(float) (Java method), 241
setXferOriginBody(SpaceCenter.CelestialBody) (Java

method), 298
setXferTargetBody(SpaceCenter.CelestialBody) (Java

method), 298
setYaw(float) (Java method), 241
setYawEnabled(boolean) (Java method), 254, 268
setYawPIDGains(org.javatuples.Triplet) (Java method),

285
shielded (DockingPort attribute), 363, 482
SHIELDED (Java field), 257
shielded (Part attribute), 351, 470
SHIP (Java field), 230
sideslip_angle (Flight attribute), 336, 455
signal_delay (Comms attribute), 418, 537
signal_delay_to_ground_station (Comms attribute), 418,

537
signal_delay_to_vessel() (Comms method), 418, 537
signalDelayToVessel(SpaceCenter.Vessel) (Java method),

302
situation (Vessel attribute), 319, 438
size (RectTransform attribute), 426, 545

size (Text attribute), 406, 423, 525, 542
skin_temperature (Part attribute), 351, 470
SOI_CHANGE (Java field), 300
SOI_CHANGE_AUTO (Java field), 300
solar_panel (Part attribute), 355, 474
solar_panels (Parts attribute), 349, 468
SolarPanel (class in SpaceCenter), 383, 502
SolarPanel (Java class), 269
SolarPanelState (class in SpaceCenter), 383, 502
SolarPanelState (Java enum), 269
SolarPanelState.broken (in module SpaceCenter), 383,

502
SolarPanelState.extended (in module SpaceCenter), 383,

502
SolarPanelState.extending (in module SpaceCenter), 383,

502
SolarPanelState.retracted (in module SpaceCenter), 383,

502
SolarPanelState.retracting (in module SpaceCenter), 383,

502
SPACE_CENTER (Java field), 219
SpaceCenter (Java class), 219
SpaceCenter (module), 314, 433
specific_impulse (Engine attribute), 366, 485
specific_impulse (RCS attribute), 381, 500
specific_impulse (Vessel attribute), 321, 440
speed (Flight attribute), 333, 452
speed (Intake attribute), 372, 491
speed (Orbit attribute), 339, 458
speed (Servo attribute), 410, 530
speed (ServoGroup attribute), 408, 528
speed_mode (Control attribute), 341, 460
speed_of_sound (Flight attribute), 336, 454
SpeedMode (class in SpaceCenter), 344, 463
SpeedMode (Java enum), 242
SpeedMode.orbit (in module SpaceCenter), 344, 463
SpeedMode.surface (in module SpaceCenter), 344, 463
SpeedMode.target (in module SpaceCenter), 344, 463
sphere_of_influence (CelestialBody attribute), 330, 449
SPLASHED (Java field), 231
STABILITY_ASSIST (Java field), 242
STAGE (Java field), 278
stage (Part attribute), 350, 469
stall_fraction (Flight attribute), 337, 456
start (Line attribute), 404, 523
start() (ResourceConverter method), 377, 496
start() (ResourceTransfer static method), 391, 511
start(int) (Java method), 265
start(Part, Part, String, float) (Java method), 278
state (CargoBay attribute), 360, 479
state (DockingPort attribute), 362, 481
state (LandingGear attribute), 372, 491
state (LandingLeg attribute), 373, 492
state (Parachute attribute), 375, 494

616 Index

kRPC, Release 0.3.5

state (Radiator attribute), 376, 495
state (ResourceHarvester attribute), 378, 497
state (SolarPanel attribute), 383, 502
state() (ResourceConverter method), 377, 496
state(int) (Java method), 265
static_air_temperature (Flight attribute), 337, 455
static_pressure (Flight attribute), 335, 454
STATION (Java field), 230
status_info() (ResourceConverter method), 377, 496
statusInfo(int) (Java method), 265
stock_canvas (in module UI), 419, 539
stop() (Java method), 294, 296
stop() (ResourceConverter method), 377, 496
stop() (Servo method), 411, 531
stop() (ServoGroup method), 409, 528
stop(int) (Java method), 265
stopping_time (AutoPilot attribute), 398, 517
STORAGE_FULL (Java field), 266
STOWED (Java field), 264
Stream (class in krpc.stream), 432
Stream (Java class), 218
stream() (Client method), 431
style (Text attribute), 406, 423, 526, 542
SUB_ORBITAL (Java field), 231
sun_exposure (SolarPanel attribute), 383, 502
SURFACE (Java field), 242
surface_altitude (Flight attribute), 332, 451
surface_area (ControlSurface attribute), 361, 480
surface_gravity (CelestialBody attribute), 328, 447
surface_height() (CelestialBody method), 329, 448
surface_position() (CelestialBody method), 329, 448
surface_reference_frame (Vessel attribute), 323, 442
surface_velocity_reference_frame (Vessel attribute), 325,

442
surfaceHeight(double, double) (Java method), 231
surfacePosition(double, double, ReferenceFrame) (Java

method), 232

T
target (Antenna attribute), 418, 538
Target (class in RemoteTech), 419, 538
Target (Java enum), 303
TARGET (Java field), 242
Target.active_vessel (in module RemoteTech), 419, 538
Target.celestial_body (in module RemoteTech), 419, 538
Target.ground_station (in module RemoteTech), 419, 538
Target.none (in module RemoteTech), 419, 538
Target.vessel (in module RemoteTech), 419, 538
target_body (Antenna attribute), 419, 538
target_body (in module SpaceCenter), 314, 433
target_direction (AutoPilot attribute), 397, 517
target_docking_port (in module SpaceCenter), 314, 433
target_ground_station (Antenna attribute), 419, 538
target_heading (AutoPilot attribute), 397, 516

target_pitch (AutoPilot attribute), 397, 516
target_pitch_and_heading() (AutoPilot method), 397, 517
target_roll (AutoPilot attribute), 397, 516
target_vessel (Antenna attribute), 419, 538
target_vessel (in module SpaceCenter), 314, 433
targetPitchAndHeading(float, float) (Java method), 282
temperature (Part attribute), 351, 470
terminal_velocity (Flight attribute), 336, 455
text (Button attribute), 425, 544
Text (class in Drawing), 405, 525
Text (class in UI), 422, 541
text (InputField attribute), 425, 545
Text (Java class), 290, 306
TextAlignment (class in UI), 424, 543
TextAlignment (Java enum), 307
TextAlignment.center (in module UI), 424, 543
TextAlignment.left (in module UI), 424, 543
TextAlignment.right (in module UI), 424, 543
TextAnchor (class in UI), 424, 543
TextAnchor (Java enum), 307
TextAnchor.lower_center (in module UI), 424, 543
TextAnchor.lower_left (in module UI), 424, 543
TextAnchor.lower_right (in module UI), 424, 543
TextAnchor.middle_center (in module UI), 424, 543
TextAnchor.middle_left (in module UI), 424, 543
TextAnchor.middle_right (in module UI), 424, 543
TextAnchor.upper_center (in module UI), 424, 543
TextAnchor.upper_left (in module UI), 424, 543
TextAnchor.upper_right (in module UI), 424, 543
thermal_conduction_flux (Part attribute), 352, 471
thermal_convection_flux (Part attribute), 352, 471
thermal_efficiency (ResourceHarvester attribute), 379,

498
thermal_internal_flux (Part attribute), 352, 471
thermal_mass (Part attribute), 351, 470
thermal_radiation_flux (Part attribute), 352, 471
thermal_resource_mass (Part attribute), 352, 471
thermal_skin_mass (Part attribute), 351, 470
thermal_skin_to_internal_flux (Part attribute), 352, 471
thickness (Line attribute), 404, 524
thickness (Polygon attribute), 405, 524
throttle (Control attribute), 342, 461
throttle (Engine attribute), 367, 486
throttle_locked (Engine attribute), 367, 486
thrust (Engine attribute), 365, 484
thrust (Vessel attribute), 320, 439
thrust_direction() (Thruster method), 384, 503
thrust_limit (Engine attribute), 366, 485
thrust_position() (Thruster method), 384, 503
thrust_reference_frame (Thruster attribute), 384, 503
thrust_specific_fuel_consumption (Flight attribute), 337,

456
thrustDirection(ReferenceFrame) (Java method), 270
Thruster (class in SpaceCenter), 384, 502

Index 617

kRPC, Release 0.3.5

Thruster (Java class), 270
thrusters (Engine attribute), 366, 485
thrusters (RCS attribute), 381, 500
thrustPosition(ReferenceFrame) (Java method), 270
time (Alarm attribute), 413, 533
time_to (Node attribute), 394, 514
time_to_apoapsis (Orbit attribute), 339, 458
time_to_peak (AutoPilot attribute), 399, 518
time_to_periapsis (Orbit attribute), 339, 458
time_to_soi_change (Orbit attribute), 340, 459
title (Part attribute), 349, 468
toggle_action_group() (Control method), 343, 462
toggle_mode() (Engine method), 368, 487
toggleActionGroup(int) (Java method), 241
toggleMode() (Java method), 259
TOP_CENTER (Java field), 304
TOP_LEFT (Java field), 304
TOP_RIGHT (Java field), 304
total_air_temperature (Flight attribute), 336, 455
total_resource_available (Propellant attribute), 369, 488
total_resource_capacity (Propellant attribute), 369, 488
TRACKING_STATION (Java field), 219
TRANSFER (Java field), 300
TRANSFER_MODELLED (Java field), 300
transform_direction() (in module SpaceCenter), 317, 436
transform_position() (in module SpaceCenter), 317, 436
transform_rotation() (in module SpaceCenter), 317, 436
transform_velocity() (in module SpaceCenter), 318, 437
transformDirection(org.javatuples.Triplet, Reference-

Frame, ReferenceFrame) (Java method),
222

transformPosition(org.javatuples.Triplet, Reference-
Frame, ReferenceFrame) (Java method),
222

transformRotation(org.javatuples.Quartet, Reference-
Frame, ReferenceFrame) (Java method),
222

transformVelocity(org.javatuples.Triplet,
org.javatuples.Triplet, ReferenceFrame,
ReferenceFrame) (Java method), 222

transmit() (Experiment method), 370, 489
transmit() (Java method), 260
transmit_value (ScienceData attribute), 371, 490
trigger_event() (Module method), 359, 478
triggerEvent(String) (Java method), 252
type (Alarm attribute), 413, 533
type (Vessel attribute), 318, 437

U
UI (Java class), 303
UI (module), 419, 539
undock() (DockingPort method), 363, 482
undock() (Java method), 255
UNDOCKING (Java field), 256

UNKNOWN (Java field), 266
up (Control attribute), 342, 461
up_enabled (RCS attribute), 381, 500
UPPER_CENTER (Java field), 307
UPPER_LEFT (Java field), 307
UPPER_RIGHT (Java field), 307
upper_right (RectTransform attribute), 426, 546
ut (in module SpaceCenter), 315, 435
ut (Node attribute), 394, 513

V
vacuum_specific_impulse (Engine attribute), 366, 485
vacuum_specific_impulse (RCS attribute), 381, 500
vacuum_specific_impulse (Vessel attribute), 321, 440
value (InputField attribute), 425, 544
value (Sensor attribute), 382, 501
Vector3 (class in SpaceCenter), 400, 519
velocity (Flight attribute), 333, 452
velocity() (CelestialBody method), 331, 450
velocity() (Part method), 356, 475
velocity() (Vessel method), 325, 445
velocity(ReferenceFrame) (Java method), 228, 234, 250
vertical_speed (Flight attribute), 333, 452
vertices (Polygon attribute), 404, 524
vessel (Alarm attribute), 414, 533
Vessel (class in SpaceCenter), 318, 437
vessel (Comms attribute), 417, 536
Vessel (Java class), 223
VESSEL (Java field), 278, 303
vessel (Part attribute), 349, 468
vessels (in module SpaceCenter), 314, 433
VesselSituation (class in SpaceCenter), 327, 446
VesselSituation (Java enum), 230
VesselSituation.docked (in module SpaceCenter), 327,

446
VesselSituation.escaping (in module SpaceCenter), 327,

446
VesselSituation.flying (in module SpaceCenter), 327, 446
VesselSituation.landed (in module SpaceCenter), 327,

446
VesselSituation.orbiting (in module SpaceCenter), 327,

446
VesselSituation.pre_launch (in module SpaceCenter),

327, 446
VesselSituation.splashed (in module SpaceCenter), 328,

446
VesselSituation.sub_orbital (in module SpaceCenter),

328, 446
VesselType (class in SpaceCenter), 327, 446
VesselType (Java enum), 230
VesselType.base (in module SpaceCenter), 327, 446
VesselType.debris (in module SpaceCenter), 327, 446
VesselType.lander (in module SpaceCenter), 327, 446
VesselType.probe (in module SpaceCenter), 327, 446

618 Index

kRPC, Release 0.3.5

VesselType.rover (in module SpaceCenter), 327, 446
VesselType.ship (in module SpaceCenter), 327, 446
VesselType.station (in module SpaceCenter), 327, 446
visible (Button attribute), 425, 544
visible (Canvas attribute), 421, 540
visible (InputField attribute), 425, 544
visible (Line attribute), 404, 523
visible (Panel attribute), 422, 541
visible (Polygon attribute), 405, 524
visible (Text attribute), 406, 422, 525, 542

W
wait() (AutoPilot method), 396, 515
wait() (Java method), 281
warp_factor (in module SpaceCenter), 316, 435
warp_mode (in module SpaceCenter), 316, 435
warp_rate (in module SpaceCenter), 316, 435
warp_to() (in module SpaceCenter), 317, 436
WarpMode (class in SpaceCenter), 318, 437
WarpMode (Java enum), 223
WarpMode.none (in module SpaceCenter), 318, 437
WarpMode.physics (in module SpaceCenter), 318, 437
WarpMode.rails (in module SpaceCenter), 318, 437
warpTo(double, float, float) (Java method), 221
wheel_steering (Control attribute), 343, 462
wheel_throttle (Control attribute), 343, 462
with_module() (Parts method), 346, 465
with_name() (Parts method), 346, 465
with_resource() (Resources method), 390, 509
with_title() (Parts method), 346, 465
withModule(String) (Java method), 244
withName(String) (Java method), 244
withResource(String) (Java method), 276
withTitle(String) (Java method), 244

X
xfer_origin_body (Alarm attribute), 414, 533
xfer_target_body (Alarm attribute), 414, 534

Y
yaw (Control attribute), 342, 461
yaw_enabled (ControlSurface attribute), 361, 480
yaw_enabled (RCS attribute), 380, 499
yaw_pid_gains (AutoPilot attribute), 399, 519

Index 619

	Getting Started
	The Server Plugin
	The Python Client
	`Hello World' Script
	Going further...

	Tutorials and Examples
	Sub-Orbital Flight
	Reference Frames
	Launch into Orbit
	Pitch, Heading and Roll
	Interacting with Parts
	Docking Guidance
	User Interface
	AutoPilot

	C#
	C# Client
	KRPC API
	SpaceCenter API
	Drawing API
	InfernalRobotics API
	Kerbal Alarm Clock API
	RemoteTech API
	User Interface API

	C++
	C++ Client
	KRPC API
	SpaceCenter API
	Drawing API
	InfernalRobotics API
	Kerbal Alarm Clock API
	RemoteTech API
	User Interface API

	Java
	Java Client
	KRPC API
	SpaceCenter API
	Drawing API
	InfernalRobotics API
	Kerbal Alarm Clock API
	RemoteTech API
	User Interface API

	Lua
	Lua Client
	KRPC API
	SpaceCenter API
	Drawing API
	InfernalRobotics API
	Kerbal Alarm Clock API
	RemoteTech API
	User Interface API

	Python
	Python Client
	KRPC API
	SpaceCenter API
	Drawing API
	InfernalRobotics API
	Kerbal Alarm Clock API
	RemoteTech API
	User Interface API

	Other Clients, Services and Scripts
	Clients
	Services
	Scripts/Tools/Libraries etc.

	Compiling kRPC
	Install Dependencies
	Setup your Environment
	Building using Bazel
	Building the C# projects using an IDE

	Extending kRPC
	The kRPC Architecture
	Service API
	Documentation
	Further Examples
	Generating Service Code for Static Clients

	Communication Protocol
	Establishing a Connection
	Remote Procedures
	Protocol Buffer Encoding
	Streams
	KRPC Service
	Service Description Message

	Internals of kRPC
	Server Performance Settings

	Python Module Index
	Lua Module Index
	Index

