
kRPC
Release 0.2.3

April 06, 2016

CONTENTS

1 Getting Started 3
1.1 The Server Plugin . 3
1.2 The Python Client . 4
1.3 ‘Hello World’ Script . 5
1.4 Going further... 6

2 Tutorials and Examples 7
2.1 Sub-Orbital Flight . 7
2.2 Reference Frames . 10
2.3 Launch into Orbit . 18
2.4 Pitch, Heading and Roll . 21
2.5 Interacting with Parts . 22
2.6 Docking Guidance . 23

3 C# 27
3.1 C# Client . 27
3.2 KRPC API . 29
3.3 SpaceCenter API . 30
3.4 InfernalRobotics API . 83
3.5 Kerbal Alarm Clock API . 87

4 C++ 91
4.1 C++ Client . 91
4.2 KRPC API . 95
4.3 SpaceCenter API . 96
4.4 InfernalRobotics API . 151
4.5 Kerbal Alarm Clock API . 156

5 Java 161
5.1 Java Client . 161
5.2 KRPC API . 164
5.3 SpaceCenter API . 165
5.4 InfernalRobotics API . 221
5.5 Kerbal Alarm Clock API . 225

6 Lua 231
6.1 Lua Client . 231
6.2 KRPC API . 233
6.3 SpaceCenter API . 234
6.4 InfernalRobotics API . 305
6.5 Kerbal Alarm Clock API . 310

i

7 Python 315
7.1 Python Client . 315
7.2 KRPC API . 318
7.3 SpaceCenter API . 319
7.4 InfernalRobotics API . 390
7.5 Kerbal Alarm Clock API . 395

8 Other Clients, Services and Scripts 401
8.1 Clients . 401
8.2 Services . 401
8.3 Scripts/Tools/Libraries etc. 401

9 Compiling kRPC 403
9.1 Install Dependencies . 403
9.2 Setup your Environment . 403
9.3 Building using Bazel . 403
9.4 Building the C# projects using an IDE . 404

10 Extending kRPC 407
10.1 The kRPC Architecture . 407
10.2 Service API . 407
10.3 Documentation . 413
10.4 Further Examples . 413
10.5 Generating Service Code for Static Clients . 414

11 Communication Protocol 417
11.1 Establishing a Connection . 417
11.2 Remote Procedures . 418
11.3 Protocol Buffer Encoding . 421
11.4 Streams . 421
11.5 KRPC Service . 422
11.6 Service Description Message . 423

12 Internals of kRPC 427
12.1 Server Performance Settings . 427

Python Module Index 429

Lua Module Index 431

Index 433

ii

kRPC, Release 0.2.3

kRPC allows you to control Kerbal Space Program from scripts running outside of the game. It comes with client
libraries for many popular languages including C#, C++, Java, Lua and Python.

• Getting Started Guide

• Tutorials and Examples

• Clients, services and tools made by others

The mod exposes most of KSPs API and includes support for Kerbal Alarm Clock and Infernal Robotics. This
functionality is provided to client programs via a Remote Procedure Call server, using protocol buffers for serialization.
The server component sets up a TCP/IP server that remote scripts can connect to. This communication could be on
the local machine only, over a local network, or even over the wider internet if configured correctly. The server is
also extensible. Additional remote procedures (grouped into “services”) can be added to the server using the “Service
API”.

CONTENTS 1

kRPC, Release 0.2.3

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

This short guide explains the basics for getting the kRPC server set up and running, and writing a basic Python script
to interact with the game.

1.1 The Server Plugin

1.1.1 Installation

1. Download and install the kRPC server plugin from one of these locations:

• Github

• SpaceDock

• Curse

• Or the install it using CKAN

2. Start up KSP and load a save game.

3. You should be greeted by the server window:

4. Click “Start server” to, erm... start the server! If all goes well, the light should turn a happy green color:

3

https://github.com/krpc/krpc/releases/download/v0.2.3/krpc-0.2.3.zip
http://spacedock.info/mod/69/kRPC
http://www.curse.com/project/220219
http://forum.kerbalspaceprogram.com/threads/100067

kRPC, Release 0.2.3

5. You can hide the window by clicking the close button in the top right. The window can also be shown/hidden
by clicking on the icon in the top right:

This icon will also turn green when the server is online.

1.1.2 Configuration

The server is configured using the window displayed in-game:

1. Address: this is the IP address that the server will listen on. To only allow connections from the local machine,
select ‘localhost’ (the default). To allow connections over a network, either select the local IP address of your
machine, or choose ‘Manual’ and enter the local IP address manually.

2. RPC and Stream port numbers: These need to be set to port numbers that are available on your machine. In
most cases, they can just be left as the default.

There are also several advanced settings, which are hidden by default, but can be revealed by checking the ‘Advanced
settings’ box:

1. Auto-start server: When enabled, the server will start automatically when the game loads.

2. Auto-accept new clients: When enabled, new client connections are automatically allowed. When disabled, a
pop-up is displayed asking whether the new client connection should be allowed.

The other advanced settings control the performance of the server.

1.2 The Python Client

Note: kRPC supports both Python 2.7 and Python 3.x.

4 Chapter 1. Getting Started

kRPC, Release 0.2.3

1.2.1 On Windows

1. If you don’t already have python installed, download the python installer and run it:
https://www.python.org/downloads/windows When running the installer, make sure that pip is installed
as well.

2. Install the kRPC python module, by opening command prompt and running the following command:
C:\Python27\Scripts\pip.exe install krpc You might need to replace C:\Python27 with
the location of your python installation.

3. Run Python IDLE (or your favorite editor) and start coding!

1.2.2 On Linux

1. Your linux distribution likely already comes with python installed. If not, install python using your favorite
package manager, or get it from here: https://www.python.org/downloads

2. You also need to install pip, either using your package manager, or from here: https://pypi.python.org/pypi/pip

3. Install the kRPC python module by running the following from a terminal: sudo pip install krpc

4. Start coding!

1.3 ‘Hello World’ Script

Run KSP and start the server with the default settings. Then run the following python script:

1 import krpc
2 conn = krpc.connect(name='Hello World')
3 vessel = conn.space_center.active_vessel
4 print(vessel.name)

This does the following: line 1 loads the kRPC python module, line 2 opens a new connection to the server, line 3 gets
the active vessel and line 4 prints out the name of the vessel. You should see something like the following:

1.3. ‘Hello World’ Script 5

https://www.python.org/downloads/windows
https://www.python.org/downloads
https://pypi.python.org/pypi/pip

kRPC, Release 0.2.3

Congratulations! You’ve written your first script that communicates with KSP.

1.4 Going further...

• For some more interesting examples of what you can do with kRPC, check out the tutorials.

• Client libraries are available for other languages too, including C#, C++, Java and Lua.

• It is also possible to communicate with the server manually from any language you like – as long as it can do
network I/O.

6 Chapter 1. Getting Started

CHAPTER

TWO

TUTORIALS AND EXAMPLES

This collection of tutorials and example scripts explain how to use the features of kRPC. They are written for the
Python client, although the concepts apply to all of the client languages.

2.1 Sub-Orbital Flight

This introductory tutorial uses kRPC to send some Kerbals on a sub-orbital flight, and (hopefully) returns them safely
back to Kerbin. It covers the following topics:

• Controlling a rocket (activating stages, setting the throttle)

• Using the auto pilot to point the vessel in a specific direction

• Tracking the amount of resources in the vessel

• Tracking flight and orbital data (such as altitude and apoapsis altitude)

Note: For details on how to write scripts and connect to kRPC, see the Getting Started guide.

2.1.1 Part One: Preparing for Launch

This tutorial uses the two stage rocket pictured below. The craft file for this rocket can be downloaded here and
the entire python script for this tutorial from here

7

kRPC, Release 0.2.3

The first thing we need to do is load the python client module and open a connection to the server. We can also pass a
descriptive name for our script that will appear in the server window in game:

import krpc
conn = krpc.connect(name='Sub-orbital flight script')

Next we need to get an object representing the active vessel. It’s via this object that we will send instructions to the
rocket:

vessel = conn.space_center.active_vessel

We then need to prepare the rocket for launch. The following code sets the throttle to maximum and instructs the
auto-pilot to hold a pitch and heading of 90° (vertically upwards). It then waits for 1 second for these settings to take
effect.

vessel.auto_pilot.target_pitch_and_heading(90,90)
vessel.auto_pilot.engage()
vessel.control.throttle = 1
import time
time.sleep(1)

8 Chapter 2. Tutorials and Examples

kRPC, Release 0.2.3

2.1.2 Part Two: Lift-off!

We’re now ready to launch by activating the first stage (equivalent to pressing the space bar):

print('Launch!')
vessel.control.activate_next_stage()

The rocket has a solid fuel stage that will quickly run out, and will need to be jettisoned. We can monitor the amount
of solid fuel in the rocket using a while loop that repeatedly checks how much solid fuel there is left in the rocket.
When the loop exits, we will activate the next stage to jettison the boosters:

while vessel.resources.amount('SolidFuel') > 0.1:
time.sleep(1)

print('Booster separation')
vessel.control.activate_next_stage()

In this bit of code, vessel.resources returns a Resources object that is used to get information about the
resources in the rocket.

2.1.3 Part Three: Reaching Apoapsis

Next we will execute a gravity turn when the rocket reaches a sufficiently high altitude. The following loop repeatedly
checks the altitude and exits when the rocket reaches 10km:

while vessel.flight().mean_altitude < 10000:
time.sleep(1)

In this bit of code, calling vessel.flight() returns a Flight object that is used to get all sorts of information
about the rocket, such as the direction it is pointing in and its velocity.

Now we need to angle the rocket over to a pitch of 60° and maintain a heading of 90° (west). To do this, we simply
reconfigure the auto-pilot:

print('Gravity turn')
vessel.auto_pilot.target_pitch_and_heading(60,90)

Now we wait until the apoapsis reaches 100km, then reduce the throttle to zero, jettison the launch stage and turn off
the auto-pilot:

while vessel.orbit.apoapsis_altitude < 100000:
time.sleep(1)

print('Launch stage separation')
vessel.control.throttle = 0
time.sleep(1)
vessel.control.activate_next_stage()
vessel.auto_pilot.disengage()

In this bit of code, vessel.orbit returns an Orbit object that contains all the information about the orbit of the
rocket.

2.1.4 Part Four: Returning Safely to Kerbin

Our Kerbals are now heading on a sub-orbital trajectory and are on a collision course with the surface. All that remains
to do is wait until they fall to 1km altitude above the surface, and then deploy the parachutes. If you like, you can use
time acceleration to skip ahead to just before this happens - the script will continue to work.

2.1. Sub-Orbital Flight 9

kRPC, Release 0.2.3

while vessel.flight().surface_altitude > 1000:
time.sleep(1)

vessel.control.activate_next_stage()

The parachutes should have now been deployed. The next bit of code will repeatedly print out the altitude of the
capsule until its speed reaches zero – which will happen when it lands:

while vessel.flight(vessel.orbit.body.reference_frame).vertical_speed < -0.1:
print('Altitude = %.1f meters' % vessel.flight().surface_altitude)
time.sleep(1)

print('Landed!')

This bit of code uses the vessel.flight() function, as before, but this time it is passed a ReferenceFrame
parameter. We want to get the vertical speed of the capsule relative to the surface of Kerbin, so the
values returned by the flight object need to be relative to the surface of Kerbin. We therefore pass
vessel.orbit.body.reference_frame to vessel.flight() as this reference frame has its origin at
the center of Kerbin and it rotates with the planet. For more information, check out the tutorial on Reference Frames.

Your Kerbals should now have safely landed back on the surface.

2.2 Reference Frames

• Introduction
– Origin Position and Axis Orientation

* Celestial Body Reference Frame
* Vessel Orbital Reference Frame
* Vessel Surface Reference Frame

– Linear Velocity and Angular Velocity
• Available Reference Frames
• Converting Between Reference Frames
• Visual Debugging
• Examples

– Navball directions
– Orbital directions
– Surface ‘prograde’
– Orbital speed
– Surface speed
– Angle of attack

2.2.1 Introduction

All of the positions, directions, velocities and rotations in kRPC are relative to something, and reference frames define
what that something is.

A reference frame specifies:

• The position of the origin at (0,0,0),

• the direction of the coordinate axes x, y, and z,

• the linear velocity of the origin (if the reference frame moves)

• and the angular velocity of the coordinate axes (the speed and direction of rotation of the axes).

10 Chapter 2. Tutorials and Examples

kRPC, Release 0.2.3

Note: KSP and kRPC use a left handed coordinate system.

Origin Position and Axis Orientation

The following gives some examples of the position of the origin and the orientation of the coordinate axes for various
reference frames.

Celestial Body Reference Frame

Fig. 2.1: The reference frame for a celestial body, such as
Kerbin. The equator is shown in blue, and the prime meridian
in red. The black arrows show the coordinate axes, and the
origin is at the center of the planet.

The reference frame obtained by calling
CelestialBody.reference_frame for
Kerbin has the following properties:

• The origin is at the center of Kerbin,

• the y-axis points from the center of Kerbin to
the north pole,

• the x-axis points from the center of Kerbin
to the intersection of the prime meridian and
equator (the surface position at 0° longitude,
0° latitude),

• the z-axis points from the center of Kerbin to
the equator at 90°E longitude,

• and the axes rotate with the planet, i.e. the ref-
erence frame has the same rotational/angular
velocity as Kerbin.

This means that the reference frame is fixed relative
to Kerbin – it moves with the center of the planet,
and also rotates with the planet. Therefore, positions
in this reference frame are relative to the center of the
planet. The following code prints out the position of
the active vessel in Kerbin’s reference frame:

1 import krpc
2 conn = krpc.connect()
3 vessel = conn.space_center.active_vessel
4 print(vessel.position(vessel.orbit.body.reference_frame))

For a vessel sat on the launchpad, the magnitude of
this position vector will be roughly 600,000 meters
(equal to the radius of Kerbin). The position vector
will also not change over time, because the vessel is
sat on the surface of Kerbin and the reference frame
also rotates with Kerbin.

Vessel Orbital Reference Frame

2.2. Reference Frames 11

kRPC, Release 0.2.3

Fig. 2.2: The orbital reference frame for a vessel.

Another
ex-
am-
ple is
the or-
bital
ref-
er-
ence
frame
for a
ves-
sel,
ob-
tained
by
call-
ing
Vessel.orbital_reference_frame. This is fixed to the vessel (the origin moves with the vessel) and
is orientated so that the axes point in the orbital prograde/normal/radial directions.

• The origin is at the center of mass of the vessel,

• the y-axis points in the prograde direction of the vessels orbit,

• the x-axis points in the anti-radial direction of the vessels orbit,

• the z-axis points in the normal direction of the vessels orbit,

• and the axes rotate to match any changes to the prograde/normal/radial directions, for example when the pro-
grade direction changes as the vessel continues on its orbit.

Vessel Surface Reference Frame

Fig. 2.3: The reference frame for an aircraft.

Another
ex-
am-
ple
is
Vessel.reference_frame.
As with the previous ex-
ample, it is fixed to the
vessel (the origin moves
with the vessel), however
the orientation of the co-
ordinate axes is different.
They track the orientation
of the vessel:

• The origin is at the
center of mass of the
vessel,

• the y-axis points in
the same direction
that the vessel is pointing,

12 Chapter 2. Tutorials and Examples

kRPC, Release 0.2.3

• the x-axis points out
of the right side of
the vessel,

• the z-axis points
downwards out of
the bottom of the
vessel,

• and the axes rotate
with any changes to
the direction of the
vessel.

Linear Velocity and Angular Velocity

Reference frames move and rotate relative to one another. For example, the reference frames discussed previously all
have their origin position fixed to some object (such as a vessel or a planet). This means that they move and rotate to
track the object, and so have a linear and angular velocity associated with them.

For example, the reference frame obtained by calling CelestialBody.reference_frame for Kerbin is fixed
relative to Kerbin. This means the angular velocity of the reference frame is identical to Kerbin’s angular velocity, and
the linear velocity of the reference frame matches the current orbital velocity of Kerbin.

2.2.2 Available Reference Frames

kRPC provides the following reference frames:

• Vessel.reference_frame

• Vessel.orbital_reference_frame

• Vessel.surface_reference_frame

• Vessel.surface_velocity_reference_frame

• CelestialBody.reference_frame

• CelestialBody.non_rotating_reference_frame

• CelestialBody.orbital_reference_frame

• Node.reference_frame

• Node.orbital_reference_frame

• Part.reference_frame

• DockingPort.reference_frame

2.2.3 Converting Between Reference Frames

kRPC provides utility methods to convert positions, directions, rotations and velocities between the different reference
frames:

• SpaceCenter.transform_position()

• SpaceCenter.transform_direction()

• SpaceCenter.transform_rotation()

2.2. Reference Frames 13

kRPC, Release 0.2.3

• SpaceCenter.transform_velocity()

2.2.4 Visual Debugging

References frames can be confusing, and choosing the correct one is a challenge in itself. To aid debugging, kRPC
provides some methods with which you can draw direction vectors in-game.

SpaceCenter.draw_direction() will draw a direction vector, starting from the center of mass of the active
vessel. For example, the following code draws the direction of the current vessels velocity relative to the surface:

1 import krpc
2 conn = krpc.connect(name='Visual Debugging')
3 vessel = conn.space_center.active_vessel
4

5 ref_frame = vessel.orbit.body.reference_frame
6 velocity = vessel.flight(ref_frame).velocity
7 conn.space_center.draw_direction(velocity, ref_frame, (1,0,0))
8

9 while True:
10 pass

Note: The client must remain connected, otherwise kRPC will stop drawing the directions, hence the while loop at
the end of this example.

2.2.5 Examples

The following examples demonstrate various uses of reference frames.

Navball directions

This example demonstrates how to make the vessel point in various directions on the navball:

1 import krpc
2 conn = krpc.connect(name='Navball directions')
3 vessel = conn.space_center.active_vessel
4 ap = vessel.auto_pilot
5 ap.reference_frame = vessel.surface_reference_frame
6 ap.engage()
7

8 # Point the vessel north on the navball, with a pitch of 0 degrees
9 ap.target_direction = (0,1,0)

10 ap.wait()
11

12 # Point the vessel vertically upwards on the navball
13 ap.target_direction = (1,0,0)
14 ap.wait()
15

16 # Point the vessel west (heading of 270 degrees), with a pitch of 0 degrees
17 ap.target_direction = (0,0,-1)
18 ap.wait()
19

20 ap.disengage()

14 Chapter 2. Tutorials and Examples

kRPC, Release 0.2.3

The code uses the vessel’s surface reference frame (Vessel.surface_reference_frame), pictured below:

Line 9 instructs the auto-pilot to point in direction (0,1,0) (i.e. along the y-axis) in the vessel’s surface reference
frame. The y-axis of the reference frame points in the north direction, as required.

Line 13 instructs the auto-pilot to point in direction (1,0,0) (along the x-axis) in the vessel’s surface reference
frame. This x-axis of the reference frame points upwards (away from the planet) as required.

Line 17 instructs the auto-pilot to point in direction (0,0,-1) (along the negative z axis). The z-axis of the reference
frame points east, so the requested direction points west – as required.

Orbital directions

This example demonstrates how to make the vessel point in the various orbital directions, as seen on the navball when
it is in ‘orbit’ mode. It uses Vessel.orbital_reference_frame.

1 import krpc
2 conn = krpc.connect(name='Orbital directions')
3 vessel = conn.space_center.active_vessel
4 ap = vessel.auto_pilot
5 ap.reference_frame = vessel.orbital_reference_frame
6 ap.engage()
7

8 # Point the vessel in the prograde direction
9 ap.target_direction = (0,1,0)

2.2. Reference Frames 15

kRPC, Release 0.2.3

10 ap.wait()
11

12 # Point the vessel in the orbit normal direction
13 ap.target_direction = (0,0,1)
14 ap.wait()
15

16 # Point the vessel in the orbit radial direction
17 ap.target_direction = (-1,0,0)
18 ap.wait()
19

20 ap.disengage()

This code uses the vessel’s orbital reference frame, pictured below:

Surface ‘prograde’

This example demonstrates how to point the vessel in the ‘prograde’ direction on the navball, when in ‘surface’ mode.
This is the direction of the vessels velocity relative to the surface:

1 import krpc
2 conn = krpc.connect(name='Surface prograde')
3 vessel = conn.space_center.active_vessel
4 ap = vessel.auto_pilot
5

6 ap.reference_frame = vessel.surface_velocity_reference_frame
7 ap.target_direction = (0,1,0)
8 ap.engage()
9 ap.wait()

10 ap.disengage()

This code uses the Vessel.surface_velocity_reference_frame, pictured below:

16 Chapter 2. Tutorials and Examples

kRPC, Release 0.2.3

Orbital speed

To compute the orbital speed of a vessel, you need to get the velocity relative to the planet’s non-rotating reference
frame (CelestialBody.non_rotating_reference_frame). This reference frame is fixed relative to the
body, but does not rotate:

1 import krpc, time
2 conn = krpc.connect(name='Orbital speed')
3 vessel = conn.space_center.active_vessel
4

5 while True:
6

7 velocity = vessel.flight(vessel.orbit.body.non_rotating_reference_frame).velocity
8 print('Orbital velocity = (%.1f, %.1f, %.1f)' % velocity)
9

10 speed = vessel.flight(vessel.orbit.body.non_rotating_reference_frame).speed
11 print('Orbital speed = %.1f m/s' % speed)
12

13 time.sleep(1)

Surface speed

To compute the speed of a vessel relative to the surface of a planet/moon, you need to get the velocity relative to
the planets reference frame (CelestialBody.reference_frame). This reference frame rotates with the body,
therefore the rotational velocity of the body is taken into account when computing the velocity of the vessel:

1 import krpc, time
2 conn = krpc.connect(name='Surface speed')
3 vessel = conn.space_center.active_vessel
4

5 while True:
6

7 velocity = vessel.flight(vessel.orbit.body.reference_frame).velocity
8 print('Surface velocity = (%.1f, %.1f, %.1f)' % velocity)
9

10 speed = vessel.flight(vessel.orbit.body.reference_frame).speed

2.2. Reference Frames 17

kRPC, Release 0.2.3

11 print('Surface speed = %.1f m/s' % speed)
12

13 time.sleep(1)

Angle of attack

This example computes the angle between the direction the vessel is pointing in, and the direction that the vessel is
moving in (relative to the surface):

1 import krpc, math, time
2 conn = krpc.connect(name='Angle of attack')
3 vessel = conn.space_center.active_vessel
4

5 while True:
6

7 d = vessel.direction(vessel.orbit.body.reference_frame)
8 v = vessel.velocity(vessel.orbit.body.reference_frame)
9

10 # Compute the dot product of d and v
11 dotprod = d[0]*v[0] + d[1]*v[1] + d[2]*v[2]
12

13 # Compute the magnitude of v
14 vmag = math.sqrt(v[0]**2 + v[1]**2 + v[2]**2)
15 # Note: don't need to magnitude of d as it is a unit vector
16

17 # Compute the angle between the vectors
18 if dotprod == 0:
19 angle = 0
20 else:
21 angle = abs(math.acos (dotprod / vmag) * (180. / math.pi))
22

23 print('Angle of attack = %.1f' % angle)
24

25 time.sleep(1)

Note that the orientation of the reference frame used to get the direction and velocity vectors (on lines 7 and 8) does
not matter, as the angle between two vectors is the same regardless of the orientation of the axes. However, if we were
to use a reference frame that moves with the vessel, line 8 would return (0,0,0). We therefore need a reference
frame that is not fixed relative to the vessel. CelestialBody.reference_frame fits these requirements.

2.3 Launch into Orbit

This tutorial launches a two-stage rocket into a 150km circular orbit. The craft file for the rocket can be downloaded
here and the entire python script from here.

The following code connects to the server, gets the active vessel, sets up a bunch of streams to get flight telemetry then
prepares the rocket for launch.

import krpc, time, math

turn_start_altitude = 250
turn_end_altitude = 45000
target_altitude = 150000

conn = krpc.connect(name='Launch into orbit')

18 Chapter 2. Tutorials and Examples

kRPC, Release 0.2.3

vessel = conn.space_center.active_vessel

Set up streams for telemetry
ut = conn.add_stream(getattr, conn.space_center, 'ut')
altitude = conn.add_stream(getattr, vessel.flight(), 'mean_altitude')
apoapsis = conn.add_stream(getattr, vessel.orbit, 'apoapsis_altitude')
periapsis = conn.add_stream(getattr, vessel.orbit, 'periapsis_altitude')
eccentricity = conn.add_stream(getattr, vessel.orbit, 'eccentricity')
stage_2_resources = vessel.resources_in_decouple_stage(stage=2, cumulative=False)
stage_3_resources = vessel.resources_in_decouple_stage(stage=3, cumulative=False)
srb_fuel = conn.add_stream(stage_3_resources.amount, 'SolidFuel')
launcher_fuel = conn.add_stream(stage_2_resources.amount, 'LiquidFuel')

Pre-launch setup
vessel.control.sas = False
vessel.control.rcs = False
vessel.control.throttle = 1

Countdown...
print('3...'); time.sleep(1)
print('2...'); time.sleep(1)
print('1...'); time.sleep(1)
print('Launch!')

The next part of the program launches the rocket. The main loop continuously updates the auto-pilot heading to
gradually pitch the rocket towards the horizon. It also monitors the amount of solid fuel remaining in the boosters,
separating them when they run dry. The loop exits when the rockets apoapsis is close to the target apoapsis.

Activate the first stage
vessel.control.activate_next_stage()
vessel.auto_pilot.engage()
vessel.auto_pilot.target_pitch_and_heading(90, 90)

Main ascent loop
srbs_separated = False
turn_angle = 0
while True:

Gravity turn
if altitude() > turn_start_altitude and altitude() < turn_end_altitude:

frac = (altitude() - turn_start_altitude) / (turn_end_altitude - turn_start_altitude)
new_turn_angle = frac * 90
if abs(new_turn_angle - turn_angle) > 0.5:

turn_angle = new_turn_angle
vessel.auto_pilot.target_pitch_and_heading(90-turn_angle, 90)

Separate SRBs when finished
if not srbs_separated:

if srb_fuel() < 0.1:
vessel.control.activate_next_stage()
srbs_separated = True
print('SRBs separated')

Decrease throttle when approaching target apoapsis
if apoapsis() > target_altitude*0.9:

print('Approaching target apoapsis')
break

Next, the program fine tunes the apoapsis, using 10% thrust, then waits until the rocket has left Kerbin’s atmosphere.

2.3. Launch into Orbit 19

kRPC, Release 0.2.3

Disable engines when target apoapsis is reached
vessel.control.throttle = 0.25
while apoapsis() < target_altitude:

pass
print('Target apoapsis reached')
vessel.control.throttle = 0

Wait until out of atmosphere
print('Coasting out of atmosphere')
while altitude() < 70500:

pass

It is now time to plan the circularization burn. First, we calculate the delta-v required to circularize the orbit using
the vis-viva equation. We then calculate the burn time needed to achieve this delta-v, using the Tsiolkovsky rocket
equation.

Plan circularization burn (using vis-viva equation)
print('Planning circularization burn')
mu = vessel.orbit.body.gravitational_parameter
r = vessel.orbit.apoapsis
a1 = vessel.orbit.semi_major_axis
a2 = r
v1 = math.sqrt(mu*((2./r)-(1./a1)))
v2 = math.sqrt(mu*((2./r)-(1./a2)))
delta_v = v2 - v1
node = vessel.control.add_node(ut() + vessel.orbit.time_to_apoapsis, prograde=delta_v)

Calculate burn time (using rocket equation)
F = vessel.available_thrust
Isp = vessel.specific_impulse * 9.82
m0 = vessel.mass
m1 = m0 / math.exp(delta_v/Isp)
flow_rate = F / Isp
burn_time = (m0 - m1) / flow_rate

Next, we need to rotate the craft and wait until the circularization burn. We orientate the ship along the y-axis of the
maneuver node’s reference frame (i.e. in the direction of the burn) then time warp to 5 seconds before the burn.

Orientate ship
print('Orientating ship for circularization burn')
vessel.auto_pilot.reference_frame = node.reference_frame
vessel.auto_pilot.target_direction = (0,1,0)
vessel.auto_pilot.wait()

Wait until burn
print('Waiting until circularization burn')
burn_ut = ut() + vessel.orbit.time_to_apoapsis - (burn_time/2.)
lead_time = 5
conn.space_center.warp_to(burn_ut - lead_time)

This next part executes the burn. It sets maximum throttle, then throttles down to 5% approximately a tenth of a second
before the predicted end of the burn. It then monitors the remaining delta-v until it flips around to point retrograde (at
which point the node has been executed).

Execute burn
print('Ready to execute burn')
time_to_apoapsis = conn.add_stream(getattr, vessel.orbit, 'time_to_apoapsis')
while time_to_apoapsis() - (burn_time/2.) > 0:

pass

20 Chapter 2. Tutorials and Examples

http://en.wikipedia.org/wiki/Vis-viva_equation
http://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation
http://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

kRPC, Release 0.2.3

print('Executing burn')
vessel.control.throttle = 1
time.sleep(burn_time - 0.1)
print('Fine tuning')
vessel.control.throttle = 0.05
remaining_burn = conn.add_stream(node.remaining_burn_vector, node.reference_frame)
while remaining_burn()[1] > 0:

pass
vessel.control.throttle = 0
node.remove()

print('Launch complete')

The rocket should now be in a circular 150km orbit above Kerbin.

2.4 Pitch, Heading and Roll

The following example calculates the pitch, heading and rolls angles of the active vessel once per second:

import krpc, math, time
conn = krpc.connect(name='Pitch/Heading/Roll')
vessel = conn.space_center.active_vessel

def cross_product(x, y):
return (x[1]*y[2] - x[2]*y[1], x[2]*y[0] - x[0]*y[2], x[0]*y[1] - x[1]*y[0])

def dot_product(x, y):
return x[0]*y[0] + x[1]*y[1] + x[2]*y[2]

def magnitude(x):
return math.sqrt(x[0]**2 + x[1]**2 + x[2]**2)

def angle_between_vectors(x, y):
""" Compute the angle between vector x and y """
dp = dot_product(x, y)
if dp == 0:

return 0
xm = magnitude(x)
ym = magnitude(y)
return math.acos(dp / (xm*ym)) * (180. / math.pi)

def angle_between_vector_and_plane(x, n):
""" Compute the angle between a vector x and plane with normal vector n """
dp = dot_product(x,n)
if dp == 0:

return 0
xm = magnitude(x)
nm = magnitude(n)
return math.asin(dp / (xm*nm)) * (180. / math.pi)

while True:

vessel_direction = vessel.direction(vessel.surface_reference_frame)

Get the direction of the vessel in the horizon plane
horizon_direction = (0, vessel_direction[1], vessel_direction[2])

2.4. Pitch, Heading and Roll 21

kRPC, Release 0.2.3

Compute the pitch - the angle between the vessels direction and the direction in the horizon plane
pitch = angle_between_vectors(vessel_direction, horizon_direction)
if vessel_direction[0] < 0:

pitch = -pitch

Compute the heading - the angle between north and the direction in the horizon plane
north = (0,1,0)
heading = angle_between_vectors(north, horizon_direction)
if horizon_direction[2] < 0:

heading = 360 - heading

Compute the roll
Compute the plane running through the vessels direction and the upwards direction
up = (1,0,0)
plane_normal = cross_product(vessel_direction, up)
Compute the upwards direction of the vessel
vessel_up = conn.space_center.transform_direction(

(0,0,-1), vessel.reference_frame, vessel.surface_reference_frame)
Compute the angle between the upwards direction of the vessel and the plane
roll = angle_between_vector_and_plane(vessel_up, plane_normal)
Adjust so that the angle is between -180 and 180 and
rolling right is +ve and left is -ve
if vessel_up[0] > 0:

roll *= -1
elif roll < 0:

roll += 180
else:

roll -= 180

print('pitch = % 5.1f, heading = % 5.1f, roll = % 5.1f' % (pitch, heading, roll))

time.sleep(1)

2.5 Interacting with Parts

The following examples demonstrate use of the Parts functionality to achieve various tasks. More details on specific
topics can also be found in the API documentation:

• Trees of Parts

• Attachment Modes

• Fuel Lines

• Staging

2.5.1 Deploying all Parachutes

Sometimes things go horribly wrong. The following script does its best to save your Kerbals by deploying all the
parachutes:

import krpc
conn = krpc.connect()
vessel = conn.space_center.active_vessel

22 Chapter 2. Tutorials and Examples

kRPC, Release 0.2.3

for parachute in vessel.parts.parachutes:
parachute.deploy()

2.5.2 ‘Control From Here’ for Docking Ports

The following example will find a standard sized Clamp-O-Tron docking port, and control the vessel from it:

import krpc
conn = krpc.connect()
vessel = conn.space_center.active_vessel

ports = vessel.parts.docking_ports
port = list(filter(lambda p: p.part.title == 'Clamp-O-Tron Docking Port', ports))[0]
part = port.part
vessel.parts.controlling = part

2.5.3 Combined Specific Impulse

The following script calculates the combined specific impulse of all currently active and fueled engines on a rocket.
See here for a description of the maths: http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

import krpc
conn = krpc.connect()
vessel = conn.space_center.active_vessel

active_engines = filter(lambda e: e.active and e.has_fuel, vessel.parts.engines)

print('Active engines:')
for engine in active_engines:

print(' %s in stage %d' % (engine.part.title, engine.part.stage))

thrust = sum(engine.thrust for engine in active_engines)
fuel_consumption = sum(engine.thrust / engine.specific_impulse for engine in active_engines)
isp = thrust / fuel_consumption

print('Combined vaccuum Isp = %d seconds' % isp)

2.6 Docking Guidance

The following script outputs docking guidance information. It waits until the vessel is being controlled from a docking
port, and a docking port is set as the current target. It then prints out information about speeds and distances relative
to the docking axis.

It uses numpy to do linear algebra on the vectors returned by kRPC – for example computing the dot product or length
of a vector – and uses curses for terminal output.

import krpc, curses, time, sys
import numpy as np
import numpy.linalg as la

Set up curses
stdscr = curses.initscr()
curses.nocbreak()

2.6. Docking Guidance 23

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://www.numpy.org
https://docs.python.org/2/howto/curses.html

kRPC, Release 0.2.3

stdscr.keypad(1)
curses.noecho()

try:

Connect to kRPC
conn = krpc.connect(name='Docking Guidance')
vessel = conn.space_center.active_vessel
current = None
target = None

while True:

stdscr.clear()
stdscr.addstr(0,0,'-- Docking Guidance --')

current = conn.space_center.active_vessel.parts.controlling.docking_port
target = conn.space_center.target_docking_port

if current is None:
stdscr.addstr(2,0,'Awaiting control from docking port...')

elif target is None:
stdscr.addstr(2,0,'Awaiting target docking port...')

else:
Get positions, distances, velocities and speeds relative to the target docking port
current_position = current.position(target.reference_frame)
velocity = current.part.velocity(target.reference_frame)
displacement = np.array(current_position)
distance = la.norm(displacement)
speed = la.norm(np.array(velocity))

Get speeds and distances relative to the docking axis
(the direction the target docking port is facing in)

Axial = along the docking axis
axial_displacement = np.copy(displacement)
axial_displacement[0] = 0
axial_displacement[2] = 0
axial_distance = axial_displacement[1]
axial_velocity = np.copy(velocity)
axial_velocity[0] = 0
axial_velocity[2] = 0
axial_speed = axial_velocity[1]
if axial_distance > 0:

axial_speed *= -1

Radial = perpendicular to the docking axis
radial_displacement = np.copy(displacement)
radial_displacement[1] = 0
radial_distance = la.norm(radial_displacement)
radial_velocity = np.copy(velocity)
radial_velocity[1] = 0
radial_speed = la.norm(radial_velocity)
if np.dot(radial_velocity, radial_displacement) > 0:

radial_speed *= -1

24 Chapter 2. Tutorials and Examples

kRPC, Release 0.2.3

Get the docking port state
if current.state == conn.space_center.DockingPortState.ready:

state = 'Ready to dock'
elif current.state == conn.space_center.DockingPortState.docked:

state = 'Docked'
elif current.state == conn.space_center.DockingPortState.docking:

state = 'Docking...'
else:

state = 'Unknown'

Output information
stdscr.addstr(2,0,'Current ship: {:30}'.format(current.part.vessel.name[:30]))
stdscr.addstr(3,0,'Current port: {:30}'.format(current.part.title[:30]))
stdscr.addstr(5,0,'Target ship: {:30}'.format(target.part.vessel.name[:30]))
stdscr.addstr(6,0,'Target port: {:30}'.format(target.part.title[:30]))
stdscr.addstr(8,0,'Status: {:10}'.format(state))
stdscr.addstr(10, 0, ' +---------------------------+')
stdscr.addstr(11, 0, ' | Distance | Speed |')
stdscr.addstr(12, 0, '+---------+------------+--------------+')
stdscr.addstr(13, 0, '| | {:>+6.2f} m | {:>+6.2f} m/s |'.format(distance, speed))
stdscr.addstr(14, 0, '| Axial | {:>+6.2f} m | {:>+6.2f} m/s |'.format(axial_distance, axial_speed))
stdscr.addstr(15, 0, '| Radial | {:>+6.2f} m | {:>+6.2f} m/s |'.format(radial_distance, radial_speed))
stdscr.addstr(16, 0, '+---------+------------+--------------+')

stdscr.refresh()
time.sleep(0.25)

finally:
Shutdown curses
curses.nocbreak()
stdscr.keypad(0)
curses.echo()
curses.endwin()

2.6. Docking Guidance 25

kRPC, Release 0.2.3

26 Chapter 2. Tutorials and Examples

CHAPTER

THREE

C#

3.1 C# Client

This client provides functionality to interact with a kRPC server from programs written in C#. The
KRPC.Client.dll assembly can be installed using NuGet or downloaded from GitHub.

3.1.1 Installing the Library

Install the client using NuGet or download the assembly from GitHub and reference it in your project. You also need
to install Google.Protobuf using NuGet.

Note: The copy of Google.Protobuf.dll in the GameData folder shipped with the kRPC server plugin should
be avoided. It is a modified version to work within KSP. See here for more details.

3.1.2 Connecting to the Server

To connect to a server, create a Connection object. For example to connect to a server running on the local machine:

using KRPC.Client;
using KRPC.Client.Services.KRPC;

class Program {
public static void Main () {

var connection = new Connection (name : "Example");
var krpc = connection.KRPC ();
System.Console.WriteLine (krpc.GetStatus ().Version);

}
}

The class constructor also accepts arguments that specify what address and port numbers to connect to. For example:

using KRPC.Client;
using KRPC.Client.Services.KRPC;
using System.Net;

class Program {
public static void Main () {

var connection = new Connection (
name : "Example", address: IPAddress.Parse("10.0.2.2"), rpcPort: 1000, streamPort: 1001);

var krpc = connection.KRPC ();

27

https://www.nuget.com/packages/KRPC.Client
https://github.com/krpc/krpc/releases/download/v0.2.3/krpc-csharp-0.2.3.zip
https://www.nuget.com/packages/KRPC.Client
https://github.com/krpc/krpc/releases/download/v0.2.3/krpc-csharp-0.2.3.zip
https://www.nuget.org/packages/Google.Protobuf
https://github.com/djungelorm/protobuf/releases/tag/v3.0.0-beta-2-net35

kRPC, Release 0.2.3

System.Console.WriteLine (krpc.GetStatus ().Version);
}

}

3.1.3 Interacting with the Server

kRPC groups remote procedures into services. The functionality for the services are defined in namespace
KRPC.Client.Services.*.

To interact with a service, you must first instantiate it. The following example connects to the server, instantiates the
SpaceCenter service, and outputs the name of the active vessel:

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;

class Program {
public static void Main () {

var connection = new Connection (name : "Vessel Name");
var spaceCenter = connection.SpaceCenter ();
var vessel = spaceCenter.ActiveVessel;
System.Console.WriteLine (vessel.Name);

}
}

3.1.4 Streaming Data from the Server

A stream repeatedly executes a function on the server, with a fixed set of argument values. It provides a more efficient
way of repeatedly getting the result of a function, avoiding the network overhead of having to invoke it directly.

For example, consider the following loop that continuously prints out the position of the active vessel. This loop incurs
significant communication overheads, as the Vessel.Position method is called repeatedly.

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;

class Program {
public static void Main () {

var connection = new Connection ();
var spaceCenter = connection.SpaceCenter ();
var vessel = spaceCenter.ActiveVessel;
var refframe = vessel.Orbit.Body.ReferenceFrame;
while (true)

Console.Out.WriteLine(vessel.Position(refframe));
}

}

The following code achieves the same thing, but is far more efficient. It calls Connection.AddStream once at
the start of the program to create a stream, and then repeatedly gets the position from the stream.

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;

class Program {
public static void Main () {

28 Chapter 3. C#

kRPC, Release 0.2.3

var connection = new Connection ();
var spaceCenter = connection.SpaceCenter ();
var vessel = spaceCenter.ActiveVessel;
var refframe = vessel.Orbit.Body.ReferenceFrame;
var position = connection.AddStream(() => vessel.Position(refframe));
while (true)

Console.Out.WriteLine(position.Get());
}

}

Streams are created for any method call by calling Connection.AddStream and passing it a lambda expression
calling the desired method. This lambda expression must take zero arguments and be either a method call expression
or a parameter call expression. It returns an instance of the Stream class from which the latest value can be obtained
by calling Stream.Get. A stream can be stopped and removed from the server by calling Stream.Remove on the
stream object. All of a clients streams are automatically stopped when it disconnects.

3.1.5 Client API Reference

class Connection
A connection to the kRPC server. All interaction with kRPC is performed via an instance of this class.

Connection (string name = "", IPAddress address = null, int rpcPort = 50000, int streamPort = 50001)
Connect to a kRPC server on the specified IP address and port numbers. If streamPort is 0, does not
connect to the stream server. Passes an optional name to the server to identify the client (up to 32 bytes of
UTF-8 encoded text).

Stream<ReturnType> AddStream<ReturnType> (LambdaExpression expression)
Create a new stream from the given lambda expression. Returns a stream object that can be used to obtain
the latest value of the stream.

class Stream<ReturnType>
Object representing a stream.

ReturnType Get ()
Get the most recent value of the stream.

void Remove ()
Remove the stream from the server.

3.2 KRPC API

class KRPC
Main kRPC service, used by clients to interact with basic server functionality.

KRPC.Schema.KRPC.Status GetStatus ()
Returns some information about the server, such as the version.

KRPC.Schema.KRPC.Services GetServices ()
Returns information on all services, procedures, classes, properties etc. provided by the server. Can be
used by client libraries to automatically create functionality such as stubs.

GameScene CurrentGameScene { get; }
Get the current game scene.

uint AddStream (KRPC.Schema.KRPC.Request request)
Add a streaming request and return its identifier.

3.2. KRPC API 29

https://msdn.microsoft.com/en-us/library/system.uint32.aspx

kRPC, Release 0.2.3

Parameters

Note: Do not call this method from client code. Use streams provided by the C# client library.

void RemoveStream (uint id)
Remove a streaming request.

Parameters

Note: Do not call this method from client code. Use streams provided by the C# client library.

enum GameScene
The game scene. See KRPC.CurrentGameScene.

SpaceCenter
The game scene showing the Kerbal Space Center buildings.

Flight
The game scene showing a vessel in flight (or on the launchpad/runway).

TrackingStation
The tracking station.

EditorVAB
The Vehicle Assembly Building.

EditorSPH
The Space Plane Hangar.

3.3 SpaceCenter API

3.3.1 SpaceCenter

class SpaceCenter
Provides functionality to interact with Kerbal Space Program. This includes controlling the active vessel, man-
aging its resources, planning maneuver nodes and auto-piloting.

Vessel ActiveVessel { get; set; }
The currently active vessel.

IList<Vessel> Vessels { get; }
A list of all the vessels in the game.

IDictionary<string, CelestialBody> Bodies { get; }
A dictionary of all celestial bodies (planets, moons, etc.) in the game, keyed by the name of the body.

CelestialBody TargetBody { get; set; }
The currently targeted celestial body.

Vessel TargetVessel { get; set; }
The currently targeted vessel.

DockingPort TargetDockingPort { get; set; }
The currently targeted docking port.

30 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.uint32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/s4ys34ea.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.2.3

void ClearTarget ()
Clears the current target.

void LaunchVesselFromVAB (string name)
Launch a new vessel from the VAB onto the launchpad.

Parameters

• name – Name of the vessel’s craft file.

void LaunchVesselFromSPH (string name)
Launch a new vessel from the SPH onto the runway.

Parameters

• name – Name of the vessel’s craft file.

double UT { get; }
The current universal time in seconds.

float G { get; }
The value of the gravitational constant G in 𝑁(𝑚/𝑘𝑔)2.

WarpMode WarpMode { get; }
The current time warp mode. Returns WarpMode.None if time warp is not active, WarpMode.Rails
if regular “on-rails” time warp is active, or WarpMode.Physics if physical time warp is active.

float WarpRate { get; }
The current warp rate. This is the rate at which time is passing for either on-rails or physical time warp.
For example, a value of 10 means time is passing 10x faster than normal. Returns 1 if time warp is not
active.

float WarpFactor { get; }
The current warp factor. This is the index of the rate at which time is passing for either regular “on-
rails” or physical time warp. Returns 0 if time warp is not active. When in on-rails time warp,
this is equal to SpaceCenter.RailsWarpFactor, and in physics time warp, this is equal to
SpaceCenter.PhysicsWarpFactor.

int RailsWarpFactor { get; set; }
The time warp rate, using regular “on-rails” time warp. A value between 0 and 7 inclusive. 0 means no
time warp. Returns 0 if physical time warp is active. If requested time warp factor cannot be set, it will be
set to the next lowest possible value. For example, if the vessel is too close to a planet. See the KSP wiki
for details.

int PhysicsWarpFactor { get; set; }
The physical time warp rate. A value between 0 and 3 inclusive. 0 means no time warp. Returns 0 if
regular “on-rails” time warp is active.

bool CanRailsWarpAt (int factor = 1)
Returns true if regular “on-rails” time warp can be used, at the specified warp factor. The maximum
time warp rate is limited by various things, including how close the active vessel is to a planet. See the
KSP wiki for details.

Parameters

• factor – The warp factor to check.

int MaximumRailsWarpFactor { get; }
The current maximum regular “on-rails” warp factor that can be set. A value between 0 and 7 inclusive.
See the KSP wiki for details.

void WarpTo (double UT, float maxRailsRate = 100000.0, float maxPhysicsRate = 2.0)
Uses time acceleration to warp forward to a time in the future, specified by universal time UT. This call

3.3. SpaceCenter API 31

https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://en.wikipedia.org/wiki/Gravitational_constant
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
https://msdn.microsoft.com/en-us/library/system.int32.aspx
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

blocks until the desired time is reached. Uses regular “on-rails” or physical time warp as appropriate. For
example, physical time warp is used when the active vessel is traveling through an atmosphere. When
using regular “on-rails” time warp, the warp rate is limited by maxRailsRate, and when using physical
time warp, the warp rate is limited by maxPhysicsRate.

Parameters

• UT – The universal time to warp to, in seconds.

• maxRailsRate – The maximum warp rate in regular “on-rails” time warp.

• maxPhysicsRate – The maximum warp rate in physical time warp.

Returns When the time warp is complete.

Tuple<double, double, double> TransformPosition (Tuple<double, double, double> position, Ref-
erenceFrame from, ReferenceFrame to)

Converts a position vector from one reference frame to another.

Parameters

• position – Position vector in reference frame from.

• from – The reference frame that the position vector is in.

• to – The reference frame to covert the position vector to.

Returns The corresponding position vector in reference frame to.

Tuple<double, double, double> TransformDirection (Tuple<double, double, double> direction,
ReferenceFrame from, ReferenceFrame to)

Converts a direction vector from one reference frame to another.

Parameters

• direction – Direction vector in reference frame from.

• from – The reference frame that the direction vector is in.

• to – The reference frame to covert the direction vector to.

Returns The corresponding direction vector in reference frame to.

Tuple<double, double, double, double> TransformRotation (Tuple<double, double, double, dou-
ble> rotation, ReferenceFrame from,
ReferenceFrame to)

Converts a rotation from one reference frame to another.

Parameters

• rotation – Rotation in reference frame from.

• from – The reference frame that the rotation is in.

• to – The corresponding rotation in reference frame to.

Returns The corresponding rotation in reference frame to.

Tuple<double, double, double> TransformVelocity (Tuple<double, double, double> position, Tu-
ple<double, double, double> velocity, Refer-
enceFrame from, ReferenceFrame to)

Converts a velocity vector (acting at the specified position vector) from one reference frame to another.
The position vector is required to take the relative angular velocity of the reference frames into account.

Parameters

• position – Position vector in reference frame from.

32 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

• velocity – Velocity vector in reference frame from.

• from – The reference frame that the position and velocity vectors are in.

• to – The reference frame to covert the velocity vector to.

Returns The corresponding velocity in reference frame to.

bool FARAvailable { get; }
Whether Ferram Aerospace Research is installed.

bool RemoteTechAvailable { get; }
Whether RemoteTech is installed.

void DrawDirection (Tuple<double, double, double> direction, ReferenceFrame referenceFrame, Tu-
ple<double, double, double> color, float length = 10.0)

Draw a direction vector on the active vessel.

Parameters

• direction – Direction to draw the line in.

• referenceFrame – Reference frame that the direction is in.

• color – The color to use for the line, as an RGB color.

• length – The length of the line. Defaults to 10.

void DrawLine (Tuple<double, double, double> start, Tuple<double, double, double> end, Reference-
Frame referenceFrame, Tuple<double, double, double> color)

Draw a line.

Parameters

• start – Position of the start of the line.

• end – Position of the end of the line.

• referenceFrame – Reference frame that the position are in.

• color – The color to use for the line, as an RGB color.

void ClearDrawing ()
Remove all directions and lines currently being drawn.

enum WarpMode
Returned by WarpMode

Rails
Time warp is active, and in regular “on-rails” mode.

Physics
Time warp is active, and in physical time warp mode.

None
Time warp is not active.

3.3.2 Vessel

class Vessel
These objects are used to interact with vessels in KSP. This includes getting orbital and flight data, manipulating
control inputs and managing resources.

string Name { get; set; }
The name of the vessel.

3.3. SpaceCenter API 33

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
http://forum.kerbalspaceprogram.com/threads/83305
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.2.3

VesselType Type { get; set; }
The type of the vessel.

VesselSituation Situation { get; }
The situation the vessel is in.

double MET { get; }
The mission elapsed time in seconds.

Flight Flight (ReferenceFrame referenceFrame = None)
Returns a Flight object that can be used to get flight telemetry for the vessel, in the specified reference
frame.

Parameters

• referenceFrame – Reference frame. Defaults to the vessel’s surface reference frame
(Vessel.SurfaceReferenceFrame).

Note: When this is called with no arguments, the vessel’s surface reference frame is used. This reference
frame moves with the vessel, therefore velocities and speeds returned by the flight object will be zero. See
the reference frames tutorial for examples of getting the orbital speed and surface speed of a vessel.

Vessel Target { get; set; }
The target vessel. null if there is no target. When setting the target, the target cannot be the current
vessel.

Orbit Orbit { get; }
The current orbit of the vessel.

Control Control { get; }
Returns a Control object that can be used to manipulate the vessel’s control inputs. For example, its
pitch/yaw/roll controls, RCS and thrust.

AutoPilot AutoPilot { get; }
An AutoPilot object, that can be used to perform simple auto-piloting of the vessel.

Resources Resources { get; }
A Resources object, that can used to get information about resources stored in the vessel.

Resources ResourcesInDecoupleStage (int stage, bool cumulative = True)
Returns a Resources object, that can used to get information about resources stored in a given stage.

Parameters

• stage – Get resources for parts that are decoupled in this stage.

• cumulative – When false, returns the resources for parts decoupled in just the given
stage. When true returns the resources decoupled in the given stage and all subsequent
stages combined.

Note: For details on stage numbering, see the discussion on Staging.

Parts Parts { get; }
A Parts object, that can used to interact with the parts that make up this vessel.

Comms Comms { get; }
A Comms object, that can used to interact with RemoteTech for this vessel.

34 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.2.3

Note: Requires RemoteTech to be installed.

float Mass { get; }
The total mass of the vessel, including resources, in kg.

float DryMass { get; }
The total mass of the vessel, excluding resources, in kg.

float Thrust { get; }
The total thrust currently being produced by the vessel’s engines, in Newtons. This is computed by sum-
ming Engine.Thrust for every engine in the vessel.

float AvailableThrust { get; }
Gets the total available thrust that can be produced by the vessel’s active engines, in Newtons. This is
computed by summing Engine.AvailableThrust for every active engine in the vessel.

float MaxThrust { get; }
The total maximum thrust that can be produced by the vessel’s active engines, in Newtons. This is com-
puted by summing Engine.MaxThrust for every active engine.

float MaxVacuumThrust { get; }
The total maximum thrust that can be produced by the vessel’s active engines when the vessel is in a
vacuum, in Newtons. This is computed by summing Engine.MaxVacuumThrust for every active
engine.

float SpecificImpulse { get; }
The combined specific impulse of all active engines, in seconds. This is computed using the formula
described here.

float VacuumSpecificImpulse { get; }
The combined vacuum specific impulse of all active engines, in seconds. This is computed using the
formula described here.

float KerbinSeaLevelSpecificImpulse { get; }
The combined specific impulse of all active engines at sea level on Kerbin, in seconds. This is computed
using the formula described here.

ReferenceFrame ReferenceFrame { get; }
The reference frame that is fixed relative to the vessel, and orientated with the vessel.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel.

•The x-axis points out to the right of the vessel.

•The y-axis points in the forward direction of the vessel.

•The z-axis points out of the bottom off the vessel.

ReferenceFrame OrbitalReferenceFrame { get; }
The reference frame that is fixed relative to the vessel, and orientated with the vessels orbital pro-
grade/normal/radial directions.

•The origin is at the center of mass of the vessel.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

3.3. SpaceCenter API 35

http://forum.kerbalspaceprogram.com/threads/83305
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.2.3

Fig. 3.1: Vessel reference frame origin and axes for the Aeris 3A aircraft

•The z-axis points in the orbital normal direction.

Note: Be careful not to confuse this with ‘orbit’ mode on the navball.

ReferenceFrame SurfaceReferenceFrame { get; }
The reference frame that is fixed relative to the vessel, and orientated with the surface of the body being
orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the north and up directions on the surface of the body.

•The x-axis points in the zenith direction (upwards, normal to the body being orbited, from the center
of the body towards the center of mass of the vessel).

•The y-axis points northwards towards the astronomical horizon (north, and tangential to the surface
of the body – the direction in which a compass would point when on the surface).

•The z-axis points eastwards towards the astronomical horizon (east, and tangential to the surface of
the body – east on a compass when on the surface).

Note: Be careful not to confuse this with ‘surface’ mode on the navball.

ReferenceFrame SurfaceVelocityReferenceFrame { get; }
The reference frame that is fixed relative to the vessel, and orientated with the velocity vector of the vessel
relative to the surface of the body being orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel’s velocity vector.

•The y-axis points in the direction of the vessel’s velocity vector, relative to the surface of the body
being orbited.

•The z-axis is in the plane of the astronomical horizon.

36 Chapter 3. C#

http://en.wikipedia.org/wiki/Zenith
http://en.wikipedia.org/wiki/Horizon
http://en.wikipedia.org/wiki/Horizon
http://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.2.3

Fig. 3.2: Vessel reference frame origin and axes for the Kerbal-X rocket

3.3. SpaceCenter API 37

kRPC, Release 0.2.3

Fig. 3.3: Vessel orbital reference frame origin and axes

Fig. 3.4: Vessel surface reference frame origin and axes

38 Chapter 3. C#

kRPC, Release 0.2.3

•The x-axis is orthogonal to the other two axes.

Fig. 3.5: Vessel surface velocity reference frame origin and axes

Tuple<double, double, double> Position (ReferenceFrame referenceFrame)
Returns the position vector of the center of mass of the vessel in the given reference frame.

Parameters

Tuple<double, double, double> Velocity (ReferenceFrame referenceFrame)
Returns the velocity vector of the center of mass of the vessel in the given reference frame.

Parameters

Tuple<double, double, double, double> Rotation (ReferenceFrame referenceFrame)
Returns the rotation of the center of mass of the vessel in the given reference frame.

Parameters

Tuple<double, double, double> Direction (ReferenceFrame referenceFrame)
Returns the direction in which the vessel is pointing, as a unit vector, in the given reference frame.

Parameters

Tuple<double, double, double> AngularVelocity (ReferenceFrame referenceFrame)
Returns the angular velocity of the vessel in the given reference frame. The magnitude of the returned
vector is the rotational speed in radians per second, and the direction of the vector indicates the axis of
rotation (using the right hand rule).

Parameters

enum VesselType
See Vessel.Type.

Ship
Ship.

Station
Station.

Lander
Lander.

3.3. SpaceCenter API 39

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

Probe
Probe.

Rover
Rover.

Base
Base.

Debris
Debris.

enum VesselSituation
See Vessel.Situation.

Docked
Vessel is docked to another.

Escaping
Escaping.

Flying
Vessel is flying through an atmosphere.

Landed
Vessel is landed on the surface of a body.

Orbiting
Vessel is orbiting a body.

PreLaunch
Vessel is awaiting launch.

Splashed
Vessel has splashed down in an ocean.

SubOrbital
Vessel is on a sub-orbital trajectory.

3.3.3 CelestialBody

class CelestialBody
Represents a celestial body (such as a planet or moon).

string Name { get; }
The name of the body.

IList<CelestialBody> Satellites { get; }
A list of celestial bodies that are in orbit around this celestial body.

Orbit Orbit { get; }
The orbit of the body.

float Mass { get; }
The mass of the body, in kilograms.

float GravitationalParameter { get; }
The standard gravitational parameter of the body in 𝑚3𝑠−2.

float SurfaceGravity { get; }
The acceleration due to gravity at sea level (mean altitude) on the body, in 𝑚/𝑠2.

40 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://en.wikipedia.org/wiki/Standard_gravitational_parameter
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

float RotationalPeriod { get; }
The sidereal rotational period of the body, in seconds.

float RotationalSpeed { get; }
The rotational speed of the body, in radians per second.

float EquatorialRadius { get; }
The equatorial radius of the body, in meters.

double SurfaceHeight (double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water this
is equal to 0.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

double BedrockHeight (double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water, this
is the height of the sea-bed and is therefore a negative value.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

Tuple<double, double, double> MSLPosition (double latitude, double longitude, ReferenceFrame ref-
erenceFrame)

The position at mean sea level at the given latitude and longitude, in the given reference frame.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

• referenceFrame – Reference frame for the returned position vector

Tuple<double, double, double> SurfacePosition (double latitude, double longitude, Reference-
Frame referenceFrame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position of the surface of the water.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

• referenceFrame – Reference frame for the returned position vector

Tuple<double, double, double> BedrockPosition (double latitude, double longitude, Reference-
Frame referenceFrame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position at the bottom of the sea-bed.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

• referenceFrame – Reference frame for the returned position vector

3.3. SpaceCenter API 41

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

float SphereOfInfluence { get; }
The radius of the sphere of influence of the body, in meters.

bool HasAtmosphere { get; }
true if the body has an atmosphere.

float AtmosphereDepth { get; }
The depth of the atmosphere, in meters.

bool HasAtmosphericOxygen { get; }
true if there is oxygen in the atmosphere, required for air-breathing engines.

ReferenceFrame ReferenceFrame { get; }
The reference frame that is fixed relative to the celestial body.

•The origin is at the center of the body.

•The axes rotate with the body.

•The x-axis points from the center of the body towards the intersection of the prime meridian and
equator (the position at 0° longitude, 0° latitude).

•The y-axis points from the center of the body towards the north pole.

•The z-axis points from the center of the body towards the equator at 90°E longitude.

Fig. 3.6: Celestial body reference frame origin and axes. The equator is shown in blue, and the prime meridian in red.

ReferenceFrame NonRotatingReferenceFrame { get; }
The reference frame that is fixed relative to this celestial body, and orientated in a fixed direction (it does
not rotate with the body).

•The origin is at the center of the body.

•The axes do not rotate.

•The x-axis points in an arbitrary direction through the equator.

•The y-axis points from the center of the body towards the north pole.

•The z-axis points in an arbitrary direction through the equator.

42 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.2.3

ReferenceFrame OrbitalReferenceFrame { get; }
Gets the reference frame that is fixed relative to this celestial body, but orientated with the body’s orbital
prograde/normal/radial directions.

•The origin is at the center of the body.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Tuple<double, double, double> Position (ReferenceFrame referenceFrame)
Returns the position vector of the center of the body in the specified reference frame.

Parameters

Tuple<double, double, double> Velocity (ReferenceFrame referenceFrame)
Returns the velocity vector of the body in the specified reference frame.

Parameters

Tuple<double, double, double, double> Rotation (ReferenceFrame referenceFrame)
Returns the rotation of the body in the specified reference frame.

Parameters

Tuple<double, double, double> Direction (ReferenceFrame referenceFrame)
Returns the direction in which the north pole of the celestial body is pointing, as a unit vector, in the
specified reference frame.

Parameters

Tuple<double, double, double> AngularVelocity (ReferenceFrame referenceFrame)
Returns the angular velocity of the body in the specified reference frame. The magnitude of the vector is
the rotational speed of the body, in radians per second, and the direction of the vector indicates the axis of
rotation, using the right-hand rule.

Parameters

3.3.4 Flight

class Flight
Used to get flight telemetry for a vessel, by calling Vessel.Flight. All of the information returned by this
class is given in the reference frame passed to that method.

Note: To get orbital information, such as the apoapsis or inclination, see Orbit.

float GForce { get; }
The current G force acting on the vessel in 𝑚/𝑠2.

double MeanAltitude { get; }
The altitude above sea level, in meters.

double SurfaceAltitude { get; }
The altitude above the surface of the body or sea level, whichever is closer, in meters.

3.3. SpaceCenter API 43

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

double BedrockAltitude { get; }
The altitude above the surface of the body, in meters. When over water, this is the altitude above the sea
floor.

double Elevation { get; }
The elevation of the terrain under the vessel, in meters. This is the height of the terrain above sea level,
and is negative when the vessel is over the sea.

double Latitude { get; }
The latitude of the vessel for the body being orbited, in degrees.

double Longitude { get; }
The longitude of the vessel for the body being orbited, in degrees.

Tuple<double, double, double> Velocity { get; }
The velocity vector of the vessel. The magnitude of the vector is the speed of the vessel in meters per
second. The direction of the vector is the direction of the vessels motion.

double Speed { get; }
The speed of the vessel in meters per second.

double HorizontalSpeed { get; }
The horizontal speed of the vessel in meters per second.

double VerticalSpeed { get; }
The vertical speed of the vessel in meters per second.

Tuple<double, double, double> CenterOfMass { get; }
The position of the center of mass of the vessel.

Tuple<double, double, double, double> Rotation { get; }
The rotation of the vessel.

Tuple<double, double, double> Direction { get; }
The direction vector that the vessel is pointing in.

float Pitch { get; }
The pitch angle of the vessel relative to the horizon, in degrees. A value between -90° and +90°.

float Heading { get; }
The heading angle of the vessel relative to north, in degrees. A value between 0° and 360°.

float Roll { get; }
The roll angle of the vessel relative to the horizon, in degrees. A value between -180° and +180°.

Tuple<double, double, double> Prograde { get; }
The unit direction vector pointing in the prograde direction.

Tuple<double, double, double> Retrograde { get; }
The unit direction vector pointing in the retrograde direction.

Tuple<double, double, double> Normal { get; }
The unit direction vector pointing in the normal direction.

Tuple<double, double, double> AntiNormal { get; }
The unit direction vector pointing in the anti-normal direction.

Tuple<double, double, double> Radial { get; }
The unit direction vector pointing in the radial direction.

Tuple<double, double, double> AntiRadial { get; }
The unit direction vector pointing in the anti-radial direction.

44 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Latitude
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Longitude
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

float AtmosphereDensity { get; }
The current density of the atmosphere around the vessel, in 𝑘𝑔/𝑚3.

float DynamicPressure { get; }
The dynamic pressure acting on the vessel, in Pascals. This is a measure of the strength of the aerodynamic
forces. It is equal to 1

2 .air density.velocity2. It is commonly denoted as 𝑄.

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float StaticPressure { get; }
The static atmospheric pressure acting on the vessel, in Pascals.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

Tuple<double, double, double> AerodynamicForce { get; }
The total aerodynamic forces acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

Tuple<double, double, double> Lift { get; }
The aerodynamic lift currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

Tuple<double, double, double> Drag { get; }
The aerodynamic drag currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

float SpeedOfSound { get; }
The speed of sound, in the atmosphere around the vessel, in 𝑚/𝑠.

Note: Not available when Ferram Aerospace Research is installed.

float Mach { get; }
The speed of the vessel, in multiples of the speed of sound.

Note: Not available when Ferram Aerospace Research is installed.

3.3. SpaceCenter API 45

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

float EquivalentAirSpeed { get; }
The equivalent air speed of the vessel, in 𝑚/𝑠.

Note: Not available when Ferram Aerospace Research is installed.

float TerminalVelocity { get; }
An estimate of the current terminal velocity of the vessel, in 𝑚/𝑠. This is the speed at which the drag
forces cancel out the force of gravity.

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float AngleOfAttack { get; }
Gets the pitch angle between the orientation of the vessel and its velocity vector, in degrees.

float SideslipAngle { get; }
Gets the yaw angle between the orientation of the vessel and its velocity vector, in degrees.

float TotalAirTemperature { get; }
The total air temperature of the atmosphere around the vessel, in Kelvin. This temperature includes the
Flight.StaticAirTemperature and the vessel’s kinetic energy.

float StaticAirTemperature { get; }
The static (ambient) temperature of the atmosphere around the vessel, in Kelvin.

float StallFraction { get; }
Gets the current amount of stall, between 0 and 1. A value greater than 0.005 indicates a minor stall and a
value greater than 0.5 indicates a large-scale stall.

Note: Requires Ferram Aerospace Research.

float DragCoefficient { get; }
Gets the coefficient of drag. This is the amount of drag produced by the vessel. It depends on air speed,
air density and wing area.

Note: Requires Ferram Aerospace Research.

float LiftCoefficient { get; }
Gets the coefficient of lift. This is the amount of lift produced by the vessel, and depends on air speed, air
density and wing area.

Note: Requires Ferram Aerospace Research.

float BallisticCoefficient { get; }
Gets the ballistic coefficient.

Note: Requires Ferram Aerospace Research.

float ThrustSpecificFuelConsumption { get; }
Gets the thrust specific fuel consumption for the jet engines on the vessel. This is a measure of the

46 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
http://en.wikipedia.org/wiki/Equivalent_airspeed
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://en.wikipedia.org/wiki/Total_air_temperature
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://en.wikipedia.org/wiki/Total_air_temperature
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.single.aspx
http://en.wikipedia.org/wiki/Ballistic_coefficient
http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

efficiency of the engines, with a lower value indicating a more efficient vessel. This value is the number of
Newtons of fuel that are burned, per hour, to product one newton of thrust.

Note: Requires Ferram Aerospace Research.

3.3.5 Orbit

class Orbit
Describes an orbit. For example, the orbit of a vessel, obtained by calling Vessel.Orbit, or a celestial body,
obtained by calling CelestialBody.Orbit.

CelestialBody Body { get; }
The celestial body (e.g. planet or moon) around which the object is orbiting.

double Apoapsis { get; }
Gets the apoapsis of the orbit, in meters, from the center of mass of the body being orbited.

Note: For the apoapsis altitude reported on the in-game map view, use Orbit.ApoapsisAltitude.

double Periapsis { get; }
The periapsis of the orbit, in meters, from the center of mass of the body being orbited.

Note: For the periapsis altitude reported on the in-game map view, use Orbit.PeriapsisAltitude.

double ApoapsisAltitude { get; }
The apoapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to Orbit.Apoapsis minus the equatorial radius of the body.

double PeriapsisAltitude { get; }
The periapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to Orbit.Periapsis minus the equatorial radius of the body.

double SemiMajorAxis { get; }
The semi-major axis of the orbit, in meters.

double SemiMinorAxis { get; }
The semi-minor axis of the orbit, in meters.

double Radius { get; }
The current radius of the orbit, in meters. This is the distance between the center of mass of the object in
orbit, and the center of mass of the body around which it is orbiting.

Note: This value will change over time if the orbit is elliptical.

double Speed { get; }
The current orbital speed of the object in meters per second.

3.3. SpaceCenter API 47

http://forum.kerbalspaceprogram.com/threads/20451
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

Note: This value will change over time if the orbit is elliptical.

double Period { get; }
The orbital period, in seconds.

double TimeToApoapsis { get; }
The time until the object reaches apoapsis, in seconds.

double TimeToPeriapsis { get; }
The time until the object reaches periapsis, in seconds.

double Eccentricity { get; }
The eccentricity of the orbit.

double Inclination { get; }
The inclination of the orbit, in radians.

double LongitudeOfAscendingNode { get; }
The longitude of the ascending node, in radians.

double ArgumentOfPeriapsis { get; }
The argument of periapsis, in radians.

double MeanAnomalyAtEpoch { get; }
The mean anomaly at epoch.

double Epoch { get; }
The time since the epoch (the point at which the mean anomaly at epoch was measured, in seconds.

double MeanAnomaly { get; }
The mean anomaly.

double EccentricAnomaly { get; }
The eccentric anomaly.

Tuple<double, double, double> ReferencePlaneNormal (ReferenceFrame referenceFrame)
The unit direction vector that is normal to the orbits reference plane, in the given reference frame. The
reference plane is the plane from which the orbits inclination is measured.

Parameters

Tuple<double, double, double> ReferencePlaneDirection (ReferenceFrame referenceFrame)
The unit direction vector from which the orbits longitude of ascending node is measured, in the given
reference frame.

Parameters

double TimeToSOIChange { get; }
The time until the object changes sphere of influence, in seconds. Returns NaN if the object is not going
to change sphere of influence.

Orbit NextOrbit { get; }
If the object is going to change sphere of influence in the future, returns the new orbit after the change.
Otherwise returns null.

3.3.6 Control

class Control
Used to manipulate the controls of a vessel. This includes adjusting the throttle, enabling/disabling systems such
as SAS and RCS, or altering the direction in which the vessel is pointing.

48 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Orbital_eccentricity
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Orbital_inclination
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Argument_of_periapsis
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Mean_anomaly
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Mean_anomaly
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Mean_anomaly
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://en.wikipedia.org/wiki/Eccentric_anomaly
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

Note: Control inputs (such as pitch, yaw and roll) are zeroed when all clients that have set one or more of these
inputs are no longer connected.

bool SAS { get; set; }
The state of SAS.

Note: Equivalent to AutoPilot.SAS

SASMode SASMode { get; set; }
The current SASMode. These modes are equivalent to the mode buttons to the left of the navball that
appear when SAS is enabled.

Note: Equivalent to AutoPilot.SASMode

SpeedMode SpeedMode { get; set; }
The current SpeedMode of the navball. This is the mode displayed next to the speed at the top of the
navball.

bool RCS { get; set; }
The state of RCS.

bool Gear { get; set; }
The state of the landing gear/legs.

bool Lights { get; set; }
The state of the lights.

bool Brakes { get; set; }
The state of the wheel brakes.

bool Abort { get; set; }
The state of the abort action group.

float Throttle { get; set; }
The state of the throttle. A value between 0 and 1.

float Pitch { get; set; }
The state of the pitch control. A value between -1 and 1. Equivalent to the w and s keys.

float Yaw { get; set; }
The state of the yaw control. A value between -1 and 1. Equivalent to the a and d keys.

float Roll { get; set; }
The state of the roll control. A value between -1 and 1. Equivalent to the q and e keys.

float Forward { get; set; }
The state of the forward translational control. A value between -1 and 1. Equivalent to the h and n keys.

float Up { get; set; }
The state of the up translational control. A value between -1 and 1. Equivalent to the i and k keys.

float Right { get; set; }
The state of the right translational control. A value between -1 and 1. Equivalent to the j and l keys.

float WheelThrottle { get; set; }
The state of the wheel throttle. A value between -1 and 1. A value of 1 rotates the wheels forwards, a value
of -1 rotates the wheels backwards.

3.3. SpaceCenter API 49

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

float WheelSteering { get; set; }
The state of the wheel steering. A value between -1 and 1. A value of 1 steers to the left, and a value of -1
steers to the right.

int CurrentStage { get; }
The current stage of the vessel. Corresponds to the stage number in the in-game UI.

IList<Vessel> ActivateNextStage ()
Activates the next stage. Equivalent to pressing the space bar in-game.

Returns A list of vessel objects that are jettisoned from the active vessel.

bool GetActionGroup (uint group)
Returns true if the given action group is enabled.

Parameters

• group – A number between 0 and 9 inclusive.

void SetActionGroup (uint group, bool state)
Sets the state of the given action group (a value between 0 and 9 inclusive).

Parameters

• group – A number between 0 and 9 inclusive.

void ToggleActionGroup (uint group)
Toggles the state of the given action group.

Parameters

• group – A number between 0 and 9 inclusive.

Node AddNode (double UT, float prograde = 0.0, float normal = 0.0, float radial = 0.0)
Creates a maneuver node at the given universal time, and returns a Node object that can be used to modify
it. Optionally sets the magnitude of the delta-v for the maneuver node in the prograde, normal and radial
directions.

Parameters

• UT – Universal time of the maneuver node.

• prograde – Delta-v in the prograde direction.

• normal – Delta-v in the normal direction.

• radial – Delta-v in the radial direction.

IList<Node> Nodes { get; }
Returns a list of all existing maneuver nodes, ordered by time from first to last.

void RemoveNodes ()
Remove all maneuver nodes.

enum SASMode
The behavior of the SAS auto-pilot. See AutoPilot.SASMode.

StabilityAssist
Stability assist mode. Dampen out any rotation.

Maneuver
Point in the burn direction of the next maneuver node.

Prograde
Point in the prograde direction.

50 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.uint32.aspx
https://msdn.microsoft.com/en-us/library/system.uint32.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.uint32.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx

kRPC, Release 0.2.3

Retrograde
Point in the retrograde direction.

Normal
Point in the orbit normal direction.

AntiNormal
Point in the orbit anti-normal direction.

Radial
Point in the orbit radial direction.

AntiRadial
Point in the orbit anti-radial direction.

Target
Point in the direction of the current target.

AntiTarget
Point away from the current target.

enum SpeedMode
See Control.SpeedMode.

Orbit
Speed is relative to the vessel’s orbit.

Surface
Speed is relative to the surface of the body being orbited.

Target
Speed is relative to the current target.

3.3.7 Parts

The following classes allow interaction with a vessels individual parts.

3.3. SpaceCenter API 51

kRPC, Release 0.2.3

• Parts
• Part
• Module
• Specific Types of Part

– Cargo Bay
– Decoupler
– Docking Port
– Engine
– Fairing
– Intake
– Landing Gear
– Landing Leg
– Launch Clamp
– Light
– Parachute
– Radiator
– Resource Converter
– Resource Harvester
– Reaction Wheel
– Sensor
– Solar Panel

• Trees of Parts
– Traversing the Tree
– Attachment Modes

• Fuel Lines
• Staging

Parts

class Parts
Instances of this class are used to interact with the parts of a vessel. An instance can be obtained by calling
Vessel.Parts.

IList<Part> All { get; }
A list of all of the vessels parts.

Part Root { get; }
The vessels root part.

Note: See the discussion on Trees of Parts.

Part Controlling { get; set; }
The part from which the vessel is controlled.

IList<Part> WithName (string name)
A list of parts whose Part.Name is name.

Parameters

IList<Part> WithTitle (string title)
A list of all parts whose Part.Title is title.

Parameters

52 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.2.3

IList<Part> WithModule (string moduleName)
A list of all parts that contain a Module whose Module.Name is moduleName.

Parameters

IList<Part> InStage (int stage)
A list of all parts that are activated in the given stage.

Parameters

Note: See the discussion on Staging.

IList<Part> InDecoupleStage (int stage)
A list of all parts that are decoupled in the given stage.

Parameters

Note: See the discussion on Staging.

IList<Module> ModulesWithName (string moduleName)
A list of modules (combined across all parts in the vessel) whose Module.Name is moduleName.

Parameters

IList<CargoBay> CargoBays { get; }
A list of all cargo bays in the vessel.

IList<Decoupler> Decouplers { get; }
A list of all decouplers in the vessel.

IList<DockingPort> DockingPorts { get; }
A list of all docking ports in the vessel.

DockingPort DockingPortWithName (string name)
The first docking port in the vessel with the given port name, as returned by DockingPort.Name.
Returns null if there are no such docking ports.

Parameters

IList<Engine> Engines { get; }
A list of all engines in the vessel.

IList<Fairing> Fairings { get; }
A list of all fairings in the vessel.

IList<Intake> Intakes { get; }
A list of all intakes in the vessel.

IList<LandingGear> LandingGear { get; }
A list of all landing gear attached to the vessel.

IList<LandingLeg> LandingLegs { get; }
A list of all landing legs attached to the vessel.

IList<LaunchClamp> LaunchClamps { get; }
A list of all launch clamps attached to the vessel.

IList<Light> Lights { get; }
A list of all lights in the vessel.

3.3. SpaceCenter API 53

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx

kRPC, Release 0.2.3

IList<Parachute> Parachutes { get; }
A list of all parachutes in the vessel.

IList<Radiator> Radiators { get; }
A list of all radiators in the vessel.

IList<ReactionWheel> ReactionWheels { get; }
A list of all reaction wheels in the vessel.

IList<ResourceConverter> ResourceConverters { get; }
A list of all resource converters in the vessel.

IList<ResourceHarvester> ResourceHarvesters { get; }
A list of all resource harvesters in the vessel.

IList<Sensor> Sensors { get; }
A list of all sensors in the vessel.

IList<SolarPanel> SolarPanels { get; }
A list of all solar panels in the vessel.

Part

class Part
Instances of this class represents a part. A vessel is made of multiple parts. Instances can be obtained by various
methods in Parts.

string Name { get; }
Internal name of the part, as used in part cfg files. For example “Mark1-2Pod”.

string Title { get; }
Title of the part, as shown when the part is right clicked in-game. For example “Mk1-2 Command Pod”.

double Cost { get; }
The cost of the part, in units of funds.

Vessel Vessel { get; }
The vessel that contains this part.

Part Parent { get; }
The parts parent. Returns null if the part does not have a parent. This, in combination with
Part.Children, can be used to traverse the vessels parts tree.

Note: See the discussion on Trees of Parts.

IList<Part> Children { get; }
The parts children. Returns an empty list if the part has no children. This, in combination with
Part.Parent, can be used to traverse the vessels parts tree.

Note: See the discussion on Trees of Parts.

bool AxiallyAttached { get; }
Whether the part is axially attached to its parent, i.e. on the top or bottom of its parent. If the part has no
parent, returns false.

54 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.2.3

Note: See the discussion on Attachment Modes.

bool RadiallyAttached { get; }
Whether the part is radially attached to its parent, i.e. on the side of its parent. If the part has no parent,
returns false.

Note: See the discussion on Attachment Modes.

int Stage { get; }
The stage in which this part will be activated. Returns -1 if the part is not activated by staging.

Note: See the discussion on Staging.

int DecoupleStage { get; }
The stage in which this part will be decoupled. Returns -1 if the part is never decoupled from the vessel.

Note: See the discussion on Staging.

bool Massless { get; }
Whether the part is massless.

double Mass { get; }
The current mass of the part, including resources it contains, in kilograms. Returns zero if the part is
massless.

double DryMass { get; }
The mass of the part, not including any resources it contains, in kilograms. Returns zero if the part is
massless.

double ImpactTolerance { get; }
The impact tolerance of the part, in meters per second.

double Temperature { get; }
Temperature of the part, in Kelvin.

double SkinTemperature { get; }
Temperature of the skin of the part, in Kelvin.

double MaxTemperature { get; }
Maximum temperature that the part can survive, in Kelvin.

double MaxSkinTemperature { get; }
Maximum temperature that the skin of the part can survive, in Kelvin.

float ThermalMass { get; }
A measure of how much energy it takes to increase the internal temperature of the part, in Joules per
Kelvin.

float ThermalSkinMass { get; }
A measure of how much energy it takes to increase the skin temperature of the part, in Joules per Kelvin.

float ThermalResourceMass { get; }
A measure of how much energy it takes to increase the temperature of the resources contained in the part,
in Joules per Kelvin.

3.3. SpaceCenter API 55

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
http://wiki.kerbalspaceprogram.com/wiki/Massless_part
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

float ThermalConductionFlux { get; }
The rate at which heat energy is conducting into or out of the part via contact with other parts. Measured
in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy, and
negative means it is losing heat energy.

float ThermalConvectionFlux { get; }
The rate at which heat energy is convecting into or out of the part from the surrounding atmosphere.
Measured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat
energy, and negative means it is losing heat energy.

float ThermalRadiationFlux { get; }
The rate at which heat energy is radiating into or out of the part from the surrounding environment. Mea-
sured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy,
and negative means it is losing heat energy.

float ThermalInternalFlux { get; }
The rate at which heat energy is begin generated by the part. For example, some engines generate heat by
combusting fuel. Measured in energy per unit time, or power, in Watts. A positive value means the part is
gaining heat energy, and negative means it is losing heat energy.

float ThermalSkinToInternalFlux { get; }
The rate at which heat energy is transferring between the part’s skin and its internals. Measured in energy
per unit time, or power, in Watts. A positive value means the part’s internals are gaining heat energy, and
negative means its skin is gaining heat energy.

Resources Resources { get; }
A Resources object for the part.

bool Crossfeed { get; }
Whether this part is crossfeed capable.

bool IsFuelLine { get; }
Whether this part is a fuel line.

IList<Part> FuelLinesFrom { get; }
The parts that are connected to this part via fuel lines, where the direction of the fuel line is into this part.

Note: See the discussion on Fuel Lines.

IList<Part> FuelLinesTo { get; }
The parts that are connected to this part via fuel lines, where the direction of the fuel line is out of this part.

Note: See the discussion on Fuel Lines.

IList<Module> Modules { get; }
The modules for this part.

CargoBay CargoBay { get; }
A CargoBay if the part is a cargo bay, otherwise null.

Decoupler Decoupler { get; }
A Decoupler if the part is a decoupler, otherwise null.

DockingPort DockingPort { get; }
A DockingPort if the part is a docking port, otherwise null.

Engine Engine { get; }
An Engine if the part is an engine, otherwise null.

56 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx

kRPC, Release 0.2.3

Fairing Fairing { get; }
A Fairing if the part is a fairing, otherwise null.

Intake Intake { get; }
An Intake if the part is an intake, otherwise null.

LandingGear LandingGear { get; }
A LandingGear if the part is a landing gear , otherwise null.

LandingLeg LandingLeg { get; }
A LandingLeg if the part is a landing leg, otherwise null.

LaunchClamp LaunchClamp { get; }
A LaunchClamp if the part is a launch clamp, otherwise null.

Light Light { get; }
A Light if the part is a light, otherwise null.

Parachute Parachute { get; }
A Parachute if the part is a parachute, otherwise null.

Radiator Radiator { get; }
A Radiator if the part is a radiator, otherwise null.

ReactionWheel ReactionWheel { get; }
A ReactionWheel if the part is a reaction wheel, otherwise null.

ResourceConverter ResourceConverter { get; }
A ResourceConverter if the part is a resource converter, otherwise null.

ResourceHarvester ResourceHarvester { get; }
A ResourceHarvester if the part is a resource harvester, otherwise null.

Sensor Sensor { get; }
A Sensor if the part is a sensor, otherwise null.

SolarPanel SolarPanel { get; }
A SolarPanel if the part is a solar panel, otherwise null.

Tuple<double, double, double> Position (ReferenceFrame referenceFrame)
The position of the part in the given reference frame.

Parameters

Tuple<double, double, double> Direction (ReferenceFrame referenceFrame)
The direction of the part in the given reference frame.

Parameters

Tuple<double, double, double> Velocity (ReferenceFrame referenceFrame)
The velocity of the part in the given reference frame.

Parameters

Tuple<double, double, double, double> Rotation (ReferenceFrame referenceFrame)
The rotation of the part in the given reference frame.

Parameters

ReferenceFrame ReferenceFrame { get; }
The reference frame that is fixed relative to this part.

•The origin is at the position of the part.

•The axes rotate with the part.

3.3. SpaceCenter API 57

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

•The x, y and z axis directions depend on the design of the part.

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by DockingPort.ReferenceFrame.

Fig. 3.7: Mk1 Command Pod reference frame origin and axes

Module

class Module
In KSP, each part has zero or more PartModules associated with it. Each one contains some of the functionality
of the part. For example, an engine has a “ModuleEngines” PartModule that contains all the functionality of an
engine. This class allows you to interact with KSPs PartModules, and any PartModules that have been added by
other mods.

string Name { get; }
Name of the PartModule. For example, “ModuleEngines”.

Part Part { get; }
The part that contains this module.

IDictionary<string, string> Fields { get; }
The modules field names and their associated values, as a dictionary. These are the values visible in the
right-click menu of the part.

bool HasField (string name)
Returns true if the module has a field with the given name.

Parameters

• name – Name of the field.

string GetField (string name)
Returns the value of a field.

58 Chapter 3. C#

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation#MODULES
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/s4ys34ea.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.2.3

Parameters

• name – Name of the field.

IList<string> Events { get; }
A list of the names of all of the modules events. Events are the clickable buttons visible in the right-click
menu of the part.

bool HasEvent (string name)
true if the module has an event with the given name.

Parameters

void TriggerEvent (string name)
Trigger the named event. Equivalent to clicking the button in the right-click menu of the part.

Parameters

IList<string> Actions { get; }
A list of all the names of the modules actions. These are the parts actions that can be assigned to action
groups in the in-game editor.

bool HasAction (string name)
true if the part has an action with the given name.

Parameters

void SetAction (string name, bool value = True)
Set the value of an action with the given name.

Parameters

Specific Types of Part

The following classes provide functionality for specific types of part.

• Cargo Bay
• Decoupler
• Docking Port
• Engine
• Fairing
• Intake
• Landing Gear
• Landing Leg
• Launch Clamp
• Light
• Parachute
• Radiator
• Resource Converter
• Resource Harvester
• Reaction Wheel
• Sensor
• Solar Panel

3.3. SpaceCenter API 59

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.2.3

Cargo Bay

class CargoBay
Obtained by calling Part.CargoBay .

Part Part { get; }
The part object for this cargo bay.

CargoBayState State { get; }
The state of the cargo bay.

bool Open { get; set; }
Whether the cargo bay is open.

enum CargoBayState
See CargoBay.State.

Open
Cargo bay is fully open.

Closed
Cargo bay closed and locked.

Opening
Cargo bay is opening.

Closing
Cargo bay is closing.

Decoupler

class Decoupler
Obtained by calling Part.Decoupler

Part Part { get; }
The part object for this decoupler.

void Decouple ()
Fires the decoupler. Has no effect if the decoupler has already fired.

bool Decoupled { get; }
Whether the decoupler has fired.

float Impulse { get; }
The impulse that the decoupler imparts when it is fired, in Newton seconds.

Docking Port

class DockingPort
Obtained by calling Part.DockingPort

Part Part { get; }
The part object for this docking port.

string Name { get; set; }
The port name of the docking port. This is the name of the port that can be set in the right click menu,
when the Docking Port Alignment Indicator mod is installed. If this mod is not installed, returns the title
of the part (Part.Title).

60 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
http://forum.kerbalspaceprogram.com/threads/43901

kRPC, Release 0.2.3

DockingPortState State { get; }
The current state of the docking port.

Part DockedPart { get; }
The part that this docking port is docked to. Returns null if this docking port is not docked to anything.

Vessel Undock ()
Undocks the docking port and returns the vessel that was undocked from. After undocking, the active
vessel may change (SpaceCenter.ActiveVessel). This method can be called for either docking
port in a docked pair - both calls will have the same effect. Returns null if the docking port is not docked
to anything.

float ReengageDistance { get; }
The distance a docking port must move away when it undocks before it becomes ready to dock with another
port, in meters.

bool HasShield { get; }
Whether the docking port has a shield.

bool Shielded { get; set; }
The state of the docking ports shield, if it has one. Returns true if the docking port has a shield, and
the shield is closed. Otherwise returns false. When set to true, the shield is closed, and when set to
false the shield is opened. If the docking port does not have a shield, setting this attribute has no effect.

Tuple<double, double, double> Position (ReferenceFrame referenceFrame)
The position of the docking port in the given reference frame.

Parameters

Tuple<double, double, double> Direction (ReferenceFrame referenceFrame)
The direction that docking port points in, in the given reference frame.

Parameters

Tuple<double, double, double, double> Rotation (ReferenceFrame referenceFrame)
The rotation of the docking port, in the given reference frame.

Parameters

ReferenceFrame ReferenceFrame { get; }
The reference frame that is fixed relative to this docking port, and oriented with the port.

•The origin is at the position of the docking port.

•The axes rotate with the docking port.

•The x-axis points out to the right side of the docking port.

•The y-axis points in the direction the docking port is facing.

•The z-axis points out of the bottom off the docking port.

Note: This reference frame is not necessarily equivalent to the reference frame for the part, returned by
Part.ReferenceFrame.

enum DockingPortState
See DockingPort.State.

Ready
The docking port is ready to dock to another docking port.

3.3. SpaceCenter API 61

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

Fig. 3.8: Docking port reference frame origin and axes

Fig. 3.9: Inline docking port reference frame origin and axes

62 Chapter 3. C#

kRPC, Release 0.2.3

Docked
The docking port is docked to another docking port, or docked to another part (from the VAB/SPH).

Docking
The docking port is very close to another docking port, but has not docked. It is using magnetic force to
acquire a solid dock.

Undocking
The docking port has just been undocked from another docking port, and is disabled until it moves away
by a sufficient distance (DockingPort.ReengageDistance).

Shielded
The docking port has a shield, and the shield is closed.

Moving
The docking ports shield is currently opening/closing.

Engine

class Engine
Obtained by calling Part.Engine.

Part Part { get; }
The part object for this engine.

bool Active { get; set; }
Whether the engine is active. Setting this attribute may have no effect, depending on
Engine.CanShutdown and Engine.CanRestart.

float Thrust { get; }
The current amount of thrust being produced by the engine, in Newtons. Returns zero if the engine is not
active or if it has no fuel.

float AvailableThrust { get; }
The maximum available amount of thrust that can be produced by the engine, in Newtons. This takes
Engine.ThrustLimit into account, and is the amount of thrust produced by the engine when activated
and the main throttle is set to 100%. Returns zero if the engine does not have any fuel.

float MaxThrust { get; }
Gets the maximum amount of thrust that can be produced by the engine, in Newtons. This is the amount
of thrust produced by the engine when activated, Engine.ThrustLimit is set to 100% and the main
vessel’s throttle is set to 100%.

float MaxVacuumThrust { get; }
The maximum amount of thrust that can be produced by the engine in a vacuum, in Newtons. This is the
amount of thrust produced by the engine when activated, Engine.ThrustLimit is set to 100%, the
main vessel’s throttle is set to 100% and the engine is in a vacuum.

float ThrustLimit { get; set; }
The thrust limiter of the engine. A value between 0 and 1. Setting this attribute may have no effect, for
example the thrust limit for a solid rocket booster cannot be changed in flight.

float SpecificImpulse { get; }
The current specific impulse of the engine, in seconds. Returns zero if the engine is not active.

float VacuumSpecificImpulse { get; }
The vacuum specific impulse of the engine, in seconds.

float KerbinSeaLevelSpecificImpulse { get; }
The specific impulse of the engine at sea level on Kerbin, in seconds.

3.3. SpaceCenter API 63

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

IList<string> Propellants { get; }
The names of resources that the engine consumes.

IDictionary<string, float> PropellantRatios { get; }
The ratios of resources that the engine consumes. A dictionary mapping resource names to the ratios at
which they are consumed by the engine.

bool HasFuel { get; }
Whether the engine has run out of fuel (or flamed out).

float Throttle { get; }
The current throttle setting for the engine. A value between 0 and 1. This is not necessarily the same as
the vessel’s main throttle setting, as some engines take time to adjust their throttle (such as jet engines).

bool ThrottleLocked { get; }
Whether the Control.Throttle affects the engine. For example, this is true for liquid fueled rock-
ets, and false for solid rocket boosters.

bool CanRestart { get; }
Whether the engine can be restarted once shutdown. If the engine cannot be shutdown, returns false.
For example, this is true for liquid fueled rockets and false for solid rocket boosters.

bool CanShutdown { get; }
Gets whether the engine can be shutdown once activated. For example, this is true for liquid fueled
rockets and false for solid rocket boosters.

bool HasModes { get; }
Whether the engine has multiple modes of operation.

string Mode { get; set; }
The name of the current engine mode.

IDictionary<string, Engine> Modes { get; }
The available modes for the engine. A dictionary mapping mode names to Engine objects.

void ToggleMode ()
Toggle the current engine mode.

bool AutoModeSwitch { get; set; }
Whether the engine will automatically switch modes.

bool Gimballed { get; }
Whether the engine nozzle is gimballed, i.e. can provide a turning force.

float GimbalRange { get; }
The range over which the gimbal can move, in degrees. Returns 0 if the engine is not gimballed.

bool GimbalLocked { get; set; }
Whether the engines gimbal is locked in place. Setting this attribute has no effect if the engine is not
gimballed.

float GimbalLimit { get; set; }
The gimbal limiter of the engine. A value between 0 and 1. Returns 0 if the gimbal is locked.

Fairing

class Fairing
Obtained by calling Part.Fairing.

Part Part { get; }
The part object for this fairing.

64 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/s4ys34ea.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/s4ys34ea.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

void Jettison ()
Jettison the fairing. Has no effect if it has already been jettisoned.

bool Jettisoned { get; }
Whether the fairing has been jettisoned.

Intake

class Intake
Obtained by calling Part.Intake.

Part Part { get; }
The part object for this intake.

bool Open { get; set; }
Whether the intake is open.

float Speed { get; }
Speed of the flow into the intake, in 𝑚/𝑠.

float Flow { get; }
The rate of flow into the intake, in units of resource per second.

float Area { get; }
The area of the intake’s opening, in square meters.

Landing Gear

class LandingGear
Obtained by calling Part.LandingGear.

Part Part { get; }
The part object for this landing gear.

LandingGearState State { get; }
Gets the current state of the landing gear.

Note: Fixed landing gear are always deployed.

bool Deployable { get; }
Whether the landing gear is deployable.

bool Deployed { get; set; }
Whether the landing gear is deployed.

Note: Fixed landing gear are always deployed. Returns an error if you try to deploy fixed landing gear.

enum LandingGearState
See LandingGear.State.

Deployed
Landing gear is fully deployed.

Retracted
Landing gear is fully retracted.

3.3. SpaceCenter API 65

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.2.3

Deploying
Landing gear is being deployed.

Retracting
Landing gear is being retracted.

Landing Leg

class LandingLeg
Obtained by calling Part.LandingLeg.

Part Part { get; }
The part object for this landing leg.

LandingLegState State { get; }
The current state of the landing leg.

bool Deployed { get; set; }
Whether the landing leg is deployed.

enum LandingLegState
See LandingLeg.State.

Deployed
Landing leg is fully deployed.

Retracted
Landing leg is fully retracted.

Deploying
Landing leg is being deployed.

Retracting
Landing leg is being retracted.

Broken
Landing leg is broken.

Repairing
Landing leg is being repaired.

Launch Clamp

class LaunchClamp
Obtained by calling Part.LaunchClamp.

Part Part { get; }
The part object for this launch clamp.

void Release ()
Releases the docking clamp. Has no effect if the clamp has already been released.

Light

class Light
Obtained by calling Part.Light.

66 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.2.3

Part Part { get; }
The part object for this light.

bool Active { get; set; }
Whether the light is switched on.

float PowerUsage { get; }
The current power usage, in units of charge per second.

Parachute

class Parachute
Obtained by calling Part.Parachute.

Part Part { get; }
The part object for this parachute.

void Deploy ()
Deploys the parachute. This has no effect if the parachute has already been deployed.

bool Deployed { get; }
Whether the parachute has been deployed.

ParachuteState State { get; }
The current state of the parachute.

float DeployAltitude { get; set; }
The altitude at which the parachute will full deploy, in meters.

float DeployMinPressure { get; set; }
The minimum pressure at which the parachute will semi-deploy, in atmospheres.

enum ParachuteState
See Parachute.State.

Stowed
The parachute is safely tucked away inside its housing.

Active
The parachute is still stowed, but ready to semi-deploy.

SemiDeployed
The parachute has been deployed and is providing some drag, but is not fully deployed yet.

Deployed
The parachute is fully deployed.

Cut
The parachute has been cut.

Radiator

class Radiator
Obtained by calling Part.Radiator.

Part Part { get; }
The part object for this radiator.

bool Deployable { get; }
Whether the radiator is deployable.

3.3. SpaceCenter API 67

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx

kRPC, Release 0.2.3

bool Deployed { get; set; }
For a deployable radiator, true if the radiator is extended. If the radiator is not deployable, this is always
true.

RadiatorState State { get; }
The current state of the radiator.

Note: A fixed radiator is always RadiatorState.Extended.

enum RadiatorState
RadiatorState

Extended
Radiator is fully extended.

Retracted
Radiator is fully retracted.

Extending
Radiator is being extended.

Retracting
Radiator is being retracted.

Broken
Radiator is being broken.

Resource Converter

class ResourceConverter
Obtained by calling Part.ResourceConverter.

Part Part { get; }
The part object for this converter.

int Count { get; }
The number of converters in the part.

string Name (int index)
The name of the specified converter.

Parameters

• index – Index of the converter.

bool Active (int index)
True if the specified converter is active.

Parameters

• index – Index of the converter.

void Start (int index)
Start the specified converter.

Parameters

• index – Index of the converter.

void Stop (int index)
Stop the specified converter.

68 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx

kRPC, Release 0.2.3

Parameters

• index – Index of the converter.

ResourceConverterState State (int index)
The state of the specified converter.

Parameters

• index – Index of the converter.

string StatusInfo (int index)
Status information for the specified converter. This is the full status message shown in the in-game UI.

Parameters

• index – Index of the converter.

IList<string> Inputs (int index)
List of the names of resources consumed by the specified converter.

Parameters

• index – Index of the converter.

IList<string> Outputs (int index)
List of the names of resources produced by the specified converter.

Parameters

• index – Index of the converter.

enum ResourceConverterState
See ResourceConverter.State.

Running
Converter is running.

Idle
Converter is idle.

MissingResource
Converter is missing a required resource.

StorageFull
No available storage for output resource.

Capacity
At preset resource capacity.

Unknown
Unknown state. Possible with modified resource converters. In this case, check
ResourceConverter.StatusInfo for more information.

Resource Harvester

class ResourceHarvester
Obtained by calling Part.ResourceHarvester.

Part Part { get; }
The part object for this harvester.

ResourceHarvesterState State { get; }
The state of the harvester.

3.3. SpaceCenter API 69

https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.int32.aspx

kRPC, Release 0.2.3

bool Deployed { get; set; }
Whether the harvester is deployed.

bool Active { get; set; }
Whether the harvester is actively drilling.

float ExtractionRate { get; }
The rate at which the drill is extracting ore, in units per second.

float ThermalEfficiency { get; }
The thermal efficiency of the drill, as a percentage of its maximum.

float CoreTemperature { get; }
The core temperature of the drill, in Kelvin.

float OptimumCoreTemperature { get; }
The core temperature at which the drill will operate with peak efficiency, in Kelvin.

enum ResourceHarvesterState
See ResourceHarvester.State.

Deploying
The drill is deploying.

Deployed
The drill is deployed and ready.

Retracting
The drill is retracting.

Retracted
The drill is retracted.

Active
The drill is running.

Reaction Wheel

class ReactionWheel
Obtained by calling Part.ReactionWheel.

Part Part { get; }
The part object for this reaction wheel.

bool Active { get; set; }
Whether the reaction wheel is active.

bool Broken { get; }
Whether the reaction wheel is broken.

float PitchTorque { get; }
The torque in the pitch axis, in Newton meters.

float YawTorque { get; }
The torque in the yaw axis, in Newton meters.

float RollTorque { get; }
The torque in the roll axis, in Newton meters.

70 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

Sensor

class Sensor
Obtained by calling Part.Sensor.

Part Part { get; }
The part object for this sensor.

bool Active { get; set; }
Whether the sensor is active.

string Value { get; }
The current value of the sensor.

float PowerUsage { get; }
The current power usage of the sensor, in units of charge per second.

Solar Panel

class SolarPanel
Obtained by calling Part.SolarPanel.

Part Part { get; }
The part object for this solar panel.

bool Deployed { get; set; }
Whether the solar panel is extended.

SolarPanelState State { get; }
The current state of the solar panel.

float EnergyFlow { get; }
The current amount of energy being generated by the solar panel, in units of charge per second.

float SunExposure { get; }
The current amount of sunlight that is incident on the solar panel, as a percentage. A value between 0 and
1.

enum SolarPanelState
See SolarPanel.State.

Extended
Solar panel is fully extended.

Retracted
Solar panel is fully retracted.

Extending
Solar panel is being extended.

Retracting
Solar panel is being retracted.

Broken
Solar panel is broken.

3.3. SpaceCenter API 71

https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

Trees of Parts

Vessels in KSP are comprised of a number of parts, connected to one another in a
tree structure. An example vessel is shown in Figure 1, and the corresponding tree of
parts in Figure 2. The craft file for this example can also be downloaded here.

Fig. 3.10: Figure 1 – Example parts making up a vessel.

Traversing the Tree

The tree of parts can be traversed using the at-
tributes Parts.Root, Part.Parent and
Part.Children.

The root of the tree is the same as the vessels
root part (part number 1 in the example above)
and can be obtained by calling Parts.Root.
A parts children can be obtained by calling
Part.Children. If the part does not have
any children, Part.Children returns an
empty list. A parts parent can be obtained by
calling Part.Parent. If the part does not
have a parent (as is the case for the root part),
Part.Parent returns null.

The following C# example uses these at-
tributes to perform a depth-first traversal over
all of the parts in a vessel:

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;
using System.Collections.Generic;
using System.Net;

class AttachmentModes {
public static void Main () {

var connection = new Connection ();
var vessel = connection.SpaceCenter ().ActiveVessel;
var root = vessel.Parts.Root;
var stack = new Stack<Tuple<Part,int>> ();
stack.Push (new Tuple<Part,int> (root, 0));
while (stack.Count > 0) {

var item = stack.Pop ();
Part part = item.Item1;
int depth = item.Item2;
Console.WriteLine (new String (' ', depth) + part.Title);
foreach (var child in part.Children)

stack.Push (new Tuple<Part,int> (child, depth + 1));
}

}
}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

72 Chapter 3. C#

kRPC, Release 0.2.3

Command Pod Mk1
TR-18A Stack Decoupler
FL-T400 Fuel Tank
LV-909 Liquid Fuel Engine
TR-18A Stack Decoupler
FL-T800 Fuel Tank
LV-909 Liquid Fuel Engine
TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

LT-1 Landing Struts
LT-1 Landing Struts

Mk16 Parachute

Attachment Modes

Parts can be attached to other parts either ra-
dially (on the side of the parent part) or axially
(on the end of the parent part, to form a stack).

For example, in the vessel pictured above, the
parachute (part 2) is axially connected to its
parent (the command pod – part 1), and the
landing leg (part 5) is radially connected to its
parent (the fuel tank – part 4).

The root part of a vessel (for example the com-
mand pod – part 1) does not have a parent part,

so does not have an attachment mode. However, the part is consider to be axially attached to nothing.

Fig. 3.11: Figure 2 – Tree of parts for the vessel in Figure 1. Arrows
point from the parent part to the child part.

The following C# example does a depth-first
traversal as before, but also prints out the at-
tachment mode used by the part:

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;
using System.Collections.Generic;
using System.Net;

class AttachmentModes
{

public static void Main ()
{

var connection = new Connection ();
var vessel = connection.SpaceCenter ().ActiveVessel;
var root = vessel.Parts.Root;
var stack = new Stack<Tuple<Part,int>> ();

3.3. SpaceCenter API 73

kRPC, Release 0.2.3

stack.Push (new Tuple<Part,int> (root, 0));
while (stack.Count > 0) {

var item = stack.Pop ();
Part part = item.Item1;
int depth = item.Item2;
string attachMode = (part.AxiallyAttached ? "axial" : "radial");
Console.WriteLine (new String (' ', depth) + part.Title + " - " + attachMode);
foreach (var child in part.Children)

stack.Push (new Tuple<Part,int> (child, depth + 1));
}

}
}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1 - axial
TR-18A Stack Decoupler - axial
FL-T400 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TR-18A Stack Decoupler - axial
FL-T800 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

LT-1 Landing Struts - radial
LT-1 Landing Struts - radial

Mk16 Parachute - axial

74 Chapter 3. C#

kRPC, Release 0.2.3

Fuel Lines

Fig. 3.12: Figure 5 – Fuel lines from the example
in Figure 1. Fuel flows from the parts highlighted
in green, into the part highlighted in blue.

Fig. 3.13: Figure 4 – A subset of the parts tree
from Figure 2 above.

Fuel lines are considered parts, and are included in the parts tree
(for example, as pictured in Figure 4). However, the parts tree
does not contain information about which parts fuel lines connect
to. The parent part of a fuel line is the part from which it will take
fuel (as shown in Figure 4) however the part that it will send fuel
to is not represented in the parts tree.

Figure 5 shows the fuel lines from the example vessel pictured
earlier. Fuel line part 15 (in red) takes fuel from a fuel tank (part
11 – in green) and feeds it into another fuel tank (part 9 – in blue).
The fuel line is therefore a child of part 11, but its connection to
part 9 is not represented in the tree.

The attributes Part.FuelLinesFrom and
Part.FuelLinesTo can be used to discover these connec-
tions. In the example in Figure 5, when Part.FuelLinesTo
is called on fuel tank part 11, it will return a list of parts
containing just fuel tank part 9 (the blue part). When
Part.FuelLinesFrom is called on fuel tank part 9, it
will return a list containing fuel tank parts 11 and 17 (the parts
colored green).

Staging

Each part has two staging numbers associated with it: the stage
in which the part is activated and the stage in which the part is
decoupled. These values can be obtained using Part.Stage
and Part.DecoupleStage respectively. For parts that are
not activated by staging, Part.Stage returns -1. For parts that
are never decoupled, Part.DecoupleStage returns a value
of -1.

Figure 6 shows an example staging sequence for a vessel. Figure
7 shows the stages in which each part of the vessel will be acti-

3.3. SpaceCenter API 75

kRPC, Release 0.2.3

vated. Figure 8 shows the stages in which each part of the vessel
will be decoupled.

Fig. 3.14: Figure 6 – Example vessel from Figure 1 with a staging sequence.

76 Chapter 3. C#

kRPC, Release 0.2.3

Fig. 3.15: Figure 7 – The stage in which each part is activated.

Fig. 3.16: Figure 8 – The stage in which each part is decou-
pled.

3.3.8 Resources

class Resources
Created by calling Vessel.Resources,
Vessel.ResourcesInDecoupleStage
or Part.Resources.

IList<string> Names { get; }
A list of resource names that can be stored.

bool HasResource (string name)
Check whether the named resource can be stored.

Parameters

• name – The name of the resource.

float Max (string name)
Returns the amount of a resource that can be stored.

Parameters

• name – The name of the resource.

float Amount (string name)
Returns the amount of a resource that is currently

3.3. SpaceCenter API 77

https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.2.3

stored.

Parameters

• name – The name of the resource.

float Density (string name)
Returns the density of a resource, in kg/l.

Parameters

• name – The name of the resource.

ResourceFlowMode FlowMode (string name)
Returns the flow mode of a resource.

Parameters

• name – The name of the resource.

enum ResourceFlowMode
See Resources.FlowMode.

Vessel
The resource flows to any part in the vessel. For
example, electric charge.

Stage
The resource flows from parts in the first stage,
followed by the second, and so on. For example,
mono-propellant.

Adjacent
The resource flows between adjacent parts within
the vessel. For example, liquid fuel or oxidizer.

None
The resource does not flow. For example, solid fuel.

3.3.9 Node

class Node
Represents a maneuver node. Can be created using
Control.AddNode.

float Prograde { get; set; }
The magnitude of the maneuver nodes delta-v in the
prograde direction, in meters per second.

float Normal { get; set; }
The magnitude of the maneuver nodes delta-v in the
normal direction, in meters per second.

float Radial { get; set; }
The magnitude of the maneuver nodes delta-v in the
radial direction, in meters per second.

float DeltaV { get; set; }
The delta-v of the maneuver node, in meters per
second.

78 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

Note: Does not change when executing the maneu-
ver node. See Node.RemainingDeltaV .

float RemainingDeltaV { get; }
Gets the remaining delta-v of the maneuver node, in
meters per second. Changes as the node is executed.
This is equivalent to the delta-v reported in-game.

Tuple<double, double, double> BurnVector (ReferenceFrame referenceFrame = None)
Returns a vector whose direction the direction of the
maneuver node burn, and whose magnitude is the
delta-v of the burn in m/s.

Parameters

Note: Does not change when executing the maneu-
ver node. See Node.RemainingBurnVector.

Tuple<double, double, double> RemainingBurnVector (ReferenceFrame referenceFrame = None)
Returns a vector whose direction the direction of
the maneuver node burn, and whose magnitude is
the delta-v of the burn in m/s. The direction and
magnitude change as the burn is executed.

Parameters

double UT { get; set; }
The universal time at which the maneuver will occur,
in seconds.

double TimeTo { get; }
The time until the maneuver node will be encoun-
tered, in seconds.

Orbit Orbit { get; }
The orbit that results from executing the maneuver
node.

void Remove ()
Removes the maneuver node.

ReferenceFrame ReferenceFrame { get; }
Gets the reference frame that is fixed relative to the
maneuver node’s burn.

•The origin is at the position of the maneuver node.

•The y-axis points in the direction of the burn.

•The x-axis and z-axis point in arbitrary but fixed di-
rections.

ReferenceFrame OrbitalReferenceFrame { get; }
Gets the reference frame that is fixed relative to
the maneuver node, and orientated with the orbital
prograde/normal/radial directions of the original
orbit at the maneuver node’s position.

3.3. SpaceCenter API 79

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

•The origin is at the position of the maneuver node.

•The x-axis points in the orbital anti-radial direction
of the original orbit, at the position of the maneuver
node.

•The y-axis points in the orbital prograde direction
of the original orbit, at the position of the maneuver
node.

•The z-axis points in the orbital normal direction of
the original orbit, at the position of the maneuver
node.

Tuple<double, double, double> Position (ReferenceFrame referenceFrame)
Returns the position vector of the maneuver node in
the given reference frame.

Parameters

Tuple<double, double, double> Direction (ReferenceFrame referenceFrame)
Returns the unit direction vector of the maneuver
nodes burn in the given reference frame.

Parameters

3.3.10 Comms

class Comms
Used to interact with RemoteTech. Created using a
call to Vessel.Comms.

Note: This class requires RemoteTech to be in-
stalled.

bool HasLocalControl { get; }
Whether the vessel can be controlled locally.

bool HasFlightComputer { get; }
Whether the vessel has a RemoteTech flight com-
puter on board.

bool HasConnection { get; }
Whether the vessel can receive commands from the
KSC or a command station.

bool HasConnectionToGroundStation { get; }
Whether the vessel can transmit science data to a
ground station.

double SignalDelay { get; }
The signal delay when sending commands to the
vessel, in seconds.

double SignalDelayToGroundStation { get; }
The signal delay between the vessel and the closest
ground station, in seconds.

80 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
http://forum.kerbalspaceprogram.com/threads/83305
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

double SignalDelayToVessel (Vessel other)
Returns the signal delay between the current vessel
and another vessel, in seconds.

Parameters

3.3.11 ReferenceFrame

class ReferenceFrame
Represents a reference frame for positions, rotations
and velocities. Contains:

•The position of the origin.

•The directions of the x, y and z axes.

•The linear velocity of the frame.

•The angular velocity of the frame.

Note: This class does not contain any properties
or methods. It is only used as a parameter to other
functions.

3.3.12 AutoPilot

class AutoPilot
Provides basic auto-piloting utilities for a vessel.
Created by calling Vessel.AutoPilot.

void Engage ()
Engage the auto-pilot.

void Disengage ()
Disengage the auto-pilot.

void Wait ()
Blocks until the vessel is pointing in the target di-
rection (if set) and has the target roll (if set).

float Error { get; }
The error, in degrees, between the direction the
ship has been asked to point in and the direction
it is pointing in. Returns zero if the auto-pilot has
not been engaged, SAS is not enabled, SAS is in
stability assist mode, or no target direction is set.

float RollError { get; }
The error, in degrees, between the roll the ship has
been asked to be in and the actual roll. Returns zero
if the auto-pilot has not been engaged or no target
roll is set.

ReferenceFrame ReferenceFrame { get; set; }
The reference frame for the target direction
(AutoPilot.TargetDirection).

3.3. SpaceCenter API 81

https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

Tuple<double, double, double> TargetDirection { get; set; }
The target direction. null if no target direction is
set.

void TargetPitchAndHeading (float pitch, float heading)
Set (AutoPilot.TargetDirection) from a
pitch and heading angle.

Parameters

• pitch – Target pitch angle, in degrees between -90°
and +90°.

• heading – Target heading angle, in degrees between
0° and 360°.

float TargetRoll { get; set; }
The target roll, in degrees. NaN if no target roll is
set.

bool SAS { get; set; }
The state of SAS.

Note: Equivalent to Control.SAS

SASMode SASMode { get; set; }
The current SASMode. These modes are equivalent
to the mode buttons to the left of the navball that
appear when SAS is enabled.

Note: Equivalent to Control.SASMode

float RotationSpeedMultiplier { get; set; }
Target rotation speed multiplier. Defaults to 1.

float MaxRotationSpeed { get; set; }
Maximum target rotation speed. Defaults to 1.

float RollSpeedMultiplier { get; set; }
Target roll speed multiplier. Defaults to 1.

float MaxRollSpeed { get; set; }
Maximum target roll speed. Defaults to 1.

void SetPIDParameters (float Kp = 1.0, float Ki = 0.0, float Kd = 0.0)
Sets the gains for the rotation rate PID controller.

Parameters

• Kp – Proportional gain.

• Ki – Integral gain.

• Kd – Derivative gain.

82 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.tuple.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

3.3.13 Geometry Types

class Vector3
3-dimensional vectors are represented as a 3-tuple.
For example:

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;
using System.Net;

class VectorExample {
public static void Main () {

var connection = new Connection ();
var vessel = connection.SpaceCenter ().ActiveVessel;
Tuple<double,double,double> v = vessel.Flight ().Prograde;
Console.WriteLine (v.Item1 + "," + v.Item2 + "," + v.Item3);

}
}

class Quaternion
Quaternions (rotations in 3-dimensional space) are
encoded as a 4-tuple containing the x, y, z and w
components. For example:

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using System;
using System.Net;

class QuaternionExample {
public static void Main () {

var connection = new Connection ();
var spaceCenter = connection.SpaceCenter ();
var vessel = spaceCenter.ActiveVessel;
Tuple<double,double,double,double> q = vessel.Flight ().Rotation;
Console.WriteLine (q.Item1 + "," + q.Item2 + "," + q.Item3 + "," + q.Item4);

}
}

3.4 InfernalRobotics API

Provides RPCs to interact with the InfernalRobotics
mod. Provides the following classes:

3.4.1 InfernalRobotics

class InfernalRobotics
This service provides functionality to interact with
the InfernalRobotics mod.

IList<ControlGroup> ServoGroups { get; }
A list of all the servo groups in the active vessel.

3.4. InfernalRobotics API 83

http://forum.kerbalspaceprogram.com/threads/116064
http://forum.kerbalspaceprogram.com/threads/116064
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx

kRPC, Release 0.2.3

ControlGroup ServoGroupWithName (string name)
Returns the servo group with the given name or
null if none exists. If multiple servo groups have
the same name, only one of them is returned.

Parameters

• name – Name of servo group to find.

Servo ServoWithName (string name)
Returns the servo with the given name, from all
servo groups, or null if none exists. If multiple
servos have the same name, only one of them is
returned.

Parameters

• name – Name of the servo to find.

3.4.2 ControlGroup

class ControlGroup
A group of ser-
vos, obtained by calling
InfernalRobotics.ServoGroups
or InfernalRobotics.ServoGroupWithName.
Represents the “Servo Groups” in the Infernal-
Robotics UI.

string Name { get; set; }
The name of the group.

string ForwardKey { get; set; }
The key assigned to be the “forward” key for the
group.

string ReverseKey { get; set; }
The key assigned to be the “reverse” key for the
group.

float Speed { get; set; }
The speed multiplier for the group.

bool Expanded { get; set; }
Whether the group is expanded in the Infernal-
Robotics UI.

IList<Servo> Servos { get; }
The servos that are in the group.

Servo ServoWithName (string name)
Returns the servo with the given name from this
group, or null if none exists.

Parameters

• name – Name of servo to find.

void MoveRight ()
Moves all of the servos in the group to the right.

84 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.2.3

void MoveLeft ()
Moves all of the servos in the group to the left.

void MoveCenter ()
Moves all of the servos in the group to the center.

void MoveNextPreset ()
Moves all of the servos in the group to the next
preset.

void MovePrevPreset ()
Moves all of the servos in the group to the previous
preset.

void Stop ()
Stops the servos in the group.

3.4.3 Servo

class Servo
Represents a servo. Obtained us-
ing ControlGroup.Servos,
ControlGroup.ServoWithName or
InfernalRobotics.ServoWithName.

string Name { get; set; }
The name of the servo.

bool Highlight { set; }
Whether the servo should be highlighted in-game.

float Position { get; }
The position of the servo.

float MinConfigPosition { get; }
The minimum position of the servo, specified by the
part configuration.

float MaxConfigPosition { get; }
The maximum position of the servo, specified by
the part configuration.

float MinPosition { get; set; }
The minimum position of the servo, specified by the
in-game tweak menu.

float MaxPosition { get; set; }
The maximum position of the servo, specified by
the in-game tweak menu.

float ConfigSpeed { get; }
The speed multiplier of the servo, specified by the
part configuration.

float Speed { get; set; }
The speed multiplier of the servo, specified by the
in-game tweak menu.

float CurrentSpeed { get; set; }
The current speed at which the servo is moving.

3.4. InfernalRobotics API 85

https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

float Acceleration { get; set; }
The current speed multiplier set in the UI.

bool IsMoving { get; }
Whether the servo is moving.

bool IsFreeMoving { get; }
Whether the servo is freely moving.

bool IsLocked { get; set; }
Whether the servo is locked.

bool IsAxisInverted { get; set; }
Whether the servos axis is inverted.

void MoveRight ()
Moves the servo to the right.

void MoveLeft ()
Moves the servo to the left.

void MoveCenter ()
Moves the servo to the center.

void MoveNextPreset ()
Moves the servo to the next preset.

void MovePrevPreset ()
Moves the servo to the previous preset.

void MoveTo (float position, float speed)
Moves the servo to position and sets the speed mul-
tiplier to speed.

Parameters

• position – The position to move the servo to.

• speed – Speed multiplier for the movement.

void Stop ()
Stops the servo.

3.4.4 Example

The following example gets the control group named
“MyGroup”, prints out the names and positions of
all of the servos in the group, then moves all of the
servos to the right for 1 second.

using KRPC.Client;
using KRPC.Client.Services.InfernalRobotics;
using System;
using System.Threading;
using System.Net;

class IR {
public static void Main () {

var connection = new Connection (name: "InfernalRobotics Example");
var ir = connection.InfernalRobotics ();

86 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx
https://msdn.microsoft.com/en-us/library/system.single.aspx

kRPC, Release 0.2.3

var group = ir.ServoGroupWithName ("MyGroup");
if (group == null) {

Console.WriteLine ("Group not found");
return;

}

foreach (var servo in group.Servos)
Console.WriteLine (servo.Name + " " + servo.Position);

group.MoveRight ();
Thread.Sleep (1000);
group.Stop ();

}
}

3.5 Kerbal Alarm Clock API

Provides RPCs to interact with the Kerbal Alarm
Clock mod. Provides the following classes:

3.5.1 KerbalAlarmClock

class KerbalAlarmClock
This service provides functionality to interact with
the Kerbal Alarm Clock mod.

IList<Alarm> Alarms { get; }
A list of all the alarms.

Alarm AlarmWithName (string name)
Get the alarm with the given name, or null if no
alarms have that name. If more than one alarm has
the name, only returns one of them.

Parameters

• name – Name of the alarm to search for.

IList<Alarm> AlarmsWithType (AlarmType type)
Get a list of alarms of the specified type.

Parameters

• type – Type of alarm to return.

Alarm CreateAlarm (AlarmType type, string name, double ut)
Create a new alarm and return it.

Parameters

• type – Type of the new alarm.

• name – Name of the new alarm.

• ut – Time at which the new alarm should trigger.

3.5. Kerbal Alarm Clock API 87

http://forum.kerbalspaceprogram.com/threads/24786
http://forum.kerbalspaceprogram.com/threads/24786
http://forum.kerbalspaceprogram.com/threads/24786
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/5y536ey6.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

3.5.2 Alarm

class Alarm
Represents an alarm. Obtained by call-
ing KerbalAlarmClock.Alarms,
KerbalAlarmClock.AlarmWithName or
KerbalAlarmClock.AlarmsWithType.

AlarmAction Action { get; set; }
The action that the alarm triggers.

double Margin { get; set; }
The number of seconds before the event that the
alarm will fire.

double Time { get; set; }
The time at which the alarm will fire.

AlarmType Type { get; }
The type of the alarm.

string ID { get; }
The unique identifier for the alarm.

string Name { get; set; }
The short name of the alarm.

string Notes { get; set; }
The long description of the alarm.

double Remaining { get; }
The number of seconds until the alarm will fire.

bool Repeat { get; set; }
Whether the alarm will be repeated after it has fired.

double RepeatPeriod { get; set; }
The time delay to automatically create an alarm
after it has fired.

Vessel Vessel { get; set; }
The vessel that the alarm is attached to.

CelestialBody XferOriginBody { get; set; }
The celestial body the vessel is departing from.

CelestialBody XferTargetBody { get; set; }
The celestial body the vessel is arriving at.

void Remove ()
Removes the alarm.

3.5.3 AlarmType

enum AlarmType
The type of an alarm.

Raw
An alarm for a specific date/time or a specific period
in the future.

88 Chapter 3. C#

https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx
https://msdn.microsoft.com/en-us/library/system.boolean.aspx
https://msdn.microsoft.com/en-us/library/system.double.aspx

kRPC, Release 0.2.3

Maneuver
An alarm based on the next maneuver node on the
current ships flight path. This node will be stored
and can be restored when you come back to the ship.

ManeuverAuto
See AlarmType.Maneuver.

Apoapsis
An alarm for furthest part of the orbit from the
planet.

Periapsis
An alarm for nearest part of the orbit from the planet.

AscendingNode
Ascending node for the targeted object, or equatorial
ascending node.

DescendingNode
Descending node for the targeted object, or equato-
rial descending node.

Closest
An alarm based on the closest approach of this ves-
sel to the targeted vessel, some number of orbits
into the future.

Contract
An alarm based on the expiry or deadline of con-
tracts in career modes.

ContractAuto
See AlarmType.Contract.

Crew
An alarm that is attached to a crew member.

Distance
An alarm that is triggered when a selected target
comes within a chosen distance.

EarthTime
An alarm based on the time in the “Earth” alternative
Universe (aka the Real World).

LaunchRendevous
An alarm that fires as your landed craft passes under
the orbit of your target.

SOIChange
An alarm manually based on when the next SOI
point is on the flight path or set to continually
monitor the active flight path and add alarms as it
detects SOI changes.

SOIChangeAuto
See AlarmType.SOIChange.

Transfer
An alarm based on Interplanetary Transfer Phase

3.5. Kerbal Alarm Clock API 89

kRPC, Release 0.2.3

Angles, i.e. when should I launch to planet X?
Based on Kosmo Not’s post and used in Olex’s
Calculator.

TransferModelled
See AlarmType.Transfer.

3.5.4 AlarmAction

enum AlarmAction
The action performed by an alarm when it fires.

DoNothing
Don’t do anything at all...

DoNothingDeleteWhenPassed
Don’t do anything, and delete the alarm.

KillWarp
Drop out of time warp.

KillWarpOnly
Drop out of time warp.

MessageOnly
Display a message.

PauseGame
Pause the game.

3.5.5 Example

The following example creates a new alarm for the
active vessel. The alarm is set to trigger after 10 sec-
onds have passed, and display a message.

using KRPC.Client;
using KRPC.Client.Services.SpaceCenter;
using KRPC.Client.Services.KerbalAlarmClock;
using System;
using System.Net;

class KAC {
public static void Main () {

var connection = new Connection (name: "Kerbal Alarm Clock Example");
var kac = connection.KerbalAlarmClock ();
var alarm = kac.CreateAlarm (AlarmType.Raw, "My New Alarm", connection.SpaceCenter ().UT + 10);
alarm.Notes = "10 seconds have now passed since the alarm was created.";
alarm.Action = AlarmAction.MessageOnly;

}
}

90 Chapter 3. C#

CHAPTER

FOUR

C++

4.1 C++ Client

This client provides functionality to interact with a kRPC server from programs written in C++. It can be downloaded
from GitHub.

4.1.1 Installing the Library

Installing Dependencies

First you need to install kRPC’s dependencies: ASIO which is used for network communication and protobuf which
is used to serialize messages.

ASIO is a headers-only library. The boost version is not required, installing the non-Boost variant is sufficient. On
Ubuntu, this can be done using apt:

sudo apt-get install libasio-dev

Alternatively it can be downloaded via the ASIO website.

Protobuf version 3 is also required, and can be downloaded from GitHub. Installation instructions can be found here.

Note: The version of protobuf currently provided in Ubuntu’s apt repositories is version 2. This will not work with
kRPC.

Install using the configure script

Once the dependencies have been installed, you can install the kRPC client library and headers using the configure
script provided with the source. Download the source archive, extract it and then execute the following:

./configure
make
sudo make install
sudo ldconfig

Install using CMake

Alternatively, you can install the client library and headers using CMake. Download the source archive, extract it and
execute the following:

91

https://github.com/krpc/krpc/releases/download/v0.2.3/krpc-cpp-0.2.3.zip
https://github.com/krpc/krpc/releases/download/v0.2.3/krpc-cpp-0.2.3.zip
http://think-async.com/
https://github.com/google/protobuf
http://think-async.com/Asio/Download
https://github.com/google/protobuf/releases/latest
https://github.com/google/protobuf/blob/master/src/README.md
https://github.com/krpc/krpc/releases/download/v0.2.3/krpc-cpp-0.2.3.zip
https://github.com/krpc/krpc/releases/download/v0.2.3/krpc-cpp-0.2.3.zip

kRPC, Release 0.2.3

cmake .
make
sudo make install
sudo ldconfig

Install manually

The library is fairly simple to build manually if you can’t use the configure script or CMake. The headers are in the
include folder and the source files are in src.

4.1.2 Using the Library

kRPC programs need to be compiled with C++ 2011 support enabled, and linked against libkrpc and
libprotobuf. The following example program connects to the server, queries it for its version and prints it out:

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <iostream>

int main() {
krpc::Client conn = krpc::connect();
krpc::services::KRPC krpc(&conn);
std::cout << "Connected to kRPC server version " << krpc.get_status().version() << std::endl;

}

To compile this program using GCC, save the source as main.cpp and run the following:

g++ main.cpp -std=c++11 -lkrpc -lprotobuf

Note: If you get linker errors claiming that there are undefined references to google::protobuf::... you
probably have an older version of protobuf installed on your system. In this case, replace -lprotobuf with
-l:libprotobuf.so.10 in the above command to force GCC to use the correct version of the library.

Connecting to the Server

To connect to a server, use the krpc::connect() function. This returns a client object through which you can
interact with the server. When called without any arguments, it will connect to the local machine on the default port
numbers. You can specify different connection settings, including a descriptive name for the client, as follows:

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <iostream>

int main() {
krpc::Client conn = krpc::connect("Remote example", "my.domain.name", 1000, 1001);
krpc::services::KRPC krpc(&conn);
std::cout << krpc.get_status().version() << std::endl;

}

92 Chapter 4. C++

kRPC, Release 0.2.3

Interacting with the Server

kRPC groups remote procedures into services. The functionality for the services are defined in the header files in
krpc/services/.... For example, all of the functionality provided by the SpaceCenter service is contained in
the header file krpc/services/space_center.hpp.

To interact with a service, you must include its header file and create an instance of the service, passing a
krpc::Client object to its constructor. The following example connects to the server, instantiates the SpaceCenter
service and outputs the name of the active vessel:

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect("Vessel Name");
SpaceCenter sc(&conn);
SpaceCenter::Vessel vessel = sc.active_vessel();
std::cout << vessel.name() << std::endl;

}

Streaming Data from the Server

A stream repeatedly executes a function on the server, with a fixed set of argument values. It provides a more efficient
way of repeatedly getting the result of a function, avoiding the network overhead of having to invoke it directly.

For example, consider the following loop that continuously prints out the position of the active vessel. This loop incurs
significant communication overheads, as the vessel.position() function is called repeatedly.

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect();
KRPC krpc(&conn);
SpaceCenter sc(&conn);
SpaceCenter::Vessel vessel = sc.active_vessel();
SpaceCenter::ReferenceFrame refframe = vessel.orbit().body().reference_frame();
while (true) {
std::tuple<double,double,double> pos = vessel.position(refframe);
std::cout << std::get<0>(pos) << ","

<< std::get<1>(pos) << ","
<< std::get<2>(pos) << std::endl;

}
}

The following code achieves the same thing, but is far more efficient. It calls vessel.position_stream() once
at the start of the program to create a stream, and then repeatedly gets the position from the stream.

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <krpc/services/space_center.hpp>

4.1. C++ Client 93

kRPC, Release 0.2.3

#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect();
KRPC krpc(&conn);
SpaceCenter sc(&conn);
SpaceCenter::Vessel vessel = sc.active_vessel();
SpaceCenter::ReferenceFrame refframe = vessel.orbit().body().reference_frame();
krpc::Stream<std::tuple<double,double,double>> pos_stream = vessel.position_stream(refframe);
while (true) {
std::tuple<double,double,double> pos = pos_stream();
std::cout << std::get<0>(pos) << ","

<< std::get<1>(pos) << ","
<< std::get<2>(pos) << std::endl;

}
}

A stream can be created for any function call (except property setters) by adding _stream to the end of the function’s
name. This returns a stream object of type krpc::Stream, where T is the return type of the original function. The
most recent value of the stream can be obtained by calling krpc::Stream<T>::operator()(). A stream can
be stopped and removed from the server by calling krpc::Stream<T>::remove() on the stream object. All of
a clients streams are automatically stopped when it disconnects.

4.1.3 Client API Reference

Client connect(const std::string &name = “”, const std::string &address = “127.0.0.1”, unsigned int rpc_port
= 50000, unsigned int stream_port = 50001)

This function creates a connection to a kRPC server. It returns a krpc::Client object, through which the
server can be communicated with.

Parameters

• name (std::string) – A descriptive name for the connection. This is passed to the server and
appears, for example, in the client connection dialog on the in-game server window.

• address (std::string) – The address of the server to connect to. Can either be a hostname or
an IP address in dotted decimal notation. Defaults to ‘127.0.0.1’.

• rpc_port (unsigned int) – The port number of the RPC Server. Defaults to 50000.

• stream_port (unsigned int) – The port number of the Stream Server. Defaults to 50001. Set
it to 0 to disable connection to the stream server.

class Client
This class provides the interface for communicating with the server. It is used by service class instances to
invoke remote procedure calls. Instances of this class can be obtained by calling krpc::connect().

class KRPC
This class provides access to the basic server functionality provided by the KRPC service. Most of this function-
ality is used internally by the client (for example to create and remove streams) and therefore does not need to
be used directly from application code. The only exception that may be useful is KRPC::get_status().

KRPC(krpc::Client *client)
Construct an instance of this service from the given krpc::Client object.

94 Chapter 4. C++

kRPC, Release 0.2.3

krpc::schema::Status get_status()
Gets a status message from the server containing information including the server’s version string and
performance statistics.

For example, the following prints out the version string for the server:

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <iostream>

int main() {
krpc::Client conn = krpc::connect("Remote example", "my.domain.name", 1000, 1001);
krpc::services::KRPC krpc(&conn);
std::cout << krpc.get_status().version() << std::endl;

}

Or to get the rate at which the server is sending and receiving data over the network:

#include <krpc.hpp>
#include <krpc/services/krpc.hpp>
#include <iostream>

int main() {
krpc::Client conn = krpc::connect();
krpc::services::KRPC krpc(&conn);
krpc::schema::Status status = krpc.get_status();
std::cout << "Data in = " << (status.bytes_read_rate()/1024.0) << " KB/s" << std::endl;
std::cout << "Data out = " << (status.bytes_written_rate()/1024.0) << " KB/s" << std::endl;

}

class Stream<T>
A stream object. Streams are created by calling a function with _stream appended to its name.

T operator()()
Get the most recently received value from the stream.

void remove()
Remove the stream from the server.

4.2 KRPC API

class KRPC : public krpc::Service
Main kRPC service, used by clients to interact with basic server functionality.

KRPC(krpc::Client *client)
Construct an instance of this service.

krpc::schema::Status get_status()
Returns some information about the server, such as the version.

krpc::schema::Services get_services()
Returns information on all services, procedures, classes, properties etc. provided by the server. Can be
used by client libraries to automatically create functionality such as stubs.

KRPC::GameScene current_game_scene()
Get the current game scene.

uint32_t add_stream(krpc::schema::Request request)
Add a streaming request and return its identifier.

4.2. KRPC API 95

kRPC, Release 0.2.3

Parameters

Note: Do not call this method from client code. Use streams provided by the C++ client library.

void remove_stream(uint32_t id)
Remove a streaming request.

Parameters

Note: Do not call this method from client code. Use streams provided by the C++ client library.

enum struct GameScene
The game scene. See KRPC::current_game_scene().

enumerator space_center
The game scene showing the Kerbal Space Center buildings.

enumerator flight
The game scene showing a vessel in flight (or on the launchpad/runway).

enumerator tracking_station
The tracking station.

enumerator editor_vab
The Vehicle Assembly Building.

enumerator editor_sph
The Space Plane Hangar.

4.3 SpaceCenter API

4.3.1 SpaceCenter

class SpaceCenter : public krpc::Service
Provides functionality to interact with Kerbal Space Program. This includes controlling the active vessel, man-
aging its resources, planning maneuver nodes and auto-piloting.

SpaceCenter(krpc::Client *client)
Construct an instance of this service.

SpaceCenter::Vessel active_vessel()

void set_active_vessel(SpaceCenter::Vessel value)
The currently active vessel.

std::vector<SpaceCenter::Vessel> vessels()
A list of all the vessels in the game.

std::map<std::string, SpaceCenter::CelestialBody> bodies()
A dictionary of all celestial bodies (planets, moons, etc.) in the game, keyed by the name of the body.

SpaceCenter::CelestialBody target_body()

void set_target_body(SpaceCenter::CelestialBody value)
The currently targeted celestial body.

SpaceCenter::Vessel target_vessel()

96 Chapter 4. C++

kRPC, Release 0.2.3

void set_target_vessel(SpaceCenter::Vessel value)
The currently targeted vessel.

SpaceCenter::DockingPort target_docking_port()

void set_target_docking_port(SpaceCenter::DockingPort value)
The currently targeted docking port.

void clear_target()
Clears the current target.

void launch_vessel_from_vab(std::string name)
Launch a new vessel from the VAB onto the launchpad.

Parameters

• name – Name of the vessel’s craft file.

void launch_vessel_from_sph(std::string name)
Launch a new vessel from the SPH onto the runway.

Parameters

• name – Name of the vessel’s craft file.

double ut()
The current universal time in seconds.

float g()
The value of the gravitational constant G in 𝑁(𝑚/𝑘𝑔)2.

SpaceCenter::WarpMode warp_mode()
The current time warp mode. Returns SpaceCenter::WarpMode::none if time warp is
not active, SpaceCenter::WarpMode::rails if regular “on-rails” time warp is active, or
SpaceCenter::WarpMode::physics if physical time warp is active.

float warp_rate()
The current warp rate. This is the rate at which time is passing for either on-rails or physical time warp.
For example, a value of 10 means time is passing 10x faster than normal. Returns 1 if time warp is not
active.

float warp_factor()
The current warp factor. This is the index of the rate at which time is passing for either regular “on-
rails” or physical time warp. Returns 0 if time warp is not active. When in on-rails time warp, this
is equal to SpaceCenter::rails_warp_factor(), and in physics time warp, this is equal to
SpaceCenter::physics_warp_factor().

int32_t rails_warp_factor()

void set_rails_warp_factor(int32_t value)
The time warp rate, using regular “on-rails” time warp. A value between 0 and 7 inclusive. 0 means no
time warp. Returns 0 if physical time warp is active. If requested time warp factor cannot be set, it will be
set to the next lowest possible value. For example, if the vessel is too close to a planet. See the KSP wiki
for details.

int32_t physics_warp_factor()

void set_physics_warp_factor(int32_t value)
The physical time warp rate. A value between 0 and 3 inclusive. 0 means no time warp. Returns 0 if
regular “on-rails” time warp is active.

bool can_rails_warp_at(int32_t factor = 1)
Returns true if regular “on-rails” time warp can be used, at the specified warp factor. The maximum

4.3. SpaceCenter API 97

http://en.wikipedia.org/wiki/Gravitational_constant
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.2.3

time warp rate is limited by various things, including how close the active vessel is to a planet. See the
KSP wiki for details.

Parameters

• factor – The warp factor to check.

int32_t maximum_rails_warp_factor()
The current maximum regular “on-rails” warp factor that can be set. A value between 0 and 7 inclusive.
See the KSP wiki for details.

void warp_to(double ut, float max_rails_rate = 100000.0, float max_physics_rate = 2.0)
Uses time acceleration to warp forward to a time in the future, specified by universal time ut. This call
blocks until the desired time is reached. Uses regular “on-rails” or physical time warp as appropriate. For
example, physical time warp is used when the active vessel is traveling through an atmosphere. When
using regular “on-rails” time warp, the warp rate is limited by max_rails_rate, and when using physical
time warp, the warp rate is limited by max_physics_rate.

Parameters

• ut – The universal time to warp to, in seconds.

• max_rails_rate – The maximum warp rate in regular “on-rails” time warp.

• max_physics_rate – The maximum warp rate in physical time warp.

Returns When the time warp is complete.

std::tuple<double, double, double> transform_position(std::tuple<double, double, double> posi-
tion, SpaceCenter::ReferenceFrame from,
SpaceCenter::ReferenceFrame to)

Converts a position vector from one reference frame to another.

Parameters

• position – Position vector in reference frame from.

• from – The reference frame that the position vector is in.

• to – The reference frame to covert the position vector to.

Returns The corresponding position vector in reference frame to.

std::tuple<double, double, double> transform_direction(std::tuple<double, double, double> di-
rection, SpaceCenter::ReferenceFrame
from, SpaceCenter::ReferenceFrame
to)

Converts a direction vector from one reference frame to another.

Parameters

• direction – Direction vector in reference frame from.

• from – The reference frame that the direction vector is in.

• to – The reference frame to covert the direction vector to.

Returns The corresponding direction vector in reference frame to.

std::tuple<double, double, double, double> transform_rotation(std::tuple<double, double,
double, double> rotation, Space-
Center::ReferenceFrame from,
SpaceCenter::ReferenceFrame
to)

Converts a rotation from one reference frame to another.

98 Chapter 4. C++

http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.2.3

Parameters

• rotation – Rotation in reference frame from.

• from – The reference frame that the rotation is in.

• to – The corresponding rotation in reference frame to.

Returns The corresponding rotation in reference frame to.

std::tuple<double, double, double> transform_velocity(std::tuple<double, double, double> posi-
tion, std::tuple<double, double, double>
velocity, SpaceCenter::ReferenceFrame
from, SpaceCenter::ReferenceFrame to)

Converts a velocity vector (acting at the specified position vector) from one reference frame to another.
The position vector is required to take the relative angular velocity of the reference frames into account.

Parameters

• position – Position vector in reference frame from.

• velocity – Velocity vector in reference frame from.

• from – The reference frame that the position and velocity vectors are in.

• to – The reference frame to covert the velocity vector to.

Returns The corresponding velocity in reference frame to.

bool far_available()
Whether Ferram Aerospace Research is installed.

bool remote_tech_available()
Whether RemoteTech is installed.

void draw_direction(std::tuple<double, double, double> direction, SpaceCenter::ReferenceFrame
reference_frame, std::tuple<double, double, double> color, float length =
10.0)

Draw a direction vector on the active vessel.

Parameters

• direction – Direction to draw the line in.

• reference_frame – Reference frame that the direction is in.

• color – The color to use for the line, as an RGB color.

• length – The length of the line. Defaults to 10.

void draw_line(std::tuple<double, double, double> start, std::tuple<double, double, double> end,
SpaceCenter::ReferenceFrame reference_frame, std::tuple<double, double, double>
color)

Draw a line.

Parameters

• start – Position of the start of the line.

• end – Position of the end of the line.

• reference_frame – Reference frame that the position are in.

• color – The color to use for the line, as an RGB color.

void clear_drawing()
Remove all directions and lines currently being drawn.

4.3. SpaceCenter API 99

http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/83305

kRPC, Release 0.2.3

enum struct WarpMode
Returned by SpaceCenter::WarpMode

enumerator rails
Time warp is active, and in regular “on-rails” mode.

enumerator physics
Time warp is active, and in physical time warp mode.

enumerator none
Time warp is not active.

4.3.2 Vessel

class Vessel
These objects are used to interact with vessels in KSP. This includes getting orbital and flight data, manipulating
control inputs and managing resources.

std::string name()

void set_name(std::string value)
The name of the vessel.

SpaceCenter::VesselType type()

void set_type(SpaceCenter::VesselType value)
The type of the vessel.

SpaceCenter::VesselSituation situation()
The situation the vessel is in.

double met()
The mission elapsed time in seconds.

SpaceCenter::Flight flight(SpaceCenter::ReferenceFrame reference_frame = None)
Returns a SpaceCenter::Flight object that can be used to get flight telemetry for the vessel, in the
specified reference frame.

Parameters

• reference_frame – Reference frame. Defaults to the vessel’s surface reference frame
(SpaceCenter::Vessel::surface_reference_frame()).

Note: When this is called with no arguments, the vessel’s surface reference frame is used. This reference
frame moves with the vessel, therefore velocities and speeds returned by the flight object will be zero. See
the reference frames tutorial for examples of getting the orbital speed and surface speed of a vessel.

SpaceCenter::Vessel target()

void set_target(SpaceCenter::Vessel value)
The target vessel. NULL if there is no target. When setting the target, the target cannot be the current
vessel.

SpaceCenter::Orbit orbit()
The current orbit of the vessel.

SpaceCenter::Control control()
Returns a SpaceCenter::Control object that can be used to manipulate the vessel’s control inputs.
For example, its pitch/yaw/roll controls, RCS and thrust.

100 Chapter 4. C++

kRPC, Release 0.2.3

SpaceCenter::AutoPilot auto_pilot()
An SpaceCenter::AutoPilot object, that can be used to perform simple auto-piloting of the vessel.

SpaceCenter::Resources resources()
A SpaceCenter::Resources object, that can used to get information about resources stored in the
vessel.

SpaceCenter::Resources resources_in_decouple_stage(int32_t stage, bool cumulative = True)
Returns a SpaceCenter::Resources object, that can used to get information about resources stored
in a given stage.

Parameters

• stage – Get resources for parts that are decoupled in this stage.

• cumulative – When false, returns the resources for parts decoupled in just the given
stage. When true returns the resources decoupled in the given stage and all subsequent
stages combined.

Note: For details on stage numbering, see the discussion on Staging.

SpaceCenter::Parts parts()
A SpaceCenter::Parts object, that can used to interact with the parts that make up this vessel.

SpaceCenter::Comms comms()
A SpaceCenter::Comms object, that can used to interact with RemoteTech for this vessel.

Note: Requires RemoteTech to be installed.

float mass()
The total mass of the vessel, including resources, in kg.

float dry_mass()
The total mass of the vessel, excluding resources, in kg.

float thrust()
The total thrust currently being produced by the vessel’s engines, in Newtons. This is computed by sum-
ming SpaceCenter::Engine::thrust() for every engine in the vessel.

float available_thrust()
Gets the total available thrust that can be produced by the vessel’s active engines, in Newtons. This is
computed by summing SpaceCenter::Engine::available_thrust() for every active engine
in the vessel.

float max_thrust()
The total maximum thrust that can be produced by the vessel’s active engines, in Newtons. This is com-
puted by summing SpaceCenter::Engine::max_thrust() for every active engine.

float max_vacuum_thrust()
The total maximum thrust that can be produced by the vessel’s active engines
when the vessel is in a vacuum, in Newtons. This is computed by summing
SpaceCenter::Engine::max_vacuum_thrust() for every active engine.

float specific_impulse()
The combined specific impulse of all active engines, in seconds. This is computed using the formula
described here.

4.3. SpaceCenter API 101

http://forum.kerbalspaceprogram.com/threads/83305
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.2.3

float vacuum_specific_impulse()
The combined vacuum specific impulse of all active engines, in seconds. This is computed using the
formula described here.

float kerbin_sea_level_specific_impulse()
The combined specific impulse of all active engines at sea level on Kerbin, in seconds. This is computed
using the formula described here.

SpaceCenter::ReferenceFrame reference_frame()
The reference frame that is fixed relative to the vessel, and orientated with the vessel.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel.

•The x-axis points out to the right of the vessel.

•The y-axis points in the forward direction of the vessel.

•The z-axis points out of the bottom off the vessel.

Fig. 4.1: Vessel reference frame origin and axes for the Aeris 3A aircraft

SpaceCenter::ReferenceFrame orbital_reference_frame()
The reference frame that is fixed relative to the vessel, and orientated with the vessels orbital pro-
grade/normal/radial directions.

•The origin is at the center of mass of the vessel.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Note: Be careful not to confuse this with ‘orbit’ mode on the navball.

102 Chapter 4. C++

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.2.3

Fig. 4.2: Vessel reference frame origin and axes for the Kerbal-X rocket

4.3. SpaceCenter API 103

kRPC, Release 0.2.3

Fig. 4.3: Vessel orbital reference frame origin and axes

SpaceCenter::ReferenceFrame surface_reference_frame()
The reference frame that is fixed relative to the vessel, and orientated with the surface of the body being
orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the north and up directions on the surface of the body.

•The x-axis points in the zenith direction (upwards, normal to the body being orbited, from the center
of the body towards the center of mass of the vessel).

•The y-axis points northwards towards the astronomical horizon (north, and tangential to the surface
of the body – the direction in which a compass would point when on the surface).

•The z-axis points eastwards towards the astronomical horizon (east, and tangential to the surface of
the body – east on a compass when on the surface).

Note: Be careful not to confuse this with ‘surface’ mode on the navball.

SpaceCenter::ReferenceFrame surface_velocity_reference_frame()
The reference frame that is fixed relative to the vessel, and orientated with the velocity vector of the vessel
relative to the surface of the body being orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel’s velocity vector.

•The y-axis points in the direction of the vessel’s velocity vector, relative to the surface of the body
being orbited.

•The z-axis is in the plane of the astronomical horizon.

•The x-axis is orthogonal to the other two axes.

104 Chapter 4. C++

http://en.wikipedia.org/wiki/Zenith
http://en.wikipedia.org/wiki/Horizon
http://en.wikipedia.org/wiki/Horizon
http://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.2.3

Fig. 4.4: Vessel surface reference frame origin and axes

Fig. 4.5: Vessel surface velocity reference frame origin and axes

4.3. SpaceCenter API 105

kRPC, Release 0.2.3

std::tuple<double, double, double> position(SpaceCenter::ReferenceFrame reference_frame)
Returns the position vector of the center of mass of the vessel in the given reference frame.

Parameters

std::tuple<double, double, double> velocity(SpaceCenter::ReferenceFrame reference_frame)
Returns the velocity vector of the center of mass of the vessel in the given reference frame.

Parameters

std::tuple<double, double, double, double> rotation(SpaceCenter::ReferenceFrame refer-
ence_frame)

Returns the rotation of the center of mass of the vessel in the given reference frame.

Parameters

std::tuple<double, double, double> direction(SpaceCenter::ReferenceFrame reference_frame)
Returns the direction in which the vessel is pointing, as a unit vector, in the given reference frame.

Parameters

std::tuple<double, double, double> angular_velocity(SpaceCenter::ReferenceFrame refer-
ence_frame)

Returns the angular velocity of the vessel in the given reference frame. The magnitude of the returned
vector is the rotational speed in radians per second, and the direction of the vector indicates the axis of
rotation (using the right hand rule).

Parameters

enum struct VesselType
See SpaceCenter::Vessel::type().

enumerator ship
Ship.

enumerator station
Station.

enumerator lander
Lander.

enumerator probe
Probe.

enumerator rover
Rover.

enumerator base
Base.

enumerator debris
Debris.

enum struct VesselSituation
See SpaceCenter::Vessel::situation().

enumerator docked
Vessel is docked to another.

enumerator escaping
Escaping.

enumerator flying
Vessel is flying through an atmosphere.

106 Chapter 4. C++

kRPC, Release 0.2.3

enumerator landed
Vessel is landed on the surface of a body.

enumerator orbiting
Vessel is orbiting a body.

enumerator pre_launch
Vessel is awaiting launch.

enumerator splashed
Vessel has splashed down in an ocean.

enumerator sub_orbital
Vessel is on a sub-orbital trajectory.

4.3.3 CelestialBody

class CelestialBody
Represents a celestial body (such as a planet or moon).

std::string name()
The name of the body.

std::vector<SpaceCenter::CelestialBody> satellites()
A list of celestial bodies that are in orbit around this celestial body.

SpaceCenter::Orbit orbit()
The orbit of the body.

float mass()
The mass of the body, in kilograms.

float gravitational_parameter()
The standard gravitational parameter of the body in 𝑚3𝑠−2.

float surface_gravity()
The acceleration due to gravity at sea level (mean altitude) on the body, in 𝑚/𝑠2.

float rotational_period()
The sidereal rotational period of the body, in seconds.

float rotational_speed()
The rotational speed of the body, in radians per second.

float equatorial_radius()
The equatorial radius of the body, in meters.

double surface_height(double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water this
is equal to 0.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

double bedrock_height(double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water, this
is the height of the sea-bed and is therefore a negative value.

Parameters

4.3. SpaceCenter API 107

http://en.wikipedia.org/wiki/Standard_gravitational_parameter

kRPC, Release 0.2.3

• latitude – Latitude in degrees

• longitude – Longitude in degrees

std::tuple<double, double, double> msl_position(double latitude, double longitude, SpaceCen-
ter::ReferenceFrame reference_frame)

The position at mean sea level at the given latitude and longitude, in the given reference frame.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

• reference_frame – Reference frame for the returned position vector

std::tuple<double, double, double> surface_position(double latitude, double longitude, Space-
Center::ReferenceFrame reference_frame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position of the surface of the water.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

• reference_frame – Reference frame for the returned position vector

std::tuple<double, double, double> bedrock_position(double latitude, double longitude, Space-
Center::ReferenceFrame reference_frame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position at the bottom of the sea-bed.

Parameters

• latitude – Latitude in degrees

• longitude – Longitude in degrees

• reference_frame – Reference frame for the returned position vector

float sphere_of_influence()
The radius of the sphere of influence of the body, in meters.

bool has_atmosphere()
true if the body has an atmosphere.

float atmosphere_depth()
The depth of the atmosphere, in meters.

bool has_atmospheric_oxygen()
true if there is oxygen in the atmosphere, required for air-breathing engines.

SpaceCenter::ReferenceFrame reference_frame()
The reference frame that is fixed relative to the celestial body.

•The origin is at the center of the body.

•The axes rotate with the body.

•The x-axis points from the center of the body towards the intersection of the prime meridian and
equator (the position at 0° longitude, 0° latitude).

•The y-axis points from the center of the body towards the north pole.

•The z-axis points from the center of the body towards the equator at 90°E longitude.

108 Chapter 4. C++

kRPC, Release 0.2.3

Fig. 4.6: Celestial body reference frame origin and axes. The equator is shown in blue, and the prime meridian in red.

SpaceCenter::ReferenceFrame non_rotating_reference_frame()
The reference frame that is fixed relative to this celestial body, and orientated in a fixed direction (it does
not rotate with the body).

•The origin is at the center of the body.

•The axes do not rotate.

•The x-axis points in an arbitrary direction through the equator.

•The y-axis points from the center of the body towards the north pole.

•The z-axis points in an arbitrary direction through the equator.

SpaceCenter::ReferenceFrame orbital_reference_frame()
Gets the reference frame that is fixed relative to this celestial body, but orientated with the body’s orbital
prograde/normal/radial directions.

•The origin is at the center of the body.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

std::tuple<double, double, double> position(SpaceCenter::ReferenceFrame reference_frame)
Returns the position vector of the center of the body in the specified reference frame.

Parameters

std::tuple<double, double, double> velocity(SpaceCenter::ReferenceFrame reference_frame)
Returns the velocity vector of the body in the specified reference frame.

Parameters

4.3. SpaceCenter API 109

kRPC, Release 0.2.3

std::tuple<double, double, double, double> rotation(SpaceCenter::ReferenceFrame refer-
ence_frame)

Returns the rotation of the body in the specified reference frame.

Parameters

std::tuple<double, double, double> direction(SpaceCenter::ReferenceFrame reference_frame)
Returns the direction in which the north pole of the celestial body is pointing, as a unit vector, in the
specified reference frame.

Parameters

std::tuple<double, double, double> angular_velocity(SpaceCenter::ReferenceFrame refer-
ence_frame)

Returns the angular velocity of the body in the specified reference frame. The magnitude of the vector is
the rotational speed of the body, in radians per second, and the direction of the vector indicates the axis of
rotation, using the right-hand rule.

Parameters

4.3.4 Flight

class Flight
Used to get flight telemetry for a vessel, by calling SpaceCenter::Vessel::flight(). All of the
information returned by this class is given in the reference frame passed to that method.

Note: To get orbital information, such as the apoapsis or inclination, see SpaceCenter::Orbit.

float g_force()
The current G force acting on the vessel in 𝑚/𝑠2.

double mean_altitude()
The altitude above sea level, in meters.

double surface_altitude()
The altitude above the surface of the body or sea level, whichever is closer, in meters.

double bedrock_altitude()
The altitude above the surface of the body, in meters. When over water, this is the altitude above the sea
floor.

double elevation()
The elevation of the terrain under the vessel, in meters. This is the height of the terrain above sea level,
and is negative when the vessel is over the sea.

double latitude()
The latitude of the vessel for the body being orbited, in degrees.

double longitude()
The longitude of the vessel for the body being orbited, in degrees.

std::tuple<double, double, double> velocity()
The velocity vector of the vessel. The magnitude of the vector is the speed of the vessel in meters per
second. The direction of the vector is the direction of the vessels motion.

double speed()
The speed of the vessel in meters per second.

110 Chapter 4. C++

http://en.wikipedia.org/wiki/Latitude
http://en.wikipedia.org/wiki/Longitude

kRPC, Release 0.2.3

double horizontal_speed()
The horizontal speed of the vessel in meters per second.

double vertical_speed()
The vertical speed of the vessel in meters per second.

std::tuple<double, double, double> center_of_mass()
The position of the center of mass of the vessel.

std::tuple<double, double, double, double> rotation()
The rotation of the vessel.

std::tuple<double, double, double> direction()
The direction vector that the vessel is pointing in.

float pitch()
The pitch angle of the vessel relative to the horizon, in degrees. A value between -90° and +90°.

float heading()
The heading angle of the vessel relative to north, in degrees. A value between 0° and 360°.

float roll()
The roll angle of the vessel relative to the horizon, in degrees. A value between -180° and +180°.

std::tuple<double, double, double> prograde()
The unit direction vector pointing in the prograde direction.

std::tuple<double, double, double> retrograde()
The unit direction vector pointing in the retrograde direction.

std::tuple<double, double, double> normal()
The unit direction vector pointing in the normal direction.

std::tuple<double, double, double> anti_normal()
The unit direction vector pointing in the anti-normal direction.

std::tuple<double, double, double> radial()
The unit direction vector pointing in the radial direction.

std::tuple<double, double, double> anti_radial()
The unit direction vector pointing in the anti-radial direction.

float atmosphere_density()
The current density of the atmosphere around the vessel, in 𝑘𝑔/𝑚3.

float dynamic_pressure()
The dynamic pressure acting on the vessel, in Pascals. This is a measure of the strength of the aerodynamic
forces. It is equal to 1

2 .air density.velocity2. It is commonly denoted as 𝑄.

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float static_pressure()
The static atmospheric pressure acting on the vessel, in Pascals.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

4.3. SpaceCenter API 111

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

std::tuple<double, double, double> aerodynamic_force()
The total aerodynamic forces acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

std::tuple<double, double, double> lift()
The aerodynamic lift currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

std::tuple<double, double, double> drag()
The aerodynamic drag currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

float speed_of_sound()
The speed of sound, in the atmosphere around the vessel, in 𝑚/𝑠.

Note: Not available when Ferram Aerospace Research is installed.

float mach()
The speed of the vessel, in multiples of the speed of sound.

Note: Not available when Ferram Aerospace Research is installed.

float equivalent_air_speed()
The equivalent air speed of the vessel, in 𝑚/𝑠.

Note: Not available when Ferram Aerospace Research is installed.

float terminal_velocity()
An estimate of the current terminal velocity of the vessel, in 𝑚/𝑠. This is the speed at which the drag
forces cancel out the force of gravity.

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float angle_of_attack()
Gets the pitch angle between the orientation of the vessel and its velocity vector, in degrees.

float sideslip_angle()
Gets the yaw angle between the orientation of the vessel and its velocity vector, in degrees.

112 Chapter 4. C++

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Equivalent_airspeed
http://forum.kerbalspaceprogram.com/threads/20451
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

float total_air_temperature()
The total air temperature of the atmosphere around the vessel, in Kelvin. This temperature includes the
SpaceCenter::Flight::static_air_temperature() and the vessel’s kinetic energy.

float static_air_temperature()
The static (ambient) temperature of the atmosphere around the vessel, in Kelvin.

float stall_fraction()
Gets the current amount of stall, between 0 and 1. A value greater than 0.005 indicates a minor stall and a
value greater than 0.5 indicates a large-scale stall.

Note: Requires Ferram Aerospace Research.

float drag_coefficient()
Gets the coefficient of drag. This is the amount of drag produced by the vessel. It depends on air speed,
air density and wing area.

Note: Requires Ferram Aerospace Research.

float lift_coefficient()
Gets the coefficient of lift. This is the amount of lift produced by the vessel, and depends on air speed, air
density and wing area.

Note: Requires Ferram Aerospace Research.

float ballistic_coefficient()
Gets the ballistic coefficient.

Note: Requires Ferram Aerospace Research.

float thrust_specific_fuel_consumption()
Gets the thrust specific fuel consumption for the jet engines on the vessel. This is a measure of the
efficiency of the engines, with a lower value indicating a more efficient vessel. This value is the number of
Newtons of fuel that are burned, per hour, to product one newton of thrust.

Note: Requires Ferram Aerospace Research.

4.3.5 Orbit

class Orbit
Describes an orbit. For example, the orbit of a vessel, obtained by call-
ing SpaceCenter::Vessel::orbit(), or a celestial body, obtained by calling
SpaceCenter::CelestialBody::orbit().

SpaceCenter::CelestialBody body()
The celestial body (e.g. planet or moon) around which the object is orbiting.

double apoapsis()
Gets the apoapsis of the orbit, in meters, from the center of mass of the body being orbited.

4.3. SpaceCenter API 113

http://en.wikipedia.org/wiki/Total_air_temperature
http://en.wikipedia.org/wiki/Total_air_temperature
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Ballistic_coefficient
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

Note: For the apoapsis altitude reported on the in-game map view, use
SpaceCenter::Orbit::apoapsis_altitude().

double periapsis()
The periapsis of the orbit, in meters, from the center of mass of the body being orbited.

Note: For the periapsis altitude reported on the in-game map view, use
SpaceCenter::Orbit::periapsis_altitude().

double apoapsis_altitude()
The apoapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to SpaceCenter::Orbit::apoapsis() minus the equatorial radius of the
body.

double periapsis_altitude()
The periapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to SpaceCenter::Orbit::periapsis() minus the equatorial radius of the
body.

double semi_major_axis()
The semi-major axis of the orbit, in meters.

double semi_minor_axis()
The semi-minor axis of the orbit, in meters.

double radius()
The current radius of the orbit, in meters. This is the distance between the center of mass of the object in
orbit, and the center of mass of the body around which it is orbiting.

Note: This value will change over time if the orbit is elliptical.

double speed()
The current orbital speed of the object in meters per second.

Note: This value will change over time if the orbit is elliptical.

double period()
The orbital period, in seconds.

double time_to_apoapsis()
The time until the object reaches apoapsis, in seconds.

double time_to_periapsis()
The time until the object reaches periapsis, in seconds.

double eccentricity()
The eccentricity of the orbit.

114 Chapter 4. C++

http://en.wikipedia.org/wiki/Orbital_eccentricity

kRPC, Release 0.2.3

double inclination()
The inclination of the orbit, in radians.

double longitude_of_ascending_node()
The longitude of the ascending node, in radians.

double argument_of_periapsis()
The argument of periapsis, in radians.

double mean_anomaly_at_epoch()
The mean anomaly at epoch.

double epoch()
The time since the epoch (the point at which the mean anomaly at epoch was measured, in seconds.

double mean_anomaly()
The mean anomaly.

double eccentric_anomaly()
The eccentric anomaly.

static std::tuple<double, double, double> reference_plane_normal(SpaceCenter::ReferenceFrame
reference_frame)

The unit direction vector that is normal to the orbits reference plane, in the given reference frame. The
reference plane is the plane from which the orbits inclination is measured.

Parameters

static std::tuple<double, double, double> reference_plane_direction(SpaceCenter::ReferenceFrame
reference_frame)

The unit direction vector from which the orbits longitude of ascending node is measured, in the given
reference frame.

Parameters

double time_to_soi_change()
The time until the object changes sphere of influence, in seconds. Returns NaN if the object is not going
to change sphere of influence.

SpaceCenter::Orbit next_orbit()
If the object is going to change sphere of influence in the future, returns the new orbit after the change.
Otherwise returns NULL.

4.3.6 Control

class Control
Used to manipulate the controls of a vessel. This includes adjusting the throttle, enabling/disabling systems such
as SAS and RCS, or altering the direction in which the vessel is pointing.

Note: Control inputs (such as pitch, yaw and roll) are zeroed when all clients that have set one or more of these
inputs are no longer connected.

bool sas()

void set_sas(bool value)
The state of SAS.

4.3. SpaceCenter API 115

http://en.wikipedia.org/wiki/Orbital_inclination
http://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
http://en.wikipedia.org/wiki/Argument_of_periapsis
http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Eccentric_anomaly

kRPC, Release 0.2.3

Note: Equivalent to SpaceCenter::AutoPilot::sas()

SpaceCenter::SASMode sas_mode()

void set_sas_mode(SpaceCenter::SASMode value)
The current SpaceCenter::SASMode. These modes are equivalent to the mode buttons to the left of
the navball that appear when SAS is enabled.

Note: Equivalent to SpaceCenter::AutoPilot::sas_mode()

SpaceCenter::SpeedMode speed_mode()

void set_speed_mode(SpaceCenter::SpeedMode value)
The current SpaceCenter::SpeedMode of the navball. This is the mode displayed next to the speed
at the top of the navball.

bool rcs()

void set_rcs(bool value)
The state of RCS.

bool gear()

void set_gear(bool value)
The state of the landing gear/legs.

bool lights()

void set_lights(bool value)
The state of the lights.

bool brakes()

void set_brakes(bool value)
The state of the wheel brakes.

bool abort()

void set_abort(bool value)
The state of the abort action group.

float throttle()

void set_throttle(float value)
The state of the throttle. A value between 0 and 1.

float pitch()

void set_pitch(float value)
The state of the pitch control. A value between -1 and 1. Equivalent to the w and s keys.

float yaw()

void set_yaw(float value)
The state of the yaw control. A value between -1 and 1. Equivalent to the a and d keys.

float roll()

void set_roll(float value)
The state of the roll control. A value between -1 and 1. Equivalent to the q and e keys.

float forward()

116 Chapter 4. C++

kRPC, Release 0.2.3

void set_forward(float value)
The state of the forward translational control. A value between -1 and 1. Equivalent to the h and n keys.

float up()

void set_up(float value)
The state of the up translational control. A value between -1 and 1. Equivalent to the i and k keys.

float right()

void set_right(float value)
The state of the right translational control. A value between -1 and 1. Equivalent to the j and l keys.

float wheel_throttle()

void set_wheel_throttle(float value)
The state of the wheel throttle. A value between -1 and 1. A value of 1 rotates the wheels forwards, a value
of -1 rotates the wheels backwards.

float wheel_steering()

void set_wheel_steering(float value)
The state of the wheel steering. A value between -1 and 1. A value of 1 steers to the left, and a value of -1
steers to the right.

int32_t current_stage()
The current stage of the vessel. Corresponds to the stage number in the in-game UI.

std::vector<SpaceCenter::Vessel> activate_next_stage()
Activates the next stage. Equivalent to pressing the space bar in-game.

Returns A list of vessel objects that are jettisoned from the active vessel.

bool get_action_group(uint32_t group)
Returns true if the given action group is enabled.

Parameters

• group – A number between 0 and 9 inclusive.

void set_action_group(uint32_t group, bool state)
Sets the state of the given action group (a value between 0 and 9 inclusive).

Parameters

• group – A number between 0 and 9 inclusive.

void toggle_action_group(uint32_t group)
Toggles the state of the given action group.

Parameters

• group – A number between 0 and 9 inclusive.

SpaceCenter::Node add_node(double ut, float prograde = 0.0, float normal = 0.0, float radial = 0.0)
Creates a maneuver node at the given universal time, and returns a SpaceCenter::Node object that can
be used to modify it. Optionally sets the magnitude of the delta-v for the maneuver node in the prograde,
normal and radial directions.

Parameters

• ut – Universal time of the maneuver node.

• prograde – Delta-v in the prograde direction.

• normal – Delta-v in the normal direction.

4.3. SpaceCenter API 117

kRPC, Release 0.2.3

• radial – Delta-v in the radial direction.

std::vector<SpaceCenter::Node> nodes()
Returns a list of all existing maneuver nodes, ordered by time from first to last.

void remove_nodes()
Remove all maneuver nodes.

enum struct SASMode
The behavior of the SAS auto-pilot. See SpaceCenter::AutoPilot::sas_mode().

enumerator stability_assist
Stability assist mode. Dampen out any rotation.

enumerator maneuver
Point in the burn direction of the next maneuver node.

enumerator prograde
Point in the prograde direction.

enumerator retrograde
Point in the retrograde direction.

enumerator normal
Point in the orbit normal direction.

enumerator anti_normal
Point in the orbit anti-normal direction.

enumerator radial
Point in the orbit radial direction.

enumerator anti_radial
Point in the orbit anti-radial direction.

enumerator target
Point in the direction of the current target.

enumerator anti_target
Point away from the current target.

enum struct SpeedMode
See SpaceCenter::Control::speed_mode().

enumerator orbit
Speed is relative to the vessel’s orbit.

enumerator surface
Speed is relative to the surface of the body being orbited.

enumerator target
Speed is relative to the current target.

4.3.7 Parts

The following classes allow interaction with a vessels individual parts.

118 Chapter 4. C++

kRPC, Release 0.2.3

• Parts
• Part
• Module
• Specific Types of Part

– Cargo Bay
– Decoupler
– Docking Port
– Engine
– Fairing
– Intake
– Landing Gear
– Landing Leg
– Launch Clamp
– Light
– Parachute
– Radiator
– Resource Converter
– Resource Harvester
– Reaction Wheel
– Sensor
– Solar Panel

• Trees of Parts
– Traversing the Tree
– Attachment Modes

• Fuel Lines
• Staging

Parts

class Parts
Instances of this class are used to interact with the parts of a vessel. An instance can be obtained by calling
SpaceCenter::Vessel::parts().

std::vector<SpaceCenter::Part> all()
A list of all of the vessels parts.

SpaceCenter::Part root()
The vessels root part.

Note: See the discussion on Trees of Parts.

SpaceCenter::Part controlling()

void set_controlling(SpaceCenter::Part value)
The part from which the vessel is controlled.

std::vector<SpaceCenter::Part> with_name(std::string name)
A list of parts whose SpaceCenter::Part::name() is name.

Parameters

std::vector<SpaceCenter::Part> with_title(std::string title)
A list of all parts whose SpaceCenter::Part::title() is title.

4.3. SpaceCenter API 119

kRPC, Release 0.2.3

Parameters

std::vector<SpaceCenter::Part> with_module(std::string module_name)
A list of all parts that contain a SpaceCenter::Module whose
SpaceCenter::Module::name() is module_name.

Parameters

std::vector<SpaceCenter::Part> in_stage(int32_t stage)
A list of all parts that are activated in the given stage.

Parameters

Note: See the discussion on Staging.

std::vector<SpaceCenter::Part> in_decouple_stage(int32_t stage)
A list of all parts that are decoupled in the given stage.

Parameters

Note: See the discussion on Staging.

std::vector<SpaceCenter::Module> modules_with_name(std::string module_name)
A list of modules (combined across all parts in the vessel) whose SpaceCenter::Module::name()
is module_name.

Parameters

std::vector<SpaceCenter::CargoBay> cargo_bays()
A list of all cargo bays in the vessel.

std::vector<SpaceCenter::Decoupler> decouplers()
A list of all decouplers in the vessel.

std::vector<SpaceCenter::DockingPort> docking_ports()
A list of all docking ports in the vessel.

SpaceCenter::DockingPort docking_port_with_name(std::string name)
The first docking port in the vessel with the given port name, as returned by
SpaceCenter::DockingPort::name(). Returns NULL if there are no such docking ports.

Parameters

std::vector<SpaceCenter::Engine> engines()
A list of all engines in the vessel.

std::vector<SpaceCenter::Fairing> fairings()
A list of all fairings in the vessel.

std::vector<SpaceCenter::Intake> intakes()
A list of all intakes in the vessel.

std::vector<SpaceCenter::LandingGear> landing_gear()
A list of all landing gear attached to the vessel.

std::vector<SpaceCenter::LandingLeg> landing_legs()
A list of all landing legs attached to the vessel.

std::vector<SpaceCenter::LaunchClamp> launch_clamps()
A list of all launch clamps attached to the vessel.

120 Chapter 4. C++

kRPC, Release 0.2.3

std::vector<SpaceCenter::Light> lights()
A list of all lights in the vessel.

std::vector<SpaceCenter::Parachute> parachutes()
A list of all parachutes in the vessel.

std::vector<SpaceCenter::Radiator> radiators()
A list of all radiators in the vessel.

std::vector<SpaceCenter::ReactionWheel> reaction_wheels()
A list of all reaction wheels in the vessel.

std::vector<SpaceCenter::ResourceConverter> resource_converters()
A list of all resource converters in the vessel.

std::vector<SpaceCenter::ResourceHarvester> resource_harvesters()
A list of all resource harvesters in the vessel.

std::vector<SpaceCenter::Sensor> sensors()
A list of all sensors in the vessel.

std::vector<SpaceCenter::SolarPanel> solar_panels()
A list of all solar panels in the vessel.

Part

class Part
Instances of this class represents a part. A vessel is made of multiple parts. Instances can be obtained by various
methods in SpaceCenter::Parts.

std::string name()
Internal name of the part, as used in part cfg files. For example “Mark1-2Pod”.

std::string title()
Title of the part, as shown when the part is right clicked in-game. For example “Mk1-2 Command Pod”.

double cost()
The cost of the part, in units of funds.

SpaceCenter::Vessel vessel()
The vessel that contains this part.

SpaceCenter::Part parent()
The parts parent. Returns NULL if the part does not have a parent. This, in combination with
SpaceCenter::Part::children(), can be used to traverse the vessels parts tree.

Note: See the discussion on Trees of Parts.

std::vector<SpaceCenter::Part> children()
The parts children. Returns an empty list if the part has no children. This, in combination with
SpaceCenter::Part::parent(), can be used to traverse the vessels parts tree.

Note: See the discussion on Trees of Parts.

bool axially_attached()
Whether the part is axially attached to its parent, i.e. on the top or bottom of its parent. If the part has no
parent, returns false.

4.3. SpaceCenter API 121

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation

kRPC, Release 0.2.3

Note: See the discussion on Attachment Modes.

bool radially_attached()
Whether the part is radially attached to its parent, i.e. on the side of its parent. If the part has no parent,
returns false.

Note: See the discussion on Attachment Modes.

int32_t stage()
The stage in which this part will be activated. Returns -1 if the part is not activated by staging.

Note: See the discussion on Staging.

int32_t decouple_stage()
The stage in which this part will be decoupled. Returns -1 if the part is never decoupled from the vessel.

Note: See the discussion on Staging.

bool massless()
Whether the part is massless.

double mass()
The current mass of the part, including resources it contains, in kilograms. Returns zero if the part is
massless.

double dry_mass()
The mass of the part, not including any resources it contains, in kilograms. Returns zero if the part is
massless.

double impact_tolerance()
The impact tolerance of the part, in meters per second.

double temperature()
Temperature of the part, in Kelvin.

double skin_temperature()
Temperature of the skin of the part, in Kelvin.

double max_temperature()
Maximum temperature that the part can survive, in Kelvin.

double max_skin_temperature()
Maximum temperature that the skin of the part can survive, in Kelvin.

float thermal_mass()
A measure of how much energy it takes to increase the internal temperature of the part, in Joules per
Kelvin.

float thermal_skin_mass()
A measure of how much energy it takes to increase the skin temperature of the part, in Joules per Kelvin.

float thermal_resource_mass()
A measure of how much energy it takes to increase the temperature of the resources contained in the part,
in Joules per Kelvin.

122 Chapter 4. C++

http://wiki.kerbalspaceprogram.com/wiki/Massless_part

kRPC, Release 0.2.3

float thermal_conduction_flux()
The rate at which heat energy is conducting into or out of the part via contact with other parts. Measured
in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy, and
negative means it is losing heat energy.

float thermal_convection_flux()
The rate at which heat energy is convecting into or out of the part from the surrounding atmosphere.
Measured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat
energy, and negative means it is losing heat energy.

float thermal_radiation_flux()
The rate at which heat energy is radiating into or out of the part from the surrounding environment. Mea-
sured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy,
and negative means it is losing heat energy.

float thermal_internal_flux()
The rate at which heat energy is begin generated by the part. For example, some engines generate heat by
combusting fuel. Measured in energy per unit time, or power, in Watts. A positive value means the part is
gaining heat energy, and negative means it is losing heat energy.

float thermal_skin_to_internal_flux()
The rate at which heat energy is transferring between the part’s skin and its internals. Measured in energy
per unit time, or power, in Watts. A positive value means the part’s internals are gaining heat energy, and
negative means its skin is gaining heat energy.

SpaceCenter::Resources resources()
A SpaceCenter::Resources object for the part.

bool crossfeed()
Whether this part is crossfeed capable.

bool is_fuel_line()
Whether this part is a fuel line.

std::vector<SpaceCenter::Part> fuel_lines_from()
The parts that are connected to this part via fuel lines, where the direction of the fuel line is into this part.

Note: See the discussion on Fuel Lines.

std::vector<SpaceCenter::Part> fuel_lines_to()
The parts that are connected to this part via fuel lines, where the direction of the fuel line is out of this part.

Note: See the discussion on Fuel Lines.

std::vector<SpaceCenter::Module> modules()
The modules for this part.

SpaceCenter::CargoBay cargo_bay()
A SpaceCenter::CargoBay if the part is a cargo bay, otherwise NULL.

SpaceCenter::Decoupler decoupler()
A SpaceCenter::Decoupler if the part is a decoupler, otherwise NULL.

SpaceCenter::DockingPort docking_port()
A SpaceCenter::DockingPort if the part is a docking port, otherwise NULL.

SpaceCenter::Engine engine()
An SpaceCenter::Engine if the part is an engine, otherwise NULL.

4.3. SpaceCenter API 123

kRPC, Release 0.2.3

SpaceCenter::Fairing fairing()
A SpaceCenter::Fairing if the part is a fairing, otherwise NULL.

SpaceCenter::Intake intake()
An SpaceCenter::Intake if the part is an intake, otherwise NULL.

SpaceCenter::LandingGear landing_gear()
A SpaceCenter::LandingGear if the part is a landing gear , otherwise NULL.

SpaceCenter::LandingLeg landing_leg()
A SpaceCenter::LandingLeg if the part is a landing leg, otherwise NULL.

SpaceCenter::LaunchClamp launch_clamp()
A SpaceCenter::LaunchClamp if the part is a launch clamp, otherwise NULL.

SpaceCenter::Light light()
A SpaceCenter::Light if the part is a light, otherwise NULL.

SpaceCenter::Parachute parachute()
A SpaceCenter::Parachute if the part is a parachute, otherwise NULL.

SpaceCenter::Radiator radiator()
A SpaceCenter::Radiator if the part is a radiator, otherwise NULL.

SpaceCenter::ReactionWheel reaction_wheel()
A SpaceCenter::ReactionWheel if the part is a reaction wheel, otherwise NULL.

SpaceCenter::ResourceConverter resource_converter()
A SpaceCenter::ResourceConverter if the part is a resource converter, otherwise NULL.

SpaceCenter::ResourceHarvester resource_harvester()
A SpaceCenter::ResourceHarvester if the part is a resource harvester, otherwise NULL.

SpaceCenter::Sensor sensor()
A SpaceCenter::Sensor if the part is a sensor, otherwise NULL.

SpaceCenter::SolarPanel solar_panel()
A SpaceCenter::SolarPanel if the part is a solar panel, otherwise NULL.

std::tuple<double, double, double> position(SpaceCenter::ReferenceFrame reference_frame)
The position of the part in the given reference frame.

Parameters

std::tuple<double, double, double> direction(SpaceCenter::ReferenceFrame reference_frame)
The direction of the part in the given reference frame.

Parameters

std::tuple<double, double, double> velocity(SpaceCenter::ReferenceFrame reference_frame)
The velocity of the part in the given reference frame.

Parameters

std::tuple<double, double, double, double> rotation(SpaceCenter::ReferenceFrame refer-
ence_frame)

The rotation of the part in the given reference frame.

Parameters

SpaceCenter::ReferenceFrame reference_frame()
The reference frame that is fixed relative to this part.

•The origin is at the position of the part.

•The axes rotate with the part.

124 Chapter 4. C++

kRPC, Release 0.2.3

•The x, y and z axis directions depend on the design of the part.

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by SpaceCenter::DockingPort::reference_frame().

Fig. 4.7: Mk1 Command Pod reference frame origin and axes

Module

class Module
In KSP, each part has zero or more PartModules associated with it. Each one contains some of the functionality
of the part. For example, an engine has a “ModuleEngines” PartModule that contains all the functionality of an
engine. This class allows you to interact with KSPs PartModules, and any PartModules that have been added by
other mods.

std::string name()
Name of the PartModule. For example, “ModuleEngines”.

SpaceCenter::Part part()
The part that contains this module.

std::map<std::string, std::string> fields()
The modules field names and their associated values, as a dictionary. These are the values visible in the
right-click menu of the part.

bool has_field(std::string name)
Returns true if the module has a field with the given name.

Parameters

• name – Name of the field.

std::string get_field(std::string name)
Returns the value of a field.

4.3. SpaceCenter API 125

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation#MODULES

kRPC, Release 0.2.3

Parameters

• name – Name of the field.

std::vector<std::string> events()
A list of the names of all of the modules events. Events are the clickable buttons visible in the right-click
menu of the part.

bool has_event(std::string name)
true if the module has an event with the given name.

Parameters

void trigger_event(std::string name)
Trigger the named event. Equivalent to clicking the button in the right-click menu of the part.

Parameters

std::vector<std::string> actions()
A list of all the names of the modules actions. These are the parts actions that can be assigned to action
groups in the in-game editor.

bool has_action(std::string name)
true if the part has an action with the given name.

Parameters

void set_action(std::string name, bool value = True)
Set the value of an action with the given name.

Parameters

Specific Types of Part

The following classes provide functionality for specific types of part.

• Cargo Bay
• Decoupler
• Docking Port
• Engine
• Fairing
• Intake
• Landing Gear
• Landing Leg
• Launch Clamp
• Light
• Parachute
• Radiator
• Resource Converter
• Resource Harvester
• Reaction Wheel
• Sensor
• Solar Panel

126 Chapter 4. C++

kRPC, Release 0.2.3

Cargo Bay

class CargoBay
Obtained by calling SpaceCenter::Part::cargo_bay().

SpaceCenter::Part part()
The part object for this cargo bay.

SpaceCenter::CargoBayState state()
The state of the cargo bay.

bool open()

void set_open(bool value)
Whether the cargo bay is open.

enum struct CargoBayState
See SpaceCenter::CargoBay::state().

enumerator open
Cargo bay is fully open.

enumerator closed
Cargo bay closed and locked.

enumerator opening
Cargo bay is opening.

enumerator closing
Cargo bay is closing.

Decoupler

class Decoupler
Obtained by calling SpaceCenter::Part::decoupler()

SpaceCenter::Part part()
The part object for this decoupler.

void decouple()
Fires the decoupler. Has no effect if the decoupler has already fired.

bool decoupled()
Whether the decoupler has fired.

float impulse()
The impulse that the decoupler imparts when it is fired, in Newton seconds.

Docking Port

class DockingPort
Obtained by calling SpaceCenter::Part::docking_port()

SpaceCenter::Part part()
The part object for this docking port.

std::string name()

4.3. SpaceCenter API 127

kRPC, Release 0.2.3

void set_name(std::string value)
The port name of the docking port. This is the name of the port that can be set in the right click menu,
when the Docking Port Alignment Indicator mod is installed. If this mod is not installed, returns the title
of the part (SpaceCenter::Part::title()).

SpaceCenter::DockingPortState state()
The current state of the docking port.

SpaceCenter::Part docked_part()
The part that this docking port is docked to. Returns NULL if this docking port is not docked to anything.

SpaceCenter::Vessel undock()
Undocks the docking port and returns the vessel that was undocked from. After undocking, the active ves-
sel may change (SpaceCenter::active_vessel()). This method can be called for either docking
port in a docked pair - both calls will have the same effect. Returns NULL if the docking port is not docked
to anything.

float reengage_distance()
The distance a docking port must move away when it undocks before it becomes ready to dock with another
port, in meters.

bool has_shield()
Whether the docking port has a shield.

bool shielded()

void set_shielded(bool value)
The state of the docking ports shield, if it has one. Returns true if the docking port has a shield, and
the shield is closed. Otherwise returns false. When set to true, the shield is closed, and when set to
false the shield is opened. If the docking port does not have a shield, setting this attribute has no effect.

std::tuple<double, double, double> position(SpaceCenter::ReferenceFrame reference_frame)
The position of the docking port in the given reference frame.

Parameters

std::tuple<double, double, double> direction(SpaceCenter::ReferenceFrame reference_frame)
The direction that docking port points in, in the given reference frame.

Parameters

std::tuple<double, double, double, double> rotation(SpaceCenter::ReferenceFrame refer-
ence_frame)

The rotation of the docking port, in the given reference frame.

Parameters

SpaceCenter::ReferenceFrame reference_frame()
The reference frame that is fixed relative to this docking port, and oriented with the port.

•The origin is at the position of the docking port.

•The axes rotate with the docking port.

•The x-axis points out to the right side of the docking port.

•The y-axis points in the direction the docking port is facing.

•The z-axis points out of the bottom off the docking port.

Note: This reference frame is not necessarily equivalent to the reference frame for the part, returned by
SpaceCenter::Part::reference_frame().

128 Chapter 4. C++

http://forum.kerbalspaceprogram.com/threads/43901

kRPC, Release 0.2.3

Fig. 4.8: Docking port reference frame origin and axes

Fig. 4.9: Inline docking port reference frame origin and axes

4.3. SpaceCenter API 129

kRPC, Release 0.2.3

enum struct DockingPortState
See SpaceCenter::DockingPort::state().

enumerator ready
The docking port is ready to dock to another docking port.

enumerator docked
The docking port is docked to another docking port, or docked to another part (from the VAB/SPH).

enumerator docking
The docking port is very close to another docking port, but has not docked. It is using magnetic force to
acquire a solid dock.

enumerator undocking
The docking port has just been undocked from another docking port, and is disabled until it moves away
by a sufficient distance (SpaceCenter::DockingPort::reengage_distance()).

enumerator shielded
The docking port has a shield, and the shield is closed.

enumerator moving
The docking ports shield is currently opening/closing.

Engine

class Engine
Obtained by calling SpaceCenter::Part::engine().

SpaceCenter::Part part()
The part object for this engine.

bool active()

void set_active(bool value)
Whether the engine is active. Setting this attribute may have no ef-
fect, depending on SpaceCenter::Engine::can_shutdown() and
SpaceCenter::Engine::can_restart().

float thrust()
The current amount of thrust being produced by the engine, in Newtons. Returns zero if the engine is not
active or if it has no fuel.

float available_thrust()
The maximum available amount of thrust that can be produced by the engine, in Newtons. This takes
SpaceCenter::Engine::thrust_limit() into account, and is the amount of thrust produced
by the engine when activated and the main throttle is set to 100%. Returns zero if the engine does not have
any fuel.

float max_thrust()
Gets the maximum amount of thrust that can be produced by the engine, in Newtons. This is the amount of
thrust produced by the engine when activated, SpaceCenter::Engine::thrust_limit() is set
to 100% and the main vessel’s throttle is set to 100%.

float max_vacuum_thrust()
The maximum amount of thrust that can be produced by the engine in a vacuum,
in Newtons. This is the amount of thrust produced by the engine when activated,
SpaceCenter::Engine::thrust_limit() is set to 100%, the main vessel’s throttle is set
to 100% and the engine is in a vacuum.

float thrust_limit()

130 Chapter 4. C++

kRPC, Release 0.2.3

void set_thrust_limit(float value)
The thrust limiter of the engine. A value between 0 and 1. Setting this attribute may have no effect, for
example the thrust limit for a solid rocket booster cannot be changed in flight.

float specific_impulse()
The current specific impulse of the engine, in seconds. Returns zero if the engine is not active.

float vacuum_specific_impulse()
The vacuum specific impulse of the engine, in seconds.

float kerbin_sea_level_specific_impulse()
The specific impulse of the engine at sea level on Kerbin, in seconds.

std::vector<std::string> propellants()
The names of resources that the engine consumes.

std::map<std::string, float> propellant_ratios()
The ratios of resources that the engine consumes. A dictionary mapping resource names to the ratios at
which they are consumed by the engine.

bool has_fuel()
Whether the engine has run out of fuel (or flamed out).

float throttle()
The current throttle setting for the engine. A value between 0 and 1. This is not necessarily the same as
the vessel’s main throttle setting, as some engines take time to adjust their throttle (such as jet engines).

bool throttle_locked()
Whether the SpaceCenter::Control::throttle() affects the engine. For example, this is true
for liquid fueled rockets, and false for solid rocket boosters.

bool can_restart()
Whether the engine can be restarted once shutdown. If the engine cannot be shutdown, returns false.
For example, this is true for liquid fueled rockets and false for solid rocket boosters.

bool can_shutdown()
Gets whether the engine can be shutdown once activated. For example, this is true for liquid fueled
rockets and false for solid rocket boosters.

bool has_modes()
Whether the engine has multiple modes of operation.

std::string mode()

void set_mode(std::string value)
The name of the current engine mode.

std::map<std::string, SpaceCenter::Engine> modes()
The available modes for the engine. A dictionary mapping mode names to SpaceCenter::Engine
objects.

void toggle_mode()
Toggle the current engine mode.

bool auto_mode_switch()

void set_auto_mode_switch(bool value)
Whether the engine will automatically switch modes.

bool gimballed()
Whether the engine nozzle is gimballed, i.e. can provide a turning force.

4.3. SpaceCenter API 131

kRPC, Release 0.2.3

float gimbal_range()
The range over which the gimbal can move, in degrees. Returns 0 if the engine is not gimballed.

bool gimbal_locked()

void set_gimbal_locked(bool value)
Whether the engines gimbal is locked in place. Setting this attribute has no effect if the engine is not
gimballed.

float gimbal_limit()

void set_gimbal_limit(float value)
The gimbal limiter of the engine. A value between 0 and 1. Returns 0 if the gimbal is locked.

Fairing

class Fairing
Obtained by calling SpaceCenter::Part::fairing().

SpaceCenter::Part part()
The part object for this fairing.

void jettison()
Jettison the fairing. Has no effect if it has already been jettisoned.

bool jettisoned()
Whether the fairing has been jettisoned.

Intake

class Intake
Obtained by calling SpaceCenter::Part::intake().

SpaceCenter::Part part()
The part object for this intake.

bool open()

void set_open(bool value)
Whether the intake is open.

float speed()
Speed of the flow into the intake, in 𝑚/𝑠.

float flow()
The rate of flow into the intake, in units of resource per second.

float area()
The area of the intake’s opening, in square meters.

Landing Gear

class LandingGear
Obtained by calling SpaceCenter::Part::landing_gear().

SpaceCenter::Part part()
The part object for this landing gear.

132 Chapter 4. C++

kRPC, Release 0.2.3

SpaceCenter::LandingGearState state()
Gets the current state of the landing gear.

Note: Fixed landing gear are always deployed.

bool deployable()
Whether the landing gear is deployable.

bool deployed()

void set_deployed(bool value)
Whether the landing gear is deployed.

Note: Fixed landing gear are always deployed. Returns an error if you try to deploy fixed landing gear.

enum struct LandingGearState
See SpaceCenter::LandingGear::state().

enumerator deployed
Landing gear is fully deployed.

enumerator retracted
Landing gear is fully retracted.

enumerator deploying
Landing gear is being deployed.

enumerator retracting
Landing gear is being retracted.

Landing Leg

class LandingLeg
Obtained by calling SpaceCenter::Part::landing_leg().

SpaceCenter::Part part()
The part object for this landing leg.

SpaceCenter::LandingLegState state()
The current state of the landing leg.

bool deployed()

void set_deployed(bool value)
Whether the landing leg is deployed.

enum struct LandingLegState
See SpaceCenter::LandingLeg::state().

enumerator deployed
Landing leg is fully deployed.

enumerator retracted
Landing leg is fully retracted.

enumerator deploying
Landing leg is being deployed.

4.3. SpaceCenter API 133

kRPC, Release 0.2.3

enumerator retracting
Landing leg is being retracted.

enumerator broken
Landing leg is broken.

enumerator repairing
Landing leg is being repaired.

Launch Clamp

class LaunchClamp
Obtained by calling SpaceCenter::Part::launch_clamp().

SpaceCenter::Part part()
The part object for this launch clamp.

void release()
Releases the docking clamp. Has no effect if the clamp has already been released.

Light

class Light
Obtained by calling SpaceCenter::Part::light().

SpaceCenter::Part part()
The part object for this light.

bool active()

void set_active(bool value)
Whether the light is switched on.

float power_usage()
The current power usage, in units of charge per second.

Parachute

class Parachute
Obtained by calling SpaceCenter::Part::parachute().

SpaceCenter::Part part()
The part object for this parachute.

void deploy()
Deploys the parachute. This has no effect if the parachute has already been deployed.

bool deployed()
Whether the parachute has been deployed.

SpaceCenter::ParachuteState state()
The current state of the parachute.

float deploy_altitude()

void set_deploy_altitude(float value)
The altitude at which the parachute will full deploy, in meters.

float deploy_min_pressure()

134 Chapter 4. C++

kRPC, Release 0.2.3

void set_deploy_min_pressure(float value)
The minimum pressure at which the parachute will semi-deploy, in atmospheres.

enum struct ParachuteState
See SpaceCenter::Parachute::state().

enumerator stowed
The parachute is safely tucked away inside its housing.

enumerator active
The parachute is still stowed, but ready to semi-deploy.

enumerator semi_deployed
The parachute has been deployed and is providing some drag, but is not fully deployed yet.

enumerator deployed
The parachute is fully deployed.

enumerator cut
The parachute has been cut.

Radiator

class Radiator
Obtained by calling SpaceCenter::Part::radiator().

SpaceCenter::Part part()
The part object for this radiator.

bool deployable()
Whether the radiator is deployable.

bool deployed()

void set_deployed(bool value)
For a deployable radiator, true if the radiator is extended. If the radiator is not deployable, this is always
true.

SpaceCenter::RadiatorState state()
The current state of the radiator.

Note: A fixed radiator is always SpaceCenter::RadiatorState::extended.

enum struct RadiatorState
SpaceCenter::RadiatorState

enumerator extended
Radiator is fully extended.

enumerator retracted
Radiator is fully retracted.

enumerator extending
Radiator is being extended.

enumerator retracting
Radiator is being retracted.

enumerator broken
Radiator is being broken.

4.3. SpaceCenter API 135

kRPC, Release 0.2.3

Resource Converter

class ResourceConverter
Obtained by calling SpaceCenter::Part::resource_converter().

SpaceCenter::Part part()
The part object for this converter.

int32_t count()
The number of converters in the part.

std::string name(int32_t index)
The name of the specified converter.

Parameters

• index – Index of the converter.

bool active(int32_t index)
True if the specified converter is active.

Parameters

• index – Index of the converter.

void start(int32_t index)
Start the specified converter.

Parameters

• index – Index of the converter.

void stop(int32_t index)
Stop the specified converter.

Parameters

• index – Index of the converter.

SpaceCenter::ResourceConverterState state(int32_t index)
The state of the specified converter.

Parameters

• index – Index of the converter.

std::string status_info(int32_t index)
Status information for the specified converter. This is the full status message shown in the in-game UI.

Parameters

• index – Index of the converter.

std::vector<std::string> inputs(int32_t index)
List of the names of resources consumed by the specified converter.

Parameters

• index – Index of the converter.

std::vector<std::string> outputs(int32_t index)
List of the names of resources produced by the specified converter.

Parameters

• index – Index of the converter.

136 Chapter 4. C++

kRPC, Release 0.2.3

enum struct ResourceConverterState
See SpaceCenter::ResourceConverter::state().

enumerator running
Converter is running.

enumerator idle
Converter is idle.

enumerator missing_resource
Converter is missing a required resource.

enumerator storage_full
No available storage for output resource.

enumerator capacity
At preset resource capacity.

enumerator unknown
Unknown state. Possible with modified resource converters. In this case, check
SpaceCenter::ResourceConverter::status_info() for more information.

Resource Harvester

class ResourceHarvester
Obtained by calling SpaceCenter::Part::resource_harvester().

SpaceCenter::Part part()
The part object for this harvester.

SpaceCenter::ResourceHarvesterState state()
The state of the harvester.

bool deployed()

void set_deployed(bool value)
Whether the harvester is deployed.

bool active()

void set_active(bool value)
Whether the harvester is actively drilling.

float extraction_rate()
The rate at which the drill is extracting ore, in units per second.

float thermal_efficiency()
The thermal efficiency of the drill, as a percentage of its maximum.

float core_temperature()
The core temperature of the drill, in Kelvin.

float optimum_core_temperature()
The core temperature at which the drill will operate with peak efficiency, in Kelvin.

enum struct ResourceHarvesterState
See SpaceCenter::ResourceHarvester::state().

enumerator deploying
The drill is deploying.

4.3. SpaceCenter API 137

kRPC, Release 0.2.3

enumerator deployed
The drill is deployed and ready.

enumerator retracting
The drill is retracting.

enumerator retracted
The drill is retracted.

enumerator active
The drill is running.

Reaction Wheel

class ReactionWheel
Obtained by calling SpaceCenter::Part::reaction_wheel().

SpaceCenter::Part part()
The part object for this reaction wheel.

bool active()

void set_active(bool value)
Whether the reaction wheel is active.

bool broken()
Whether the reaction wheel is broken.

float pitch_torque()
The torque in the pitch axis, in Newton meters.

float yaw_torque()
The torque in the yaw axis, in Newton meters.

float roll_torque()
The torque in the roll axis, in Newton meters.

Sensor

class Sensor
Obtained by calling SpaceCenter::Part::sensor().

SpaceCenter::Part part()
The part object for this sensor.

bool active()

void set_active(bool value)
Whether the sensor is active.

std::string value()
The current value of the sensor.

float power_usage()
The current power usage of the sensor, in units of charge per second.

138 Chapter 4. C++

kRPC, Release 0.2.3

Solar Panel

class SolarPanel
Obtained by calling SpaceCenter::Part::solar_panel().

SpaceCenter::Part part()
The part object for this solar panel.

bool deployed()

void set_deployed(bool value)
Whether the solar panel is extended.

SpaceCenter::SolarPanelState state()
The current state of the solar panel.

float energy_flow()
The current amount of energy being generated by the solar panel, in units of charge per second.

float sun_exposure()
The current amount of sunlight that is incident on the solar panel, as a percentage. A value between 0 and
1.

enum struct SolarPanelState
See SpaceCenter::SolarPanel::state().

enumerator extended
Solar panel is fully extended.

enumerator retracted
Solar panel is fully retracted.

enumerator extending
Solar panel is being extended.

enumerator retracting
Solar panel is being retracted.

enumerator broken
Solar panel is broken.

Trees of Parts

Vessels in KSP are comprised of a number of parts, connected to one another in a
tree structure. An example vessel is shown in Figure 1, and the corresponding tree of
parts in Figure 2. The craft file for this example can also be downloaded here.

Fig. 4.10: Figure 1 – Example parts making up a vessel.

Traversing the Tree

The tree of parts can be tra-
versed using the attributes
SpaceCenter::Parts::root(),
SpaceCenter::Part::parent() and
SpaceCenter::Part::children().

The root of the tree is the same as the vessels
root part (part number 1 in the example
above) and can be obtained by calling

4.3. SpaceCenter API 139

kRPC, Release 0.2.3

SpaceCenter::Parts::root(). A
parts children can be obtained by calling
SpaceCenter::Part::children().
If the part does not have any children,
SpaceCenter::Part::children()
returns an empty list. A parts
parent can be obtained by calling
SpaceCenter::Part::parent().
If the part does not have a parent
(as is the case for the root part),
SpaceCenter::Part::parent()
returns NULL.

The following C++ example uses these at-
tributes to perform a depth-first traversal over
all of the parts in a vessel:

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>
#include <stack>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect("");
SpaceCenter sc(&conn);
auto vessel = sc.active_vessel();

auto root = vessel.parts().root();
std::stack<std::pair<SpaceCenter::Part,int> > stack;
stack.push(std::pair<SpaceCenter::Part,int>(root, 0));
while (stack.size() > 0) {
auto part = stack.top().first;
auto depth = stack.top().second;
stack.pop();
std::cout << std::string(depth, ' ') << part.title() << std::endl;
auto children = part.children();
for (std::vector<SpaceCenter::Part>::iterator child = children.begin(); child != children.end(); child++) {

stack.push(std::pair<SpaceCenter::Part,int>(*child, depth+1));
}

}
}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1
TR-18A Stack Decoupler
FL-T400 Fuel Tank
LV-909 Liquid Fuel Engine
TR-18A Stack Decoupler
FL-T800 Fuel Tank
LV-909 Liquid Fuel Engine
TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer

140 Chapter 4. C++

kRPC, Release 0.2.3

FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

LT-1 Landing Struts
LT-1 Landing Struts

Mk16 Parachute

Attachment Modes

Parts can be attached to other parts either ra-
dially (on the side of the parent part) or axially
(on the end of the parent part, to form a stack).

Fig. 4.11: Figure 2 – Tree of parts for the vessel in Figure 1. Arrows
point from the parent part to the child part.

For example, in the vessel pictured above, the
parachute (part 2) is axially connected to its
parent (the command pod – part 1), and the
landing leg (part 5) is radially connected to its
parent (the fuel tank – part 4).

The root part of a vessel (for example the com-
mand pod – part 1) does not have a parent part,
so does not have an attachment mode. How-
ever, the part is consider to be axially attached
to nothing.

The following C++ example does a depth-first
traversal as before, but also prints out the at-
tachment mode used by the part:

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>
#include <stack>

using namespace krpc::services;

int main() {
auto conn = krpc::connect("");
SpaceCenter sc(&conn);
auto vessel = sc.active_vessel();

auto root = vessel.parts().root();
std::stack<std::pair<SpaceCenter::Part,int> > stack;
stack.push(std::pair<SpaceCenter::Part,int>(root, 0));
while (stack.size() > 0) {
auto part = stack.top().first;
auto depth = stack.top().second;
stack.pop();
std::string attach_mode;
if (part.axially_attached()) {

attach_mode = "axial";

4.3. SpaceCenter API 141

kRPC, Release 0.2.3

} else { // radially_attached
attach_mode = "radial";

}
std::cout << std::string(depth, ' ') << part.title() << " - " << attach_mode << std::endl;
auto children = part.children();
for (auto child : children) {
stack.push(std::pair<SpaceCenter::Part,int>(child, depth+1));

}
}

}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1 - axial
TR-18A Stack Decoupler - axial
FL-T400 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TR-18A Stack Decoupler - axial
FL-T800 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

LT-1 Landing Struts - radial
LT-1 Landing Struts - radial

Mk16 Parachute - axial

142 Chapter 4. C++

kRPC, Release 0.2.3

Fuel Lines

Fig. 4.12: Figure 5 – Fuel lines from the example
in Figure 1. Fuel flows from the parts highlighted
in green, into the part highlighted in blue.

Fig. 4.13: Figure 4 – A subset of the parts tree
from Figure 2 above.

Fuel lines are considered parts, and are included in the parts tree
(for example, as pictured in Figure 4). However, the parts tree
does not contain information about which parts fuel lines connect
to. The parent part of a fuel line is the part from which it will take
fuel (as shown in Figure 4) however the part that it will send fuel
to is not represented in the parts tree.

Figure 5 shows the fuel lines from the example vessel pictured
earlier. Fuel line part 15 (in red) takes fuel from a fuel tank (part
11 – in green) and feeds it into another fuel tank (part 9 – in blue).
The fuel line is therefore a child of part 11, but its connection to
part 9 is not represented in the tree.

The attributes SpaceCenter::Part::fuel_lines_from()
and SpaceCenter::Part::fuel_lines_to() can be
used to discover these connections. In the example in Figure
5, when SpaceCenter::Part::fuel_lines_to()
is called on fuel tank part 11, it will return a list of parts
containing just fuel tank part 9 (the blue part). When
SpaceCenter::Part::fuel_lines_from() is called
on fuel tank part 9, it will return a list containing fuel tank parts
11 and 17 (the parts colored green).

Staging

Each part has two staging numbers associated with it:
the stage in which the part is activated and the stage
in which the part is decoupled. These values can be
obtained using SpaceCenter::Part::stage()
and SpaceCenter::Part::decouple_stage()
respectively. For parts that are not activated by
staging, SpaceCenter::Part::stage() re-
turns -1. For parts that are never decoupled,

4.3. SpaceCenter API 143

kRPC, Release 0.2.3

SpaceCenter::Part::decouple_stage() returns
a value of -1.

Fig. 4.14: Figure 6 – Example vessel from Figure 1 with a staging sequence.

Figure 6 shows an example
staging sequence for a ves-
sel. Figure 7 shows the
stages in which each part
of the vessel will be acti-
vated. Figure 8 shows the
stages in which each part of
the vessel will be decoupled.

Fig. 4.15: Figure 7 – The stage in which each part is activated.

Fig. 4.16: Figure 8 – The stage in which each part is decou-
pled.

4.3.8 Resources

class Resources
Created by calling
SpaceCenter::Vessel::resources(),
SpaceCenter::Vessel::resources_in_decouple_stage()
or SpaceCenter::Part::resources().

std::vector<std::string> names()
A list of resource names that can be stored.

144 Chapter 4. C++

kRPC, Release 0.2.3

bool has_resource(std::string name)
Check whether the named resource can be stored.

Parameters

• name – The name of the resource.

float max(std::string name)
Returns the amount of a resource that can be stored.

Parameters

• name – The name of the resource.

float amount(std::string name)
Returns the amount of a resource that is currently
stored.

Parameters

• name – The name of the resource.

static float density(std::string name)
Returns the density of a resource, in kg/l.

Parameters

• name – The name of the resource.

static SpaceCenter::ResourceFlowMode flow_mode(std::string name)
Returns the flow mode of a resource.

Parameters

• name – The name of the resource.

enum struct ResourceFlowMode
See SpaceCenter::Resources::flow_mode().

enumerator vessel
The resource flows to any part in the vessel. For
example, electric charge.

enumerator stage
The resource flows from parts in the first stage,
followed by the second, and so on. For example,
mono-propellant.

enumerator adjacent
The resource flows between adjacent parts within
the vessel. For example, liquid fuel or oxidizer.

enumerator none
The resource does not flow. For example, solid fuel.

4.3.9 Node

class Node
Represents a maneuver node. Can be created using
SpaceCenter::Control::add_node().

4.3. SpaceCenter API 145

kRPC, Release 0.2.3

float prograde()

void set_prograde(float value)
The magnitude of the maneuver nodes delta-v in the
prograde direction, in meters per second.

float normal()

void set_normal(float value)
The magnitude of the maneuver nodes delta-v in the
normal direction, in meters per second.

float radial()

void set_radial(float value)
The magnitude of the maneuver nodes delta-v in the
radial direction, in meters per second.

float delta_v()

void set_delta_v(float value)
The delta-v of the maneuver node, in meters per
second.

Note: Does not
change when exe-
cuting the maneu-
ver node. See
SpaceCenter::Node::remaining_delta_v().

float remaining_delta_v()
Gets the remaining delta-v of the maneuver node, in
meters per second. Changes as the node is executed.
This is equivalent to the delta-v reported in-game.

std::tuple<double, double, double> burn_vector(SpaceCenter::ReferenceFrame reference_frame =
None)

Returns a vector whose direction the direction of the
maneuver node burn, and whose magnitude is the
delta-v of the burn in m/s.

Parameters

Note: Does not
change when exe-
cuting the maneu-
ver node. See
SpaceCenter::Node::remaining_burn_vector().

std::tuple<double, double, double> remaining_burn_vector(SpaceCenter::ReferenceFrame refer-
ence_frame = None)

Returns a vector whose direction the direction of
the maneuver node burn, and whose magnitude is

146 Chapter 4. C++

kRPC, Release 0.2.3

the delta-v of the burn in m/s. The direction and
magnitude change as the burn is executed.

Parameters

double ut()

void set_ut(double value)
The universal time at which the maneuver will occur,
in seconds.

double time_to()
The time until the maneuver node will be encoun-
tered, in seconds.

SpaceCenter::Orbit orbit()
The orbit that results from executing the maneuver
node.

void remove()
Removes the maneuver node.

SpaceCenter::ReferenceFrame reference_frame()
Gets the reference frame that is fixed relative to the
maneuver node’s burn.

•The origin is at the position of the maneuver node.

•The y-axis points in the direction of the burn.

•The x-axis and z-axis point in arbitrary but fixed di-
rections.

SpaceCenter::ReferenceFrame orbital_reference_frame()
Gets the reference frame that is fixed relative to
the maneuver node, and orientated with the orbital
prograde/normal/radial directions of the original
orbit at the maneuver node’s position.

•The origin is at the position of the maneuver node.

•The x-axis points in the orbital anti-radial direction
of the original orbit, at the position of the maneuver
node.

•The y-axis points in the orbital prograde direction
of the original orbit, at the position of the maneuver
node.

•The z-axis points in the orbital normal direction of
the original orbit, at the position of the maneuver
node.

std::tuple<double, double, double> position(SpaceCenter::ReferenceFrame reference_frame)
Returns the position vector of the maneuver node in
the given reference frame.

Parameters

std::tuple<double, double, double> direction(SpaceCenter::ReferenceFrame reference_frame)
Returns the unit direction vector of the maneuver
nodes burn in the given reference frame.

4.3. SpaceCenter API 147

kRPC, Release 0.2.3

Parameters

4.3.10 Comms

class Comms
Used to interact with RemoteTech. Created using a
call to SpaceCenter::Vessel::comms().

Note: This class requires RemoteTech to be in-
stalled.

bool has_local_control()
Whether the vessel can be controlled locally.

bool has_flight_computer()
Whether the vessel has a RemoteTech flight com-
puter on board.

bool has_connection()
Whether the vessel can receive commands from the
KSC or a command station.

bool has_connection_to_ground_station()
Whether the vessel can transmit science data to a
ground station.

double signal_delay()
The signal delay when sending commands to the
vessel, in seconds.

double signal_delay_to_ground_station()
The signal delay between the vessel and the closest
ground station, in seconds.

double signal_delay_to_vessel(SpaceCenter::Vessel other)
Returns the signal delay between the current vessel
and another vessel, in seconds.

Parameters

4.3.11 ReferenceFrame

class ReferenceFrame
Represents a reference frame for positions, rotations
and velocities. Contains:

•The position of the origin.

•The directions of the x, y and z axes.

•The linear velocity of the frame.

•The angular velocity of the frame.

148 Chapter 4. C++

http://forum.kerbalspaceprogram.com/threads/83305

kRPC, Release 0.2.3

Note: This class does not contain any properties
or methods. It is only used as a parameter to other
functions.

4.3.12 AutoPilot

class AutoPilot
Provides basic auto-piloting utili-
ties for a vessel. Created by calling
SpaceCenter::Vessel::auto_pilot().

void engage()
Engage the auto-pilot.

void disengage()
Disengage the auto-pilot.

void wait()
Blocks until the vessel is pointing in the target di-
rection (if set) and has the target roll (if set).

float error()
The error, in degrees, between the direction the
ship has been asked to point in and the direction
it is pointing in. Returns zero if the auto-pilot has
not been engaged, SAS is not enabled, SAS is in
stability assist mode, or no target direction is set.

float roll_error()
The error, in degrees, between the roll the ship has
been asked to be in and the actual roll. Returns zero
if the auto-pilot has not been engaged or no target
roll is set.

SpaceCenter::ReferenceFrame reference_frame()

void set_reference_frame(SpaceCenter::ReferenceFrame value)
The reference frame
for the target di-
rection (SpaceCenter::AutoPilot::target_direction()).

std::tuple<double, double, double> target_direction()

void set_target_direction(std::tuple<double, double, double> value)
The target direction. NULL if no target direction is
set.

void target_pitch_and_heading(float pitch, float heading)
Set (SpaceCenter::AutoPilot::target_direction())
from a pitch and heading angle.

Parameters

• pitch – Target pitch angle, in degrees between -90°
and +90°.

4.3. SpaceCenter API 149

kRPC, Release 0.2.3

• heading – Target heading angle, in degrees between
0° and 360°.

float target_roll()

void set_target_roll(float value)
The target roll, in degrees. NaN if no target roll is
set.

bool sas()

void set_sas(bool value)
The state of SAS.

Note: Equivalent to
SpaceCenter::Control::sas()

SpaceCenter::SASMode sas_mode()

void set_sas_mode(SpaceCenter::SASMode value)
The current SpaceCenter::SASMode. These
modes are equivalent to the mode buttons to the left
of the navball that appear when SAS is enabled.

Note: Equivalent to
SpaceCenter::Control::sas_mode()

float rotation_speed_multiplier()

void set_rotation_speed_multiplier(float value)
Target rotation speed multiplier. Defaults to 1.

float max_rotation_speed()

void set_max_rotation_speed(float value)
Maximum target rotation speed. Defaults to 1.

float roll_speed_multiplier()

void set_roll_speed_multiplier(float value)
Target roll speed multiplier. Defaults to 1.

float max_roll_speed()

void set_max_roll_speed(float value)
Maximum target roll speed. Defaults to 1.

void set_pid_parameters(float kp = 1.0, float ki = 0.0, float kd = 0.0)
Sets the gains for the rotation rate PID controller.

Parameters

150 Chapter 4. C++

kRPC, Release 0.2.3

• kp – Proportional gain.

• ki – Integral gain.

• kd – Derivative gain.

4.3.13 Geometry Types

class Vector3
3-dimensional vectors are represented as a 3-tuple.
For example:

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect();
SpaceCenter sc(&conn);
std::tuple<double,double,double> v = sc.active_vessel().flight().prograde();
std::cout << std::get<0>(v) << " "

<< std::get<1>(v) << " "
<< std::get<2>(v) << std::endl;

}

class Quaternion
Quaternions (rotations in 3-dimensional space) are
encoded as a 4-tuple containing the x, y, z and w
components. For example:

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect();
SpaceCenter sc(&conn);
std::tuple<double,double,double,double> q = sc.active_vessel().flight().rotation();
std::cout << std::get<0>(q) << " "

<< std::get<1>(q) << " "
<< std::get<2>(q) << " "
<< std::get<3>(q) << std::endl;

}

4.4 InfernalRobotics API

Provides RPCs to interact with the InfernalRobotics
mod. Provides the following classes:

4.4. InfernalRobotics API 151

http://forum.kerbalspaceprogram.com/threads/116064

kRPC, Release 0.2.3

4.4.1 InfernalRobotics

class InfernalRobotics : public krpc::Service
This service provides functionality to interact with
the InfernalRobotics mod.

InfernalRobotics(krpc::Client *client)
Construct an instance of this service.

std::vector<InfernalRobotics::ControlGroup> servo_groups()
A list of all the servo groups in the active vessel.

InfernalRobotics::ControlGroup servo_group_with_name(std::string name)
Returns the servo group with the given name or
NULL if none exists. If multiple servo groups have
the same name, only one of them is returned.

Parameters

• name – Name of servo group to find.

InfernalRobotics::Servo servo_with_name(std::string name)
Returns the servo with the given name, from all
servo groups, or NULL if none exists. If multiple
servos have the same name, only one of them is
returned.

Parameters

• name – Name of the servo to find.

4.4.2 ControlGroup

class ControlGroup
A group of ser-
vos, obtained by calling
InfernalRobotics::servo_groups()
or InfernalRobotics::servo_group_with_name().
Represents the “Servo Groups” in the Infernal-
Robotics UI.

std::string name()

void set_name(std::string value)
The name of the group.

std::string forward_key()

void set_forward_key(std::string value)
The key assigned to be the “forward” key for the
group.

std::string reverse_key()

void set_reverse_key(std::string value)
The key assigned to be the “reverse” key for the
group.

152 Chapter 4. C++

http://forum.kerbalspaceprogram.com/threads/116064

kRPC, Release 0.2.3

float speed()

void set_speed(float value)
The speed multiplier for the group.

bool expanded()

void set_expanded(bool value)
Whether the group is expanded in the Infernal-
Robotics UI.

std::vector<InfernalRobotics::Servo> servos()
The servos that are in the group.

InfernalRobotics::Servo servo_with_name(std::string name)
Returns the servo with the given name from this
group, or NULL if none exists.

Parameters

• name – Name of servo to find.

void move_right()
Moves all of the servos in the group to the right.

void move_left()
Moves all of the servos in the group to the left.

void move_center()
Moves all of the servos in the group to the center.

void move_next_preset()
Moves all of the servos in the group to the next
preset.

void move_prev_preset()
Moves all of the servos in the group to the previous
preset.

void stop()
Stops the servos in the group.

4.4.3 Servo

class Servo
Represents a servo.
Obtained using InfernalRobotics::ControlGroup::servos(),
InfernalRobotics::ControlGroup::servo_with_name()
or InfernalRobotics::servo_with_name().

std::string name()

void set_name(std::string value)
The name of the servo.

void set_highlight(bool value)
Whether the servo should be highlighted in-game.

4.4. InfernalRobotics API 153

kRPC, Release 0.2.3

float position()
The position of the servo.

float min_config_position()
The minimum position of the servo, specified by the
part configuration.

float max_config_position()
The maximum position of the servo, specified by
the part configuration.

float min_position()

void set_min_position(float value)
The minimum position of the servo, specified by the
in-game tweak menu.

float max_position()

void set_max_position(float value)
The maximum position of the servo, specified by
the in-game tweak menu.

float config_speed()
The speed multiplier of the servo, specified by the
part configuration.

float speed()

void set_speed(float value)
The speed multiplier of the servo, specified by the
in-game tweak menu.

float current_speed()

void set_current_speed(float value)
The current speed at which the servo is moving.

float acceleration()

void set_acceleration(float value)
The current speed multiplier set in the UI.

bool is_moving()
Whether the servo is moving.

bool is_free_moving()
Whether the servo is freely moving.

bool is_locked()

void set_is_locked(bool value)
Whether the servo is locked.

bool is_axis_inverted()

154 Chapter 4. C++

kRPC, Release 0.2.3

void set_is_axis_inverted(bool value)
Whether the servos axis is inverted.

void move_right()
Moves the servo to the right.

void move_left()
Moves the servo to the left.

void move_center()
Moves the servo to the center.

void move_next_preset()
Moves the servo to the next preset.

void move_prev_preset()
Moves the servo to the previous preset.

void move_to(float position, float speed)
Moves the servo to position and sets the speed mul-
tiplier to speed.

Parameters

• position – The position to move the servo to.

• speed – Speed multiplier for the movement.

void stop()
Stops the servo.

4.4.4 Example

The following example gets the control group named
“MyGroup”, prints out the names and positions of
all of the servos in the group, then moves all of the
servos to the right for 1 second.

#include <krpc.hpp>
#include <krpc/services/infernal_robotics.hpp>
#include <iostream>
#include <vector>

using namespace krpc::services;

int main() {
auto conn = krpc::connect("InfernalRobotics Example");
InfernalRobotics infernal_robotics(&conn);

InfernalRobotics::ControlGroup group = infernal_robotics.servo_group_with_name("MyGroup");
if (group == InfernalRobotics::ControlGroup())
std::cout << "Group not found" << std::endl;

std::vector<InfernalRobotics::Servo> servos = group.servos();
for (auto servo : servos)
std::cout << servo.name() << " " << servo.position() << std::endl;

group.move_right();
sleep(1);

4.4. InfernalRobotics API 155

kRPC, Release 0.2.3

group.stop();
}

4.5 Kerbal Alarm Clock API

Provides RPCs to interact with the Kerbal Alarm
Clock mod. Provides the following classes:

4.5.1 KerbalAlarmClock

class KerbalAlarmClock : public krpc::Service
This service provides functionality to interact with
the Kerbal Alarm Clock mod.

KerbalAlarmClock(krpc::Client *client)
Construct an instance of this service.

std::vector<KerbalAlarmClock::Alarm> alarms()
A list of all the alarms.

KerbalAlarmClock::Alarm alarm_with_name(std::string name)
Get the alarm with the given name, or NULL if no
alarms have that name. If more than one alarm has
the name, only returns one of them.

Parameters

• name – Name of the alarm to search for.

std::vector<KerbalAlarmClock::Alarm> alarms_with_type(KerbalAlarmClock::AlarmType type)
Get a list of alarms of the specified type.

Parameters

• type – Type of alarm to return.

KerbalAlarmClock::Alarm create_alarm(KerbalAlarmClock::AlarmType type, std::string name, dou-
ble ut)

Create a new alarm and return it.

Parameters

• type – Type of the new alarm.

• name – Name of the new alarm.

• ut – Time at which the new alarm should trigger.

4.5.2 Alarm

class Alarm
Represents an alarm.
Obtained by calling
KerbalAlarmClock::alarms(),
KerbalAlarmClock::alarm_with_name()
or KerbalAlarmClock::alarms_with_type().

156 Chapter 4. C++

http://forum.kerbalspaceprogram.com/threads/24786
http://forum.kerbalspaceprogram.com/threads/24786
http://forum.kerbalspaceprogram.com/threads/24786

kRPC, Release 0.2.3

KerbalAlarmClock::AlarmAction action()

void set_action(KerbalAlarmClock::AlarmAction value)
The action that the alarm triggers.

double margin()

void set_margin(double value)
The number of seconds before the event that the
alarm will fire.

double time()

void set_time(double value)
The time at which the alarm will fire.

KerbalAlarmClock::AlarmType type()
The type of the alarm.

std::string id()
The unique identifier for the alarm.

std::string name()

void set_name(std::string value)
The short name of the alarm.

std::string notes()

void set_notes(std::string value)
The long description of the alarm.

double remaining()
The number of seconds until the alarm will fire.

bool repeat()

void set_repeat(bool value)
Whether the alarm will be repeated after it has fired.

double repeat_period()

void set_repeat_period(double value)
The time delay to automatically create an alarm
after it has fired.

SpaceCenter::Vessel vessel()

void set_vessel(SpaceCenter::Vessel value)
The vessel that the alarm is attached to.

SpaceCenter::CelestialBody xfer_origin_body()

void set_xfer_origin_body(SpaceCenter::CelestialBody value)
The celestial body the vessel is departing from.

4.5. Kerbal Alarm Clock API 157

kRPC, Release 0.2.3

SpaceCenter::CelestialBody xfer_target_body()

void set_xfer_target_body(SpaceCenter::CelestialBody value)
The celestial body the vessel is arriving at.

void remove()
Removes the alarm.

4.5.3 AlarmType

enum struct AlarmType
The type of an alarm.

enumerator raw
An alarm for a specific date/time or a specific period
in the future.

enumerator maneuver
An alarm based on the next maneuver node on the
current ships flight path. This node will be stored
and can be restored when you come back to the ship.

enumerator maneuver_auto
See KerbalAlarmClock::AlarmType::maneuver.

enumerator apoapsis
An alarm for furthest part of the orbit from the
planet.

enumerator periapsis
An alarm for nearest part of the orbit from the planet.

enumerator ascending_node
Ascending node for the targeted object, or equatorial
ascending node.

enumerator descending_node
Descending node for the targeted object, or equato-
rial descending node.

enumerator closest
An alarm based on the closest approach of this ves-
sel to the targeted vessel, some number of orbits
into the future.

enumerator contract
An alarm based on the expiry or deadline of con-
tracts in career modes.

enumerator contract_auto
See KerbalAlarmClock::AlarmType::contract.

enumerator crew
An alarm that is attached to a crew member.

enumerator distance
An alarm that is triggered when a selected target
comes within a chosen distance.

158 Chapter 4. C++

kRPC, Release 0.2.3

enumerator earth_time
An alarm based on the time in the “Earth” alternative
Universe (aka the Real World).

enumerator launch_rendevous
An alarm that fires as your landed craft passes under
the orbit of your target.

enumerator soi_change
An alarm manually based on when the next SOI
point is on the flight path or set to continually
monitor the active flight path and add alarms as it
detects SOI changes.

enumerator soi_change_auto
See KerbalAlarmClock::AlarmType::soi_change.

enumerator transfer
An alarm based on Interplanetary Transfer Phase
Angles, i.e. when should I launch to planet X?
Based on Kosmo Not’s post and used in Olex’s
Calculator.

enumerator transfer_modelled
See KerbalAlarmClock::AlarmType::transfer.

4.5.4 AlarmAction

enum struct AlarmAction
The action performed by an alarm when it fires.

enumerator do_nothing
Don’t do anything at all...

enumerator do_nothing_delete_when_passed
Don’t do anything, and delete the alarm.

enumerator kill_warp
Drop out of time warp.

enumerator kill_warp_only
Drop out of time warp.

enumerator message_only
Display a message.

enumerator pause_game
Pause the game.

4.5.5 Example

The following example creates a new alarm for the
active vessel. The alarm is set to trigger after 10 sec-
onds have passed, and display a message.

#include <krpc.hpp>
#include <krpc/services/space_center.hpp>
#include <krpc/services/kerbal_alarm_clock.hpp>

4.5. Kerbal Alarm Clock API 159

kRPC, Release 0.2.3

#include <iostream>

using namespace krpc::services;

int main() {
krpc::Client conn = krpc::connect("Kerbal Alarm Clock Example");
SpaceCenter sc(&conn);
KerbalAlarmClock kac(&conn);

auto alarm = kac.create_alarm(KerbalAlarmClock::AlarmType::raw,
"My New Alarm",
sc.ut()+10);

alarm.set_notes("10 seconds have now passed since the alarm was created.");
alarm.set_action(KerbalAlarmClock::AlarmAction::message_only);

}

160 Chapter 4. C++

CHAPTER

FIVE

JAVA

5.1 Java Client

This client provides functionality to interact with a kRPC server from programs written in Java. A jar containing the
krpc.client package can be downloaded from GitHub. It requires Java version 1.7.

5.1.1 Using the Library

The kRPC client library depends on the protobuf and javatuples libraries. A prebuilt jar for protobuf is available via
Maven. Note that you need protobuf version 3. Version 2 is not compatible with kRPC.

The following example program connects to the server, queries it for its version and prints it out:

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.KRPC;

public class Basic {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
KRPC krpc = KRPC.newInstance(connection);
System.out.println("Connected to kRPC version " + krpc.getStatus().getVersion());

}
}

To compile this program using javac on the command line, save the source as Example.java and run the following:

javac -cp libkrpc-0.2.2.jar:protobuf-java-3.0.0-beta-2.jar:javatuples-1.2.jar Example.java

You may need to change the paths to the JAR files.

5.1.2 Connecting to the Server

To connect to a server, use the Connection.newInstance() function. This returns a connection object through
which you can interact with the server. When called without any arguments, it will connect to the local machine on
the default port numbers. You can specify different connection settings, including a descriptive name for the client, as
follows:

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;

161

https://github.com/krpc/krpc/releases/download/v0.2.3/libkrpc-0.2.3.jar
https://github.com/google/protobuf/tree/master/java
http://www.javatuples.org
http://search.maven.org/#search\T1\textbar {}ga\T1\textbar {}1\T1\textbar {}g%3A%22com.google.protobuf%22%20a%3A%22protobuf-java%22

kRPC, Release 0.2.3

import krpc.client.services.KRPC;

public class Connecting {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance("Remote example", "my.domain.name", 1000, 1001);
System.out.println(KRPC.newInstance(connection).getStatus().getVersion());

}
}

5.1.3 Interacting with the Server

Interaction with the server is performed via a connection object. Functionality for services are defined in the packages
krpc.client.services.*. Before a service can be used it must first be instantiated. The following example
connects to the server, instantiates the SpaceCenter service, and outputs the name of the active vessel:

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Vessel;

public class Interacting {
public static void main (String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance("Vessel Name");
SpaceCenter spaceCenter = SpaceCenter.newInstance(connection);
Vessel vessel = spaceCenter.getActiveVessel();
System.out.println(vessel.getName());

}
}

5.1.4 Streaming Data from the Server

A stream repeatedly executes a function on the server, with a fixed set of argument values. It provides a more efficient
way of repeatedly getting the result of a function, avoiding the network overhead of having to invoke it directly.

For example, consider the following loop that continuously prints out the position of the active vessel. This loop incurs
significant communication overheads, as the vessel.position() function is called repeatedly.

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.KRPC;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Vessel;
import krpc.client.services.SpaceCenter.ReferenceFrame;

public class Streaming {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
SpaceCenter spaceCenter = SpaceCenter.newInstance(connection);
Vessel vessel = spaceCenter.getActiveVessel();
ReferenceFrame refframe = vessel.getOrbit().getBody().getReferenceFrame();
while (true)

System.out.println(vessel.position(refframe));
}

}

162 Chapter 5. Java

kRPC, Release 0.2.3

The following code achieves the same thing, but is far more efficient. It calls Connection.addStream once at
the start of the program to create a stream, and then repeatedly gets the position from the stream.

import java.io.IOException;
import org.javatuples.Triplet;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.Stream;
import krpc.client.StreamException;
import krpc.client.services.KRPC;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Vessel;
import krpc.client.services.SpaceCenter.ReferenceFrame;

public class Streaming2 {
public static void main(String[] args) throws IOException, RPCException, StreamException {

Connection connection = Connection.newInstance();
SpaceCenter spaceCenter = SpaceCenter.newInstance(connection);
Vessel vessel = spaceCenter.getActiveVessel();
ReferenceFrame refframe = vessel.getOrbit().getBody().getReferenceFrame();
Stream<Triplet<Double,Double,Double>> vessel_stream = connection.addStream(vessel, "position", refframe);
while (true)

System.out.println(vessel_stream.get());
}

}

Streams are created by calling Connection.addStream and passing it information about which method to stream.
The example above passes a remote object, the name of the method to call, followed by the arguments to pass to the
method (if any). The most recent value for the stream can be obtained by calling Stream.get.

Streams can also be added for static methods as follows:

Stream<Double> time_stream = connection.addStream(SpaceCenter.class, "getUt");

A stream can be removed by calling Stream.remove(). All of a clients streams are automatically stopped when it
disconnects.

5.1.5 Client API Reference

class Connection

This class provides the interface for communicating with the server.

static Connection newInstance()

static Connection newInstance(String name)

static Connection newInstance(String name, String address)

static Connection newInstance(String name, String address, int rpcPort, int streamPort)

static Connection newInstance(String name, java.net.InetAddress address)

static Connection newInstance(String name, java.net.InetAddress address, int rpcPort, int
streamPort)

Create a connection to the server, using the given connection details.
Parameters

• name (String) – A descriptive name for the connection. This is passed to the
server and appears, for example, in the client connection dialog on the in-game
server window.

5.1. Java Client 163

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/net/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/net/InetAddress.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/net/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/net/InetAddress.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

• address (String) – The address of the server to connect to. Can either be
a hostname, an IP address as a string or a java.net.InetAddress object.
Defaults to “127.0.0.1”.

• rpc_port (int) – The port number of the RPC Server. Defaults to 50000.
• stream_port (int) – The port number of the Stream Server. Defaults to 50001.

void close()
Close the connection.

Stream<T> addStream(Class<?> clazz, String method, Object... args)
Create a stream for a static method call to the given class.

Stream<T> addStream(RemoteObject instance, String method, Object... args)
Create a stream for a method call to the given remote object.

class Stream<T>
A stream object.

T get()
Get the most recent value for the stream.

void remove()
Remove the stream from the server.

abstract class RemoteObject
The abstract base class for all remote objects.

5.2 KRPC API

public class KRPC
Main kRPC service, used by clients to interact with basic server functionality.

krpc.schema.KRPC.Status getStatus()
Returns some information about the server, such as the version.

krpc.schema.KRPC.Services getServices()
Returns information on all services, procedures, classes, properties etc. provided by the server. Can be
used by client libraries to automatically create functionality such as stubs.

GameScene getCurrentGameScene()
Get the current game scene.

int addStream(krpc.schema.KRPC.Request request)
Add a streaming request and return its identifier.

Parameters

• request (krpc.schema.KRPC.Request) –

Note: Do not call this method from client code. Use streams provided by the Java client library.

void removeStream(int id)
Remove a streaming request.

Parameters

• id (int) –

164 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/net/InetAddress.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

kRPC, Release 0.2.3

Note: Do not call this method from client code. Use streams provided by the Java client library.

public enum GameScene
The game scene. See getCurrentGameScene().

public GameScene SPACE_CENTER
The game scene showing the Kerbal Space Center buildings.

public GameScene FLIGHT
The game scene showing a vessel in flight (or on the launchpad/runway).

public GameScene TRACKING_STATION
The tracking station.

public GameScene EDITOR_VAB
The Vehicle Assembly Building.

public GameScene EDITOR_SPH
The Space Plane Hangar.

5.3 SpaceCenter API

5.3.1 SpaceCenter

public class SpaceCenter
Provides functionality to interact with Kerbal Space Program. This includes controlling the active vessel, man-
aging its resources, planning maneuver nodes and auto-piloting.

Vessel getActiveVessel()

void setActiveVessel(Vessel value)
The currently active vessel.

java.util.List<Vessel> getVessels()
A list of all the vessels in the game.

java.util.Map<String, CelestialBody> getBodies()
A dictionary of all celestial bodies (planets, moons, etc.) in the game, keyed by the name of the body.

CelestialBody getTargetBody()

void setTargetBody(CelestialBody value)
The currently targeted celestial body.

Vessel getTargetVessel()

void setTargetVessel(Vessel value)
The currently targeted vessel.

DockingPort getTargetDockingPort()

void setTargetDockingPort(DockingPort value)
The currently targeted docking port.

void clearTarget()
Clears the current target.

void launchVesselFromVAB(String name)
Launch a new vessel from the VAB onto the launchpad.

5.3. SpaceCenter API 165

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

Parameters

• name (String) – Name of the vessel’s craft file.

void launchVesselFromSPH(String name)
Launch a new vessel from the SPH onto the runway.

Parameters

• name (String) – Name of the vessel’s craft file.

double getUT()
The current universal time in seconds.

float getG()
The value of the gravitational constant G in 𝑁(𝑚/𝑘𝑔)2.

WarpMode getWarpMode()
The current time warp mode. Returns WarpMode.NONE if time warp is not active, WarpMode.RAILS
if regular “on-rails” time warp is active, or WarpMode.PHYSICS if physical time warp is active.

float getWarpRate()
The current warp rate. This is the rate at which time is passing for either on-rails or physical time warp.
For example, a value of 10 means time is passing 10x faster than normal. Returns 1 if time warp is not
active.

float getWarpFactor()
The current warp factor. This is the index of the rate at which time is passing for either regular “on-rails”
or physical time warp. Returns 0 if time warp is not active. When in on-rails time warp, this is equal to
getRailsWarpFactor(), and in physics time warp, this is equal to getPhysicsWarpFactor().

int getRailsWarpFactor()

void setRailsWarpFactor(int value)
The time warp rate, using regular “on-rails” time warp. A value between 0 and 7 inclusive. 0 means no
time warp. Returns 0 if physical time warp is active. If requested time warp factor cannot be set, it will be
set to the next lowest possible value. For example, if the vessel is too close to a planet. See the KSP wiki
for details.

int getPhysicsWarpFactor()

void setPhysicsWarpFactor(int value)
The physical time warp rate. A value between 0 and 3 inclusive. 0 means no time warp. Returns 0 if
regular “on-rails” time warp is active.

boolean canRailsWarpAt(int factor)
Returns true if regular “on-rails” time warp can be used, at the specified warp factor. The maximum
time warp rate is limited by various things, including how close the active vessel is to a planet. See the
KSP wiki for details.

Parameters

• factor (int) – The warp factor to check.

int getMaximumRailsWarpFactor()
The current maximum regular “on-rails” warp factor that can be set. A value between 0 and 7 inclusive.
See the KSP wiki for details.

void warpTo(double UT, float maxRailsRate, float maxPhysicsRate)
Uses time acceleration to warp forward to a time in the future, specified by universal time UT. This call
blocks until the desired time is reached. Uses regular “on-rails” or physical time warp as appropriate. For
example, physical time warp is used when the active vessel is traveling through an atmosphere. When

166 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://en.wikipedia.org/wiki/Gravitational_constant
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.2.3

using regular “on-rails” time warp, the warp rate is limited by maxRailsRate, and when using physical
time warp, the warp rate is limited by maxPhysicsRate.

Parameters

• UT (double) – The universal time to warp to, in seconds.

• maxRailsRate (float) – The maximum warp rate in regular “on-rails” time warp.

• maxPhysicsRate (float) – The maximum warp rate in physical time warp.

Returns When the time warp is complete.

org.javatuples.Triplet<Double, Double, Double> transformPosition(org.javatuples.Triplet<Double,
Double, Double> position,
ReferenceFrame from,
ReferenceFrame to)

Converts a position vector from one reference frame to another.

Parameters

• position (org.javatuples.Triplet<Double,Double,Double>) – Posi-
tion vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the position vector is in.

• to (ReferenceFrame) – The reference frame to covert the position vector to.

Returns The corresponding position vector in reference frame to.

org.javatuples.Triplet<Double, Double, Double> transformDirection(org.javatuples.Triplet<Double,
Double, Double> direc-
tion, ReferenceFrame from,
ReferenceFrame to)

Converts a direction vector from one reference frame to another.

Parameters

• direction (org.javatuples.Triplet<Double,Double,Double>) – Di-
rection vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the direction vector is in.

• to (ReferenceFrame) – The reference frame to covert the direction vector to.

Returns The corresponding direction vector in reference frame to.

org.javatuples.Quartet<Double, Double, Double, Double> transformRotation(org.javatuples.Quartet<Double,
Double, Double,
Double> rotation,
ReferenceFrame
from, Reference-
Frame to)

Converts a rotation from one reference frame to another.

Parameters

• rotation (org.javatuples.Quartet<Double,Double,Double,Double>)
– Rotation in reference frame from.

• from (ReferenceFrame) – The reference frame that the rotation is in.

• to (ReferenceFrame) – The corresponding rotation in reference frame to.

Returns The corresponding rotation in reference frame to.

5.3. SpaceCenter API 167

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet\T1\textless {}Double,Double,Double,Double\T1\textgreater {}.html

kRPC, Release 0.2.3

org.javatuples.Triplet<Double, Double, Double> transformVelocity(org.javatuples.Triplet<Double,
Double, Double> position,
org.javatuples.Triplet<Double,
Double, Double> velocity,
ReferenceFrame from,
ReferenceFrame to)

Converts a velocity vector (acting at the specified position vector) from one reference frame to another.
The position vector is required to take the relative angular velocity of the reference frames into account.

Parameters

• position (org.javatuples.Triplet<Double,Double,Double>) – Posi-
tion vector in reference frame from.

• velocity (org.javatuples.Triplet<Double,Double,Double>) – Veloc-
ity vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the position and velocity vectors
are in.

• to (ReferenceFrame) – The reference frame to covert the velocity vector to.

Returns The corresponding velocity in reference frame to.

boolean getFARAvailable()
Whether Ferram Aerospace Research is installed.

boolean getRemoteTechAvailable()
Whether RemoteTech is installed.

void drawDirection(org.javatuples.Triplet<Double, Double, Double> direction, ReferenceFrame
referenceFrame, org.javatuples.Triplet<Double, Double, Double> color, float
length)

Draw a direction vector on the active vessel.

Parameters

• direction (org.javatuples.Triplet<Double,Double,Double>) – Di-
rection to draw the line in.

• referenceFrame (ReferenceFrame) – Reference frame that the direction is in.

• color (org.javatuples.Triplet<Double,Double,Double>) – The color
to use for the line, as an RGB color.

• length (float) – The length of the line. Defaults to 10.

void drawLine(org.javatuples.Triplet<Double, Double, Double> start, org.javatuples.Triplet<Double,
Double, Double> end, ReferenceFrame referenceFrame,
org.javatuples.Triplet<Double, Double, Double> color)

Draw a line.

Parameters

• start (org.javatuples.Triplet<Double,Double,Double>) – Position of
the start of the line.

• end (org.javatuples.Triplet<Double,Double,Double>) – Position of the
end of the line.

• referenceFrame (ReferenceFrame) – Reference frame that the position are in.

• color (org.javatuples.Triplet<Double,Double,Double>) – The color
to use for the line, as an RGB color.

168 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/83305
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet\T1\textless {}Double,Double,Double\T1\textgreater {}.html

kRPC, Release 0.2.3

void clearDrawing()
Remove all directions and lines currently being drawn.

public enum WarpMode
Returned by WarpMode

public WarpMode RAILS
Time warp is active, and in regular “on-rails” mode.

public WarpMode PHYSICS
Time warp is active, and in physical time warp mode.

public WarpMode NONE
Time warp is not active.

5.3.2 Vessel

public class Vessel
These objects are used to interact with vessels in KSP. This includes getting orbital and flight data, manipulating
control inputs and managing resources.

String getName()

void setName(String value)
The name of the vessel.

VesselType getType()

void setType(VesselType value)
The type of the vessel.

VesselSituation getSituation()
The situation the vessel is in.

double getMET()
The mission elapsed time in seconds.

Flight flight(ReferenceFrame referenceFrame)
Returns a Flight object that can be used to get flight telemetry for the vessel, in the specified reference
frame.

Parameters

• referenceFrame (ReferenceFrame) – Reference frame. Defaults to the vessel’s
surface reference frame (Vessel.getSurfaceReferenceFrame()).

Note: When this is called with no arguments, the vessel’s surface reference frame is used. This reference
frame moves with the vessel, therefore velocities and speeds returned by the flight object will be zero. See
the reference frames tutorial for examples of getting the orbital speed and surface speed of a vessel.

Vessel getTarget()

void setTarget(Vessel value)
The target vessel. null if there is no target. When setting the target, the target cannot be the current
vessel.

Orbit getOrbit()
The current orbit of the vessel.

5.3. SpaceCenter API 169

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

Control getControl()
Returns a Control object that can be used to manipulate the vessel’s control inputs. For example, its
pitch/yaw/roll controls, RCS and thrust.

AutoPilot getAutoPilot()
An AutoPilot object, that can be used to perform simple auto-piloting of the vessel.

Resources getResources()
A Resources object, that can used to get information about resources stored in the vessel.

Resources resourcesInDecoupleStage(int stage, boolean cumulative)
Returns a Resources object, that can used to get information about resources stored in a given stage.

Parameters

• stage (int) – Get resources for parts that are decoupled in this stage.

• cumulative (boolean) – When false, returns the resources for parts decoupled in
just the given stage. When true returns the resources decoupled in the given stage and
all subsequent stages combined.

Note: For details on stage numbering, see the discussion on Staging.

Parts getParts()
A Parts object, that can used to interact with the parts that make up this vessel.

Comms getComms()
A Comms object, that can used to interact with RemoteTech for this vessel.

Note: Requires RemoteTech to be installed.

float getMass()
The total mass of the vessel, including resources, in kg.

float getDryMass()
The total mass of the vessel, excluding resources, in kg.

float getThrust()
The total thrust currently being produced by the vessel’s engines, in Newtons. This is computed by sum-
ming Engine.getThrust() for every engine in the vessel.

float getAvailableThrust()
Gets the total available thrust that can be produced by the vessel’s active engines, in Newtons. This is
computed by summing Engine.getAvailableThrust() for every active engine in the vessel.

float getMaxThrust()
The total maximum thrust that can be produced by the vessel’s active engines, in Newtons. This is com-
puted by summing Engine.getMaxThrust() for every active engine.

float getMaxVacuumThrust()
The total maximum thrust that can be produced by the vessel’s active engines when the vessel is in a
vacuum, in Newtons. This is computed by summing Engine.getMaxVacuumThrust() for every
active engine.

float getSpecificImpulse()
The combined specific impulse of all active engines, in seconds. This is computed using the formula
described here.

170 Chapter 5. Java

http://forum.kerbalspaceprogram.com/threads/83305
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.2.3

float getVacuumSpecificImpulse()
The combined vacuum specific impulse of all active engines, in seconds. This is computed using the
formula described here.

float getKerbinSeaLevelSpecificImpulse()
The combined specific impulse of all active engines at sea level on Kerbin, in seconds. This is computed
using the formula described here.

ReferenceFrame getReferenceFrame()
The reference frame that is fixed relative to the vessel, and orientated with the vessel.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel.

•The x-axis points out to the right of the vessel.

•The y-axis points in the forward direction of the vessel.

•The z-axis points out of the bottom off the vessel.

Fig. 5.1: Vessel reference frame origin and axes for the Aeris 3A aircraft

ReferenceFrame getOrbitalReferenceFrame()
The reference frame that is fixed relative to the vessel, and orientated with the vessels orbital pro-
grade/normal/radial directions.

•The origin is at the center of mass of the vessel.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Note: Be careful not to confuse this with ‘orbit’ mode on the navball.

5.3. SpaceCenter API 171

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.2.3

Fig. 5.2: Vessel reference frame origin and axes for the Kerbal-X rocket

172 Chapter 5. Java

kRPC, Release 0.2.3

Fig. 5.3: Vessel orbital reference frame origin and axes

ReferenceFrame getSurfaceReferenceFrame()
The reference frame that is fixed relative to the vessel, and orientated with the surface of the body being
orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the north and up directions on the surface of the body.

•The x-axis points in the zenith direction (upwards, normal to the body being orbited, from the center
of the body towards the center of mass of the vessel).

•The y-axis points northwards towards the astronomical horizon (north, and tangential to the surface
of the body – the direction in which a compass would point when on the surface).

•The z-axis points eastwards towards the astronomical horizon (east, and tangential to the surface of
the body – east on a compass when on the surface).

Note: Be careful not to confuse this with ‘surface’ mode on the navball.

ReferenceFrame getSurfaceVelocityReferenceFrame()
The reference frame that is fixed relative to the vessel, and orientated with the velocity vector of the vessel
relative to the surface of the body being orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel’s velocity vector.

•The y-axis points in the direction of the vessel’s velocity vector, relative to the surface of the body
being orbited.

•The z-axis is in the plane of the astronomical horizon.

•The x-axis is orthogonal to the other two axes.

5.3. SpaceCenter API 173

http://en.wikipedia.org/wiki/Zenith
http://en.wikipedia.org/wiki/Horizon
http://en.wikipedia.org/wiki/Horizon
http://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.2.3

Fig. 5.4: Vessel surface reference frame origin and axes

Fig. 5.5: Vessel surface velocity reference frame origin and axes

174 Chapter 5. Java

kRPC, Release 0.2.3

org.javatuples.Triplet<Double, Double, Double> position(ReferenceFrame referenceFrame)
Returns the position vector of the center of mass of the vessel in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> velocity(ReferenceFrame referenceFrame)
Returns the velocity vector of the center of mass of the vessel in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Quartet<Double, Double, Double, Double> rotation(ReferenceFrame reference-
Frame)

Returns the rotation of the center of mass of the vessel in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> direction(ReferenceFrame referenceFrame)
Returns the direction in which the vessel is pointing, as a unit vector, in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> angularVelocity(ReferenceFrame reference-
Frame)

Returns the angular velocity of the vessel in the given reference frame. The magnitude of the returned
vector is the rotational speed in radians per second, and the direction of the vector indicates the axis of
rotation (using the right hand rule).

Parameters

• referenceFrame (ReferenceFrame) –

public enum VesselType
See Vessel.getType().

public VesselType SHIP
Ship.

public VesselType STATION
Station.

public VesselType LANDER
Lander.

public VesselType PROBE
Probe.

public VesselType ROVER
Rover.

public VesselType BASE
Base.

public VesselType DEBRIS
Debris.

public enum VesselSituation
See Vessel.getSituation().

5.3. SpaceCenter API 175

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.2.3

public VesselSituation DOCKED
Vessel is docked to another.

public VesselSituation ESCAPING
Escaping.

public VesselSituation FLYING
Vessel is flying through an atmosphere.

public VesselSituation LANDED
Vessel is landed on the surface of a body.

public VesselSituation ORBITING
Vessel is orbiting a body.

public VesselSituation PRE_LAUNCH
Vessel is awaiting launch.

public VesselSituation SPLASHED
Vessel has splashed down in an ocean.

public VesselSituation SUB_ORBITAL
Vessel is on a sub-orbital trajectory.

5.3.3 CelestialBody

public class CelestialBody
Represents a celestial body (such as a planet or moon).

String getName()
The name of the body.

java.util.List<CelestialBody> getSatellites()
A list of celestial bodies that are in orbit around this celestial body.

Orbit getOrbit()
The orbit of the body.

float getMass()
The mass of the body, in kilograms.

float getGravitationalParameter()
The standard gravitational parameter of the body in 𝑚3𝑠−2.

float getSurfaceGravity()
The acceleration due to gravity at sea level (mean altitude) on the body, in 𝑚/𝑠2.

float getRotationalPeriod()
The sidereal rotational period of the body, in seconds.

float getRotationalSpeed()
The rotational speed of the body, in radians per second.

float getEquatorialRadius()
The equatorial radius of the body, in meters.

double surfaceHeight(double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water this
is equal to 0.

Parameters

• latitude (double) – Latitude in degrees

176 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://en.wikipedia.org/wiki/Standard_gravitational_parameter

kRPC, Release 0.2.3

• longitude (double) – Longitude in degrees

double bedrockHeight(double latitude, double longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water, this
is the height of the sea-bed and is therefore a negative value.

Parameters

• latitude (double) – Latitude in degrees

• longitude (double) – Longitude in degrees

org.javatuples.Triplet<Double, Double, Double> mSLPosition(double latitude, double longitude,
ReferenceFrame referenceFrame)

The position at mean sea level at the given latitude and longitude, in the given reference frame.

Parameters

• latitude (double) – Latitude in degrees

• longitude (double) – Longitude in degrees

• referenceFrame (ReferenceFrame) – Reference frame for the returned position
vector

org.javatuples.Triplet<Double, Double, Double> surfacePosition(double latitude, double lon-
gitude, ReferenceFrame refer-
enceFrame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position of the surface of the water.

Parameters

• latitude (double) – Latitude in degrees

• longitude (double) – Longitude in degrees

• referenceFrame (ReferenceFrame) – Reference frame for the returned position
vector

org.javatuples.Triplet<Double, Double, Double> bedrockPosition(double latitude, double lon-
gitude, ReferenceFrame refer-
enceFrame)

The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position at the bottom of the sea-bed.

Parameters

• latitude (double) – Latitude in degrees

• longitude (double) – Longitude in degrees

• referenceFrame (ReferenceFrame) – Reference frame for the returned position
vector

float getSphereOfInfluence()
The radius of the sphere of influence of the body, in meters.

boolean getHasAtmosphere()
true if the body has an atmosphere.

float getAtmosphereDepth()
The depth of the atmosphere, in meters.

boolean getHasAtmosphericOxygen()
true if there is oxygen in the atmosphere, required for air-breathing engines.

5.3. SpaceCenter API 177

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.2.3

ReferenceFrame getReferenceFrame()
The reference frame that is fixed relative to the celestial body.

•The origin is at the center of the body.

•The axes rotate with the body.

•The x-axis points from the center of the body towards the intersection of the prime meridian and
equator (the position at 0° longitude, 0° latitude).

•The y-axis points from the center of the body towards the north pole.

•The z-axis points from the center of the body towards the equator at 90°E longitude.

Fig. 5.6: Celestial body reference frame origin and axes. The equator is shown in blue, and the prime meridian in red.

ReferenceFrame getNonRotatingReferenceFrame()
The reference frame that is fixed relative to this celestial body, and orientated in a fixed direction (it does
not rotate with the body).

•The origin is at the center of the body.

•The axes do not rotate.

•The x-axis points in an arbitrary direction through the equator.

•The y-axis points from the center of the body towards the north pole.

•The z-axis points in an arbitrary direction through the equator.

ReferenceFrame getOrbitalReferenceFrame()
Gets the reference frame that is fixed relative to this celestial body, but orientated with the body’s orbital
prograde/normal/radial directions.

•The origin is at the center of the body.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

178 Chapter 5. Java

kRPC, Release 0.2.3

•The z-axis points in the orbital normal direction.

org.javatuples.Triplet<Double, Double, Double> position(ReferenceFrame referenceFrame)
Returns the position vector of the center of the body in the specified reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> velocity(ReferenceFrame referenceFrame)
Returns the velocity vector of the body in the specified reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Quartet<Double, Double, Double, Double> rotation(ReferenceFrame reference-
Frame)

Returns the rotation of the body in the specified reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> direction(ReferenceFrame referenceFrame)
Returns the direction in which the north pole of the celestial body is pointing, as a unit vector, in the
specified reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> angularVelocity(ReferenceFrame reference-
Frame)

Returns the angular velocity of the body in the specified reference frame. The magnitude of the vector is
the rotational speed of the body, in radians per second, and the direction of the vector indicates the axis of
rotation, using the right-hand rule.

Parameters

• referenceFrame (ReferenceFrame) –

5.3.4 Flight

public class Flight
Used to get flight telemetry for a vessel, by calling Vessel.flight(ReferenceFrame). All of the
information returned by this class is given in the reference frame passed to that method.

Note: To get orbital information, such as the apoapsis or inclination, see Orbit.

float getGForce()
The current G force acting on the vessel in 𝑚/𝑠2.

double getMeanAltitude()
The altitude above sea level, in meters.

double getSurfaceAltitude()
The altitude above the surface of the body or sea level, whichever is closer, in meters.

double getBedrockAltitude()
The altitude above the surface of the body, in meters. When over water, this is the altitude above the sea
floor.

5.3. SpaceCenter API 179

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.2.3

double getElevation()
The elevation of the terrain under the vessel, in meters. This is the height of the terrain above sea level,
and is negative when the vessel is over the sea.

double getLatitude()
The latitude of the vessel for the body being orbited, in degrees.

double getLongitude()
The longitude of the vessel for the body being orbited, in degrees.

org.javatuples.Triplet<Double, Double, Double> getVelocity()
The velocity vector of the vessel. The magnitude of the vector is the speed of the vessel in meters per
second. The direction of the vector is the direction of the vessels motion.

double getSpeed()
The speed of the vessel in meters per second.

double getHorizontalSpeed()
The horizontal speed of the vessel in meters per second.

double getVerticalSpeed()
The vertical speed of the vessel in meters per second.

org.javatuples.Triplet<Double, Double, Double> getCenterOfMass()
The position of the center of mass of the vessel.

org.javatuples.Quartet<Double, Double, Double, Double> getRotation()
The rotation of the vessel.

org.javatuples.Triplet<Double, Double, Double> getDirection()
The direction vector that the vessel is pointing in.

float getPitch()
The pitch angle of the vessel relative to the horizon, in degrees. A value between -90° and +90°.

float getHeading()
The heading angle of the vessel relative to north, in degrees. A value between 0° and 360°.

float getRoll()
The roll angle of the vessel relative to the horizon, in degrees. A value between -180° and +180°.

org.javatuples.Triplet<Double, Double, Double> getPrograde()
The unit direction vector pointing in the prograde direction.

org.javatuples.Triplet<Double, Double, Double> getRetrograde()
The unit direction vector pointing in the retrograde direction.

org.javatuples.Triplet<Double, Double, Double> getNormal()
The unit direction vector pointing in the normal direction.

org.javatuples.Triplet<Double, Double, Double> getAntiNormal()
The unit direction vector pointing in the anti-normal direction.

org.javatuples.Triplet<Double, Double, Double> getRadial()
The unit direction vector pointing in the radial direction.

org.javatuples.Triplet<Double, Double, Double> getAntiRadial()
The unit direction vector pointing in the anti-radial direction.

float getAtmosphereDensity()
The current density of the atmosphere around the vessel, in 𝑘𝑔/𝑚3.

180 Chapter 5. Java

http://en.wikipedia.org/wiki/Latitude
http://en.wikipedia.org/wiki/Longitude
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.2.3

float getDynamicPressure()
The dynamic pressure acting on the vessel, in Pascals. This is a measure of the strength of the aerodynamic
forces. It is equal to 1

2 .air density.velocity2. It is commonly denoted as 𝑄.

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float getStaticPressure()
The static atmospheric pressure acting on the vessel, in Pascals.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

org.javatuples.Triplet<Double, Double, Double> getAerodynamicForce()
The total aerodynamic forces acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

org.javatuples.Triplet<Double, Double, Double> getLift()
The aerodynamic lift currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

org.javatuples.Triplet<Double, Double, Double> getDrag()
The aerodynamic drag currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

float getSpeedOfSound()
The speed of sound, in the atmosphere around the vessel, in 𝑚/𝑠.

Note: Not available when Ferram Aerospace Research is installed.

float getMach()
The speed of the vessel, in multiples of the speed of sound.

Note: Not available when Ferram Aerospace Research is installed.

float getEquivalentAirSpeed()
The equivalent air speed of the vessel, in 𝑚/𝑠.

5.3. SpaceCenter API 181

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Equivalent_airspeed

kRPC, Release 0.2.3

Note: Not available when Ferram Aerospace Research is installed.

float getTerminalVelocity()
An estimate of the current terminal velocity of the vessel, in 𝑚/𝑠. This is the speed at which the drag
forces cancel out the force of gravity.

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

float getAngleOfAttack()
Gets the pitch angle between the orientation of the vessel and its velocity vector, in degrees.

float getSideslipAngle()
Gets the yaw angle between the orientation of the vessel and its velocity vector, in degrees.

float getTotalAirTemperature()
The total air temperature of the atmosphere around the vessel, in Kelvin. This temperature includes the
Flight.getStaticAirTemperature() and the vessel’s kinetic energy.

float getStaticAirTemperature()
The static (ambient) temperature of the atmosphere around the vessel, in Kelvin.

float getStallFraction()
Gets the current amount of stall, between 0 and 1. A value greater than 0.005 indicates a minor stall and a
value greater than 0.5 indicates a large-scale stall.

Note: Requires Ferram Aerospace Research.

float getDragCoefficient()
Gets the coefficient of drag. This is the amount of drag produced by the vessel. It depends on air speed,
air density and wing area.

Note: Requires Ferram Aerospace Research.

float getLiftCoefficient()
Gets the coefficient of lift. This is the amount of lift produced by the vessel, and depends on air speed, air
density and wing area.

Note: Requires Ferram Aerospace Research.

float getBallisticCoefficient()
Gets the ballistic coefficient.

Note: Requires Ferram Aerospace Research.

float getThrustSpecificFuelConsumption()
Gets the thrust specific fuel consumption for the jet engines on the vessel. This is a measure of the
efficiency of the engines, with a lower value indicating a more efficient vessel. This value is the number of
Newtons of fuel that are burned, per hour, to product one newton of thrust.

182 Chapter 5. Java

http://forum.kerbalspaceprogram.com/threads/20451
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Total_air_temperature
http://en.wikipedia.org/wiki/Total_air_temperature
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Ballistic_coefficient
http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

Note: Requires Ferram Aerospace Research.

5.3.5 Orbit

public class Orbit
Describes an orbit. For example, the orbit of a vessel, obtained by calling Vessel.getOrbit(), or a celestial
body, obtained by calling CelestialBody.getOrbit().

CelestialBody getBody()
The celestial body (e.g. planet or moon) around which the object is orbiting.

double getApoapsis()
Gets the apoapsis of the orbit, in meters, from the center of mass of the body being orbited.

Note: For the apoapsis altitude reported on the in-game map view, use
Orbit.getApoapsisAltitude().

double getPeriapsis()
The periapsis of the orbit, in meters, from the center of mass of the body being orbited.

Note: For the periapsis altitude reported on the in-game map view, use
Orbit.getPeriapsisAltitude().

double getApoapsisAltitude()
The apoapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to Orbit.getApoapsis() minus the equatorial radius of the body.

double getPeriapsisAltitude()
The periapsis of the orbit, in meters, above the sea level of the body being orbited.

Note: This is equal to Orbit.getPeriapsis() minus the equatorial radius of the body.

double getSemiMajorAxis()
The semi-major axis of the orbit, in meters.

double getSemiMinorAxis()
The semi-minor axis of the orbit, in meters.

double getRadius()
The current radius of the orbit, in meters. This is the distance between the center of mass of the object in
orbit, and the center of mass of the body around which it is orbiting.

Note: This value will change over time if the orbit is elliptical.

double getSpeed()
The current orbital speed of the object in meters per second.

5.3. SpaceCenter API 183

http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

Note: This value will change over time if the orbit is elliptical.

double getPeriod()
The orbital period, in seconds.

double getTimeToApoapsis()
The time until the object reaches apoapsis, in seconds.

double getTimeToPeriapsis()
The time until the object reaches periapsis, in seconds.

double getEccentricity()
The eccentricity of the orbit.

double getInclination()
The inclination of the orbit, in radians.

double getLongitudeOfAscendingNode()
The longitude of the ascending node, in radians.

double getArgumentOfPeriapsis()
The argument of periapsis, in radians.

double getMeanAnomalyAtEpoch()
The mean anomaly at epoch.

double getEpoch()
The time since the epoch (the point at which the mean anomaly at epoch was measured, in seconds.

double getMeanAnomaly()
The mean anomaly.

double getEccentricAnomaly()
The eccentric anomaly.

org.javatuples.Triplet<Double, Double, Double> referencePlaneNormal(ReferenceFrame refer-
enceFrame)

The unit direction vector that is normal to the orbits reference plane, in the given reference frame. The
reference plane is the plane from which the orbits inclination is measured.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> referencePlaneDirection(ReferenceFrame
referenceFrame)

The unit direction vector from which the orbits longitude of ascending node is measured, in the given
reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

double getTimeToSOIChange()
The time until the object changes sphere of influence, in seconds. Returns NaN if the object is not going
to change sphere of influence.

Orbit getNextOrbit()
If the object is going to change sphere of influence in the future, returns the new orbit after the change.
Otherwise returns null.

184 Chapter 5. Java

http://en.wikipedia.org/wiki/Orbital_eccentricity
http://en.wikipedia.org/wiki/Orbital_inclination
http://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
http://en.wikipedia.org/wiki/Argument_of_periapsis
http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Eccentric_anomaly
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.2.3

5.3.6 Control

public class Control
Used to manipulate the controls of a vessel. This includes adjusting the throttle, enabling/disabling systems such
as SAS and RCS, or altering the direction in which the vessel is pointing.

Note: Control inputs (such as pitch, yaw and roll) are zeroed when all clients that have set one or more of these
inputs are no longer connected.

boolean getSAS()

void setSAS(boolean value)
The state of SAS.

Note: Equivalent to AutoPilot.getSAS()

SASMode getSASMode()

void setSASMode(SASMode value)
The current SASMode. These modes are equivalent to the mode buttons to the left of the navball that
appear when SAS is enabled.

Note: Equivalent to AutoPilot.getSASMode()

SpeedMode getSpeedMode()

void setSpeedMode(SpeedMode value)
The current SpeedMode of the navball. This is the mode displayed next to the speed at the top of the
navball.

boolean getRCS()

void setRCS(boolean value)
The state of RCS.

boolean getGear()

void setGear(boolean value)
The state of the landing gear/legs.

boolean getLights()

void setLights(boolean value)
The state of the lights.

boolean getBrakes()

void setBrakes(boolean value)
The state of the wheel brakes.

boolean getAbort()

void setAbort(boolean value)
The state of the abort action group.

float getThrottle()

5.3. SpaceCenter API 185

kRPC, Release 0.2.3

void setThrottle(float value)
The state of the throttle. A value between 0 and 1.

float getPitch()

void setPitch(float value)
The state of the pitch control. A value between -1 and 1. Equivalent to the w and s keys.

float getYaw()

void setYaw(float value)
The state of the yaw control. A value between -1 and 1. Equivalent to the a and d keys.

float getRoll()

void setRoll(float value)
The state of the roll control. A value between -1 and 1. Equivalent to the q and e keys.

float getForward()

void setForward(float value)
The state of the forward translational control. A value between -1 and 1. Equivalent to the h and n keys.

float getUp()

void setUp(float value)
The state of the up translational control. A value between -1 and 1. Equivalent to the i and k keys.

float getRight()

void setRight(float value)
The state of the right translational control. A value between -1 and 1. Equivalent to the j and l keys.

float getWheelThrottle()

void setWheelThrottle(float value)
The state of the wheel throttle. A value between -1 and 1. A value of 1 rotates the wheels forwards, a value
of -1 rotates the wheels backwards.

float getWheelSteering()

void setWheelSteering(float value)
The state of the wheel steering. A value between -1 and 1. A value of 1 steers to the left, and a value of -1
steers to the right.

int getCurrentStage()
The current stage of the vessel. Corresponds to the stage number in the in-game UI.

java.util.List<Vessel> activateNextStage()
Activates the next stage. Equivalent to pressing the space bar in-game.

Returns A list of vessel objects that are jettisoned from the active vessel.

boolean getActionGroup(int group)
Returns true if the given action group is enabled.

Parameters

• group (int) – A number between 0 and 9 inclusive.

void setActionGroup(int group, boolean state)
Sets the state of the given action group (a value between 0 and 9 inclusive).

Parameters

• group (int) – A number between 0 and 9 inclusive.

186 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.2.3

• state (boolean) –

void toggleActionGroup(int group)
Toggles the state of the given action group.

Parameters

• group (int) – A number between 0 and 9 inclusive.

Node addNode(double UT, float prograde, float normal, float radial)
Creates a maneuver node at the given universal time, and returns a Node object that can be used to modify
it. Optionally sets the magnitude of the delta-v for the maneuver node in the prograde, normal and radial
directions.

Parameters

• UT (double) – Universal time of the maneuver node.

• prograde (float) – Delta-v in the prograde direction.

• normal (float) – Delta-v in the normal direction.

• radial (float) – Delta-v in the radial direction.

java.util.List<Node> getNodes()
Returns a list of all existing maneuver nodes, ordered by time from first to last.

void removeNodes()
Remove all maneuver nodes.

public enum SASMode
The behavior of the SAS auto-pilot. See AutoPilot.getSASMode().

public SASMode STABILITY_ASSIST
Stability assist mode. Dampen out any rotation.

public SASMode MANEUVER
Point in the burn direction of the next maneuver node.

public SASMode PROGRADE
Point in the prograde direction.

public SASMode RETROGRADE
Point in the retrograde direction.

public SASMode NORMAL
Point in the orbit normal direction.

public SASMode ANTI_NORMAL
Point in the orbit anti-normal direction.

public SASMode RADIAL
Point in the orbit radial direction.

public SASMode ANTI_RADIAL
Point in the orbit anti-radial direction.

public SASMode TARGET
Point in the direction of the current target.

public SASMode ANTI_TARGET
Point away from the current target.

public enum SpeedMode
See Control.getSpeedMode().

5.3. SpaceCenter API 187

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.2.3

public SpeedMode ORBIT
Speed is relative to the vessel’s orbit.

public SpeedMode SURFACE
Speed is relative to the surface of the body being orbited.

public SpeedMode TARGET
Speed is relative to the current target.

5.3.7 Parts

The following classes allow interaction with a vessels individual parts.

• Parts
• Part
• Module
• Specific Types of Part

– Cargo Bay
– Decoupler
– Docking Port
– Engine
– Fairing
– Intake
– Landing Gear
– Landing Leg
– Launch Clamp
– Light
– Parachute
– Radiator
– Resource Converter
– Resource Harvester
– Reaction Wheel
– Sensor
– Solar Panel

• Trees of Parts
– Traversing the Tree
– Attachment Modes

• Fuel Lines
• Staging

Parts

public class Parts
Instances of this class are used to interact with the parts of a vessel. An instance can be obtained by calling
Vessel.getParts().

java.util.List<Part> getAll()
A list of all of the vessels parts.

Part getRoot()
The vessels root part.

188 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.2.3

Note: See the discussion on Trees of Parts.

Part getControlling()

void setControlling(Part value)
The part from which the vessel is controlled.

java.util.List<Part> withName(String name)
A list of parts whose Part.getName() is name.

Parameters

• name (String) –

java.util.List<Part> withTitle(String title)
A list of all parts whose Part.getTitle() is title.

Parameters

• title (String) –

java.util.List<Part> withModule(String moduleName)
A list of all parts that contain a Module whose Module.getName() is moduleName.

Parameters

• moduleName (String) –

java.util.List<Part> inStage(int stage)
A list of all parts that are activated in the given stage.

Parameters

• stage (int) –

Note: See the discussion on Staging.

java.util.List<Part> inDecoupleStage(int stage)
A list of all parts that are decoupled in the given stage.

Parameters

• stage (int) –

Note: See the discussion on Staging.

java.util.List<Module> modulesWithName(String moduleName)
A list of modules (combined across all parts in the vessel) whose Module.getName() is moduleName.

Parameters

• moduleName (String) –

java.util.List<CargoBay> getCargoBays()
A list of all cargo bays in the vessel.

java.util.List<Decoupler> getDecouplers()
A list of all decouplers in the vessel.

5.3. SpaceCenter API 189

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.2.3

java.util.List<DockingPort> getDockingPorts()
A list of all docking ports in the vessel.

DockingPort dockingPortWithName(String name)
The first docking port in the vessel with the given port name, as returned by
DockingPort.getName(). Returns null if there are no such docking ports.

Parameters

• name (String) –

java.util.List<Engine> getEngines()
A list of all engines in the vessel.

java.util.List<Fairing> getFairings()
A list of all fairings in the vessel.

java.util.List<Intake> getIntakes()
A list of all intakes in the vessel.

java.util.List<LandingGear> getLandingGear()
A list of all landing gear attached to the vessel.

java.util.List<LandingLeg> getLandingLegs()
A list of all landing legs attached to the vessel.

java.util.List<LaunchClamp> getLaunchClamps()
A list of all launch clamps attached to the vessel.

java.util.List<Light> getLights()
A list of all lights in the vessel.

java.util.List<Parachute> getParachutes()
A list of all parachutes in the vessel.

java.util.List<Radiator> getRadiators()
A list of all radiators in the vessel.

java.util.List<ReactionWheel> getReactionWheels()
A list of all reaction wheels in the vessel.

java.util.List<ResourceConverter> getResourceConverters()
A list of all resource converters in the vessel.

java.util.List<ResourceHarvester> getResourceHarvesters()
A list of all resource harvesters in the vessel.

java.util.List<Sensor> getSensors()
A list of all sensors in the vessel.

java.util.List<SolarPanel> getSolarPanels()
A list of all solar panels in the vessel.

Part

public class Part
Instances of this class represents a part. A vessel is made of multiple parts. Instances can be obtained by various
methods in Parts.

String getName()
Internal name of the part, as used in part cfg files. For example “Mark1-2Pod”.

190 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation

kRPC, Release 0.2.3

String getTitle()
Title of the part, as shown when the part is right clicked in-game. For example “Mk1-2 Command Pod”.

double getCost()
The cost of the part, in units of funds.

Vessel getVessel()
The vessel that contains this part.

Part getParent()
The parts parent. Returns null if the part does not have a parent. This, in combination with
Part.getChildren(), can be used to traverse the vessels parts tree.

Note: See the discussion on Trees of Parts.

java.util.List<Part> getChildren()
The parts children. Returns an empty list if the part has no children. This, in combination with
Part.getParent(), can be used to traverse the vessels parts tree.

Note: See the discussion on Trees of Parts.

boolean getAxiallyAttached()
Whether the part is axially attached to its parent, i.e. on the top or bottom of its parent. If the part has no
parent, returns false.

Note: See the discussion on Attachment Modes.

boolean getRadiallyAttached()
Whether the part is radially attached to its parent, i.e. on the side of its parent. If the part has no parent,
returns false.

Note: See the discussion on Attachment Modes.

int getStage()
The stage in which this part will be activated. Returns -1 if the part is not activated by staging.

Note: See the discussion on Staging.

int getDecoupleStage()
The stage in which this part will be decoupled. Returns -1 if the part is never decoupled from the vessel.

Note: See the discussion on Staging.

boolean getMassless()
Whether the part is massless.

double getMass()
The current mass of the part, including resources it contains, in kilograms. Returns zero if the part is
massless.

5.3. SpaceCenter API 191

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://wiki.kerbalspaceprogram.com/wiki/Massless_part

kRPC, Release 0.2.3

double getDryMass()
The mass of the part, not including any resources it contains, in kilograms. Returns zero if the part is
massless.

double getImpactTolerance()
The impact tolerance of the part, in meters per second.

double getTemperature()
Temperature of the part, in Kelvin.

double getSkinTemperature()
Temperature of the skin of the part, in Kelvin.

double getMaxTemperature()
Maximum temperature that the part can survive, in Kelvin.

double getMaxSkinTemperature()
Maximum temperature that the skin of the part can survive, in Kelvin.

float getThermalMass()
A measure of how much energy it takes to increase the internal temperature of the part, in Joules per
Kelvin.

float getThermalSkinMass()
A measure of how much energy it takes to increase the skin temperature of the part, in Joules per Kelvin.

float getThermalResourceMass()
A measure of how much energy it takes to increase the temperature of the resources contained in the part,
in Joules per Kelvin.

float getThermalConductionFlux()
The rate at which heat energy is conducting into or out of the part via contact with other parts. Measured
in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy, and
negative means it is losing heat energy.

float getThermalConvectionFlux()
The rate at which heat energy is convecting into or out of the part from the surrounding atmosphere.
Measured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat
energy, and negative means it is losing heat energy.

float getThermalRadiationFlux()
The rate at which heat energy is radiating into or out of the part from the surrounding environment. Mea-
sured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy,
and negative means it is losing heat energy.

float getThermalInternalFlux()
The rate at which heat energy is begin generated by the part. For example, some engines generate heat by
combusting fuel. Measured in energy per unit time, or power, in Watts. A positive value means the part is
gaining heat energy, and negative means it is losing heat energy.

float getThermalSkinToInternalFlux()
The rate at which heat energy is transferring between the part’s skin and its internals. Measured in energy
per unit time, or power, in Watts. A positive value means the part’s internals are gaining heat energy, and
negative means its skin is gaining heat energy.

Resources getResources()
A Resources object for the part.

boolean getCrossfeed()
Whether this part is crossfeed capable.

192 Chapter 5. Java

kRPC, Release 0.2.3

boolean getIsFuelLine()
Whether this part is a fuel line.

java.util.List<Part> getFuelLinesFrom()
The parts that are connected to this part via fuel lines, where the direction of the fuel line is into this part.

Note: See the discussion on Fuel Lines.

java.util.List<Part> getFuelLinesTo()
The parts that are connected to this part via fuel lines, where the direction of the fuel line is out of this part.

Note: See the discussion on Fuel Lines.

java.util.List<Module> getModules()
The modules for this part.

CargoBay getCargoBay()
A CargoBay if the part is a cargo bay, otherwise null.

Decoupler getDecoupler()
A Decoupler if the part is a decoupler, otherwise null.

DockingPort getDockingPort()
A DockingPort if the part is a docking port, otherwise null.

Engine getEngine()
An Engine if the part is an engine, otherwise null.

Fairing getFairing()
A Fairing if the part is a fairing, otherwise null.

Intake getIntake()
An Intake if the part is an intake, otherwise null.

LandingGear getLandingGear()
A LandingGear if the part is a landing gear , otherwise null.

LandingLeg getLandingLeg()
A LandingLeg if the part is a landing leg, otherwise null.

LaunchClamp getLaunchClamp()
A LaunchClamp if the part is a launch clamp, otherwise null.

Light getLight()
A Light if the part is a light, otherwise null.

Parachute getParachute()
A Parachute if the part is a parachute, otherwise null.

Radiator getRadiator()
A Radiator if the part is a radiator, otherwise null.

ReactionWheel getReactionWheel()
A ReactionWheel if the part is a reaction wheel, otherwise null.

ResourceConverter getResourceConverter()
A ResourceConverter if the part is a resource converter, otherwise null.

ResourceHarvester getResourceHarvester()
A ResourceHarvester if the part is a resource harvester, otherwise null.

5.3. SpaceCenter API 193

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.2.3

Sensor getSensor()
A Sensor if the part is a sensor, otherwise null.

SolarPanel getSolarPanel()
A SolarPanel if the part is a solar panel, otherwise null.

org.javatuples.Triplet<Double, Double, Double> position(ReferenceFrame referenceFrame)
The position of the part in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> direction(ReferenceFrame referenceFrame)
The direction of the part in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> velocity(ReferenceFrame referenceFrame)
The velocity of the part in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Quartet<Double, Double, Double, Double> rotation(ReferenceFrame reference-
Frame)

The rotation of the part in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

ReferenceFrame getReferenceFrame()
The reference frame that is fixed relative to this part.

•The origin is at the position of the part.

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by DockingPort.getReferenceFrame().

Module

public class Module
In KSP, each part has zero or more PartModules associated with it. Each one contains some of the functionality
of the part. For example, an engine has a “ModuleEngines” PartModule that contains all the functionality of an
engine. This class allows you to interact with KSPs PartModules, and any PartModules that have been added by
other mods.

String getName()
Name of the PartModule. For example, “ModuleEngines”.

Part getPart()
The part that contains this module.

194 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation#MODULES
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

Fig. 5.7: Mk1 Command Pod reference frame origin and axes

java.util.Map<String, String> getFields()
The modules field names and their associated values, as a dictionary. These are the values visible in the
right-click menu of the part.

boolean hasField(String name)
Returns true if the module has a field with the given name.

Parameters

• name (String) – Name of the field.

String getField(String name)
Returns the value of a field.

Parameters

• name (String) – Name of the field.

java.util.List<String> getEvents()
A list of the names of all of the modules events. Events are the clickable buttons visible in the right-click
menu of the part.

boolean hasEvent(String name)
true if the module has an event with the given name.

Parameters

• name (String) –

void triggerEvent(String name)
Trigger the named event. Equivalent to clicking the button in the right-click menu of the part.

Parameters

• name (String) –

5.3. SpaceCenter API 195

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

java.util.List<String> getActions()
A list of all the names of the modules actions. These are the parts actions that can be assigned to action
groups in the in-game editor.

boolean hasAction(String name)
true if the part has an action with the given name.

Parameters

• name (String) –

void setAction(String name, boolean value)
Set the value of an action with the given name.

Parameters

• name (String) –

• value (boolean) –

Specific Types of Part

The following classes provide functionality for specific types of part.

• Cargo Bay
• Decoupler
• Docking Port
• Engine
• Fairing
• Intake
• Landing Gear
• Landing Leg
• Launch Clamp
• Light
• Parachute
• Radiator
• Resource Converter
• Resource Harvester
• Reaction Wheel
• Sensor
• Solar Panel

Cargo Bay

public class CargoBay
Obtained by calling Part.getCargoBay().

Part getPart()
The part object for this cargo bay.

CargoBayState getState()
The state of the cargo bay.

boolean getOpen()

196 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

void setOpen(boolean value)
Whether the cargo bay is open.

public enum CargoBayState
See CargoBay.getState().

public CargoBayState OPEN
Cargo bay is fully open.

public CargoBayState CLOSED
Cargo bay closed and locked.

public CargoBayState OPENING
Cargo bay is opening.

public CargoBayState CLOSING
Cargo bay is closing.

Decoupler

public class Decoupler
Obtained by calling Part.getDecoupler()

Part getPart()
The part object for this decoupler.

void decouple()
Fires the decoupler. Has no effect if the decoupler has already fired.

boolean getDecoupled()
Whether the decoupler has fired.

float getImpulse()
The impulse that the decoupler imparts when it is fired, in Newton seconds.

Docking Port

public class DockingPort
Obtained by calling Part.getDockingPort()

Part getPart()
The part object for this docking port.

String getName()

void setName(String value)
The port name of the docking port. This is the name of the port that can be set in the right click menu,
when the Docking Port Alignment Indicator mod is installed. If this mod is not installed, returns the title
of the part (Part.getTitle()).

DockingPortState getState()
The current state of the docking port.

Part getDockedPart()
The part that this docking port is docked to. Returns null if this docking port is not docked to anything.

Vessel undock()
Undocks the docking port and returns the vessel that was undocked from. After undocking, the active
vessel may change (getActiveVessel()). This method can be called for either docking port in a

5.3. SpaceCenter API 197

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://forum.kerbalspaceprogram.com/threads/43901

kRPC, Release 0.2.3

docked pair - both calls will have the same effect. Returns null if the docking port is not docked to
anything.

float getReengageDistance()
The distance a docking port must move away when it undocks before it becomes ready to dock with another
port, in meters.

boolean getHasShield()
Whether the docking port has a shield.

boolean getShielded()

void setShielded(boolean value)
The state of the docking ports shield, if it has one. Returns true if the docking port has a shield, and
the shield is closed. Otherwise returns false. When set to true, the shield is closed, and when set to
false the shield is opened. If the docking port does not have a shield, setting this attribute has no effect.

org.javatuples.Triplet<Double, Double, Double> position(ReferenceFrame referenceFrame)
The position of the docking port in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> direction(ReferenceFrame referenceFrame)
The direction that docking port points in, in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Quartet<Double, Double, Double, Double> rotation(ReferenceFrame reference-
Frame)

The rotation of the docking port, in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

ReferenceFrame getReferenceFrame()
The reference frame that is fixed relative to this docking port, and oriented with the port.

•The origin is at the position of the docking port.

•The axes rotate with the docking port.

•The x-axis points out to the right side of the docking port.

•The y-axis points in the direction the docking port is facing.

•The z-axis points out of the bottom off the docking port.

Note: This reference frame is not necessarily equivalent to the reference frame for the part, returned by
Part.getReferenceFrame().

public enum DockingPortState
See DockingPort.getState().

public DockingPortState READY
The docking port is ready to dock to another docking port.

public DockingPortState DOCKED
The docking port is docked to another docking port, or docked to another part (from the VAB/SPH).

198 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Quartet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.2.3

Fig. 5.8: Docking port reference frame origin and axes

Fig. 5.9: Inline docking port reference frame origin and axes

5.3. SpaceCenter API 199

kRPC, Release 0.2.3

public DockingPortState DOCKING
The docking port is very close to another docking port, but has not docked. It is using magnetic force to
acquire a solid dock.

public DockingPortState UNDOCKING
The docking port has just been undocked from another docking port, and is disabled until it moves away
by a sufficient distance (DockingPort.getReengageDistance()).

public DockingPortState SHIELDED
The docking port has a shield, and the shield is closed.

public DockingPortState MOVING
The docking ports shield is currently opening/closing.

Engine

public class Engine
Obtained by calling Part.getEngine().

Part getPart()
The part object for this engine.

boolean getActive()

void setActive(boolean value)
Whether the engine is active. Setting this attribute may have no effect, depending on
Engine.getCanShutdown() and Engine.getCanRestart().

float getThrust()
The current amount of thrust being produced by the engine, in Newtons. Returns zero if the engine is not
active or if it has no fuel.

float getAvailableThrust()
The maximum available amount of thrust that can be produced by the engine, in Newtons. This takes
Engine.getThrustLimit() into account, and is the amount of thrust produced by the engine when
activated and the main throttle is set to 100%. Returns zero if the engine does not have any fuel.

float getMaxThrust()
Gets the maximum amount of thrust that can be produced by the engine, in Newtons. This is the amount
of thrust produced by the engine when activated, Engine.getThrustLimit() is set to 100% and the
main vessel’s throttle is set to 100%.

float getMaxVacuumThrust()
The maximum amount of thrust that can be produced by the engine in a vacuum, in Newtons. This is
the amount of thrust produced by the engine when activated, Engine.getThrustLimit() is set to
100%, the main vessel’s throttle is set to 100% and the engine is in a vacuum.

float getThrustLimit()

void setThrustLimit(float value)
The thrust limiter of the engine. A value between 0 and 1. Setting this attribute may have no effect, for
example the thrust limit for a solid rocket booster cannot be changed in flight.

float getSpecificImpulse()
The current specific impulse of the engine, in seconds. Returns zero if the engine is not active.

float getVacuumSpecificImpulse()
The vacuum specific impulse of the engine, in seconds.

float getKerbinSeaLevelSpecificImpulse()
The specific impulse of the engine at sea level on Kerbin, in seconds.

200 Chapter 5. Java

kRPC, Release 0.2.3

java.util.List<String> getPropellants()
The names of resources that the engine consumes.

java.util.Map<String, Single> getPropellantRatios()
The ratios of resources that the engine consumes. A dictionary mapping resource names to the ratios at
which they are consumed by the engine.

boolean getHasFuel()
Whether the engine has run out of fuel (or flamed out).

float getThrottle()
The current throttle setting for the engine. A value between 0 and 1. This is not necessarily the same as
the vessel’s main throttle setting, as some engines take time to adjust their throttle (such as jet engines).

boolean getThrottleLocked()
Whether the Control.getThrottle() affects the engine. For example, this is true for liquid fueled
rockets, and false for solid rocket boosters.

boolean getCanRestart()
Whether the engine can be restarted once shutdown. If the engine cannot be shutdown, returns false.
For example, this is true for liquid fueled rockets and false for solid rocket boosters.

boolean getCanShutdown()
Gets whether the engine can be shutdown once activated. For example, this is true for liquid fueled
rockets and false for solid rocket boosters.

boolean getHasModes()
Whether the engine has multiple modes of operation.

String getMode()

void setMode(String value)
The name of the current engine mode.

java.util.Map<String, Engine> getModes()
The available modes for the engine. A dictionary mapping mode names to Engine objects.

void toggleMode()
Toggle the current engine mode.

boolean getAutoModeSwitch()

void setAutoModeSwitch(boolean value)
Whether the engine will automatically switch modes.

boolean getGimballed()
Whether the engine nozzle is gimballed, i.e. can provide a turning force.

float getGimbalRange()
The range over which the gimbal can move, in degrees. Returns 0 if the engine is not gimballed.

boolean getGimbalLocked()

void setGimbalLocked(boolean value)
Whether the engines gimbal is locked in place. Setting this attribute has no effect if the engine is not
gimballed.

float getGimbalLimit()

void setGimbalLimit(float value)
The gimbal limiter of the engine. A value between 0 and 1. Returns 0 if the gimbal is locked.

5.3. SpaceCenter API 201

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

Fairing

public class Fairing
Obtained by calling Part.getFairing().

Part getPart()
The part object for this fairing.

void jettison()
Jettison the fairing. Has no effect if it has already been jettisoned.

boolean getJettisoned()
Whether the fairing has been jettisoned.

Intake

public class Intake
Obtained by calling Part.getIntake().

Part getPart()
The part object for this intake.

boolean getOpen()

void setOpen(boolean value)
Whether the intake is open.

float getSpeed()
Speed of the flow into the intake, in 𝑚/𝑠.

float getFlow()
The rate of flow into the intake, in units of resource per second.

float getArea()
The area of the intake’s opening, in square meters.

Landing Gear

public class LandingGear
Obtained by calling Part.getLandingGear().

Part getPart()
The part object for this landing gear.

LandingGearState getState()
Gets the current state of the landing gear.

Note: Fixed landing gear are always deployed.

boolean getDeployable()
Whether the landing gear is deployable.

boolean getDeployed()

void setDeployed(boolean value)
Whether the landing gear is deployed.

202 Chapter 5. Java

kRPC, Release 0.2.3

Note: Fixed landing gear are always deployed. Returns an error if you try to deploy fixed landing gear.

public enum LandingGearState
See LandingGear.getState().

public LandingGearState DEPLOYED
Landing gear is fully deployed.

public LandingGearState RETRACTED
Landing gear is fully retracted.

public LandingGearState DEPLOYING
Landing gear is being deployed.

public LandingGearState RETRACTING
Landing gear is being retracted.

Landing Leg

public class LandingLeg
Obtained by calling Part.getLandingLeg().

Part getPart()
The part object for this landing leg.

LandingLegState getState()
The current state of the landing leg.

boolean getDeployed()

void setDeployed(boolean value)
Whether the landing leg is deployed.

public enum LandingLegState
See LandingLeg.getState().

public LandingLegState DEPLOYED
Landing leg is fully deployed.

public LandingLegState RETRACTED
Landing leg is fully retracted.

public LandingLegState DEPLOYING
Landing leg is being deployed.

public LandingLegState RETRACTING
Landing leg is being retracted.

public LandingLegState BROKEN
Landing leg is broken.

public LandingLegState REPAIRING
Landing leg is being repaired.

Launch Clamp

public class LaunchClamp
Obtained by calling Part.getLaunchClamp().

5.3. SpaceCenter API 203

kRPC, Release 0.2.3

Part getPart()
The part object for this launch clamp.

void release()
Releases the docking clamp. Has no effect if the clamp has already been released.

Light

public class Light
Obtained by calling Part.getLight().

Part getPart()
The part object for this light.

boolean getActive()

void setActive(boolean value)
Whether the light is switched on.

float getPowerUsage()
The current power usage, in units of charge per second.

Parachute

public class Parachute
Obtained by calling Part.getParachute().

Part getPart()
The part object for this parachute.

void deploy()
Deploys the parachute. This has no effect if the parachute has already been deployed.

boolean getDeployed()
Whether the parachute has been deployed.

ParachuteState getState()
The current state of the parachute.

float getDeployAltitude()

void setDeployAltitude(float value)
The altitude at which the parachute will full deploy, in meters.

float getDeployMinPressure()

void setDeployMinPressure(float value)
The minimum pressure at which the parachute will semi-deploy, in atmospheres.

public enum ParachuteState
See Parachute.getState().

public ParachuteState STOWED
The parachute is safely tucked away inside its housing.

public ParachuteState ACTIVE
The parachute is still stowed, but ready to semi-deploy.

public ParachuteState SEMI_DEPLOYED
The parachute has been deployed and is providing some drag, but is not fully deployed yet.

204 Chapter 5. Java

kRPC, Release 0.2.3

public ParachuteState DEPLOYED
The parachute is fully deployed.

public ParachuteState CUT
The parachute has been cut.

Radiator

public class Radiator
Obtained by calling Part.getRadiator().

Part getPart()
The part object for this radiator.

boolean getDeployable()
Whether the radiator is deployable.

boolean getDeployed()

void setDeployed(boolean value)
For a deployable radiator, true if the radiator is extended. If the radiator is not deployable, this is always
true.

RadiatorState getState()
The current state of the radiator.

Note: A fixed radiator is always RadiatorState.EXTENDED.

public enum RadiatorState
RadiatorState

public RadiatorState EXTENDED
Radiator is fully extended.

public RadiatorState RETRACTED
Radiator is fully retracted.

public RadiatorState EXTENDING
Radiator is being extended.

public RadiatorState RETRACTING
Radiator is being retracted.

public RadiatorState BROKEN
Radiator is being broken.

Resource Converter

public class ResourceConverter
Obtained by calling Part.getResourceConverter().

Part getPart()
The part object for this converter.

int getCount()
The number of converters in the part.

5.3. SpaceCenter API 205

kRPC, Release 0.2.3

String name(int index)
The name of the specified converter.

Parameters

• index (int) – Index of the converter.

boolean active(int index)
True if the specified converter is active.

Parameters

• index (int) – Index of the converter.

void start(int index)
Start the specified converter.

Parameters

• index (int) – Index of the converter.

void stop(int index)
Stop the specified converter.

Parameters

• index (int) – Index of the converter.

ResourceConverterState state(int index)
The state of the specified converter.

Parameters

• index (int) – Index of the converter.

String statusInfo(int index)
Status information for the specified converter. This is the full status message shown in the in-game UI.

Parameters

• index (int) – Index of the converter.

java.util.List<String> inputs(int index)
List of the names of resources consumed by the specified converter.

Parameters

• index (int) – Index of the converter.

java.util.List<String> outputs(int index)
List of the names of resources produced by the specified converter.

Parameters

• index (int) – Index of the converter.

public enum ResourceConverterState
See ResourceConverter.state(int).

public ResourceConverterState RUNNING
Converter is running.

public ResourceConverterState IDLE
Converter is idle.

public ResourceConverterState MISSING_RESOURCE
Converter is missing a required resource.

206 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

public ResourceConverterState STORAGE_FULL
No available storage for output resource.

public ResourceConverterState CAPACITY
At preset resource capacity.

public ResourceConverterState UNKNOWN
Unknown state. Possible with modified resource converters. In this case, check
ResourceConverter.statusInfo(int) for more information.

Resource Harvester

public class ResourceHarvester
Obtained by calling Part.getResourceHarvester().

Part getPart()
The part object for this harvester.

ResourceHarvesterState getState()
The state of the harvester.

boolean getDeployed()

void setDeployed(boolean value)
Whether the harvester is deployed.

boolean getActive()

void setActive(boolean value)
Whether the harvester is actively drilling.

float getExtractionRate()
The rate at which the drill is extracting ore, in units per second.

float getThermalEfficiency()
The thermal efficiency of the drill, as a percentage of its maximum.

float getCoreTemperature()
The core temperature of the drill, in Kelvin.

float getOptimumCoreTemperature()
The core temperature at which the drill will operate with peak efficiency, in Kelvin.

public enum ResourceHarvesterState
See ResourceHarvester.getState().

public ResourceHarvesterState DEPLOYING
The drill is deploying.

public ResourceHarvesterState DEPLOYED
The drill is deployed and ready.

public ResourceHarvesterState RETRACTING
The drill is retracting.

public ResourceHarvesterState RETRACTED
The drill is retracted.

public ResourceHarvesterState ACTIVE
The drill is running.

5.3. SpaceCenter API 207

kRPC, Release 0.2.3

Reaction Wheel

public class ReactionWheel
Obtained by calling Part.getReactionWheel().

Part getPart()
The part object for this reaction wheel.

boolean getActive()

void setActive(boolean value)
Whether the reaction wheel is active.

boolean getBroken()
Whether the reaction wheel is broken.

float getPitchTorque()
The torque in the pitch axis, in Newton meters.

float getYawTorque()
The torque in the yaw axis, in Newton meters.

float getRollTorque()
The torque in the roll axis, in Newton meters.

Sensor

public class Sensor
Obtained by calling Part.getSensor().

Part getPart()
The part object for this sensor.

boolean getActive()

void setActive(boolean value)
Whether the sensor is active.

String getValue()
The current value of the sensor.

float getPowerUsage()
The current power usage of the sensor, in units of charge per second.

Solar Panel

public class SolarPanel
Obtained by calling Part.getSolarPanel().

Part getPart()
The part object for this solar panel.

boolean getDeployed()

void setDeployed(boolean value)
Whether the solar panel is extended.

SolarPanelState getState()
The current state of the solar panel.

208 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

float getEnergyFlow()
The current amount of energy being generated by the solar panel, in units of charge per second.

float getSunExposure()
The current amount of sunlight that is incident on the solar panel, as a percentage. A value between 0 and
1.

public enum SolarPanelState
See SolarPanel.getState().

public SolarPanelState EXTENDED
Solar panel is fully extended.

public SolarPanelState RETRACTED
Solar panel is fully retracted.

public SolarPanelState EXTENDING
Solar panel is being extended.

public SolarPanelState RETRACTING
Solar panel is being retracted.

public SolarPanelState BROKEN
Solar panel is broken.

Trees of Parts

Vessels in KSP are comprised of a number of parts, connected to one another in a
tree structure. An example vessel is shown in Figure 1, and the corresponding tree of
parts in Figure 2. The craft file for this example can also be downloaded here.

Fig. 5.10: Figure 1 – Example parts making up a vessel.

Traversing the Tree

The tree of parts can be traversed us-
ing the attributes Parts.getRoot(),
Part.getParent() and
Part.getChildren().

The root of the tree is the same as the
vessels root part (part number 1 in
the example above) and can be ob-
tained by calling Parts.getRoot().
A parts children can be obtained by
calling Part.getChildren(). If
the part does not have any children,
Part.getChildren() returns an empty
list. A parts parent can be obtained by calling
Part.getParent(). If the part does not
have a parent (as is the case for the root part),
Part.getParent() returns null.

The following Java example uses these at-
tributes to perform a depth-first traversal over
all of the parts in a vessel:

5.3. SpaceCenter API 209

kRPC, Release 0.2.3

import java.io.IOException;
import java.util.ArrayDeque;
import java.util.Deque;
import org.javatuples.Pair;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Part;
import krpc.client.services.SpaceCenter.Vessel;

public class TreeTraversal {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
Vessel vessel = SpaceCenter.newInstance(connection).getActiveVessel();
Part root = vessel.getParts().getRoot();
Deque<Pair<Part, Integer>> stack = new ArrayDeque<Pair<Part, Integer>>();
stack.push(new Pair<Part, Integer>(root, 0));
while (stack.size() > 0) {

Pair<Part, Integer> item = stack.pop();
Part part = item.getValue0();
int depth = item.getValue1();
String prefix = "";
for (int i = 0; i < depth; i++)

prefix += " ";
System.out.println(prefix + part.getTitle());
for (Part child : part.getChildren())

stack.push(new Pair<Part, Integer>(child, depth + 1));
}

}
}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1
TR-18A Stack Decoupler
FL-T400 Fuel Tank
LV-909 Liquid Fuel Engine
TR-18A Stack Decoupler
FL-T800 Fuel Tank
LV-909 Liquid Fuel Engine
TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

LT-1 Landing Struts
LT-1 Landing Struts

Mk16 Parachute

210 Chapter 5. Java

kRPC, Release 0.2.3

Attachment Modes

Parts can be attached to other parts either ra-
dially (on the side of the parent part) or axially
(on the end of the parent part, to form a stack).

For example, in the vessel pictured above, the
parachute (part 2) is axially connected to its
parent (the command pod – part 1), and the
landing leg (part 5) is radially connected to its

parent (the fuel tank – part 4).

Fig. 5.11: Figure 2 – Tree of parts for the vessel in Figure 1. Arrows
point from the parent part to the child part.

The root part of a vessel (for example the com-
mand pod – part 1) does not have a parent part,
so does not have an attachment mode. How-
ever, the part is consider to be axially attached
to nothing.

The following Java example does a depth-first
traversal as before, but also prints out the at-
tachment mode used by the part:

import java.io.IOException;
import java.util.ArrayDeque;
import java.util.Deque;
import org.javatuples.Pair;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Part;
import krpc.client.services.SpaceCenter.Vessel;

public class AttachmentModes {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
Vessel vessel = SpaceCenter.newInstance(connection).getActiveVessel();
Part root = vessel.getParts().getRoot();
Deque<Pair<Part, Integer>> stack = new ArrayDeque<Pair<Part, Integer>>();
stack.push(new Pair<Part, Integer>(root, 0));
while (stack.size() > 0) {

Pair<Part, Integer> item = stack.pop();
Part part = item.getValue0();
int depth = item.getValue1();
String prefix = "";
for (int i = 0; i < depth; i++)

prefix += " ";
String attachMode = part.getAxiallyAttached() ? "axial" : "radial";
System.out.println(prefix + part.getTitle() + " - " + attachMode);
for (Part child : part.getChildren())

stack.push(new Pair<Part, Integer>(child, depth + 1));
}

}
}

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

5.3. SpaceCenter API 211

kRPC, Release 0.2.3

Command Pod Mk1 - axial
TR-18A Stack Decoupler - axial
FL-T400 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TR-18A Stack Decoupler - axial
FL-T800 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

LT-1 Landing Struts - radial
LT-1 Landing Struts - radial

Mk16 Parachute - axial

Fuel Lines

Fig. 5.12: Figure 5 – Fuel lines from the example
in Figure 1. Fuel flows from the parts highlighted
in green, into the part highlighted in blue.

Fig. 5.13: Figure 4 – A subset of the parts tree
from Figure 2 above.

Fuel lines are considered parts, and are included in the parts tree
(for example, as pictured in Figure 4). However, the parts tree
does not contain information about which parts fuel lines connect
to. The parent part of a fuel line is the part from which it will take
fuel (as shown in Figure 4) however the part that it will send fuel
to is not represented in the parts tree.

Figure 5 shows the fuel lines from the example vessel pictured
earlier. Fuel line part 15 (in red) takes fuel from a fuel tank (part
11 – in green) and feeds it into another fuel tank (part 9 – in blue).
The fuel line is therefore a child of part 11, but its connection to
part 9 is not represented in the tree.

212 Chapter 5. Java

kRPC, Release 0.2.3

The attributes Part.getFuelLinesFrom() and
Part.getFuelLinesTo() can be used to discover
these connections. In the example in Figure 5, when
Part.getFuelLinesTo() is called on fuel tank part
11, it will return a list of parts containing just fuel tank part 9 (the
blue part). When Part.getFuelLinesFrom() is called on
fuel tank part 9, it will return a list containing fuel tank parts 11
and 17 (the parts colored green).

Staging

Each part has two staging numbers associated with it: the
stage in which the part is activated and the stage in which
the part is decoupled. These values can be obtained using
Part.getStage() and Part.getDecoupleStage()
respectively. For parts that are not activated by staging,
Part.getStage() returns -1. For parts that are never decou-
pled, Part.getDecoupleStage() returns a value of -1.

Figure 6 shows an example staging sequence for a vessel. Figure
7 shows the stages in which each part of the vessel will be acti-
vated. Figure 8 shows the stages in which each part of the vessel
will be decoupled.

Fig. 5.14: Figure 6 – Example vessel from Figure 1 with a staging sequence.

5.3. SpaceCenter API 213

kRPC, Release 0.2.3

Fig. 5.15: Figure 7 – The stage in which each part is activated.

Fig. 5.16: Figure 8 – The stage in which each part is decou-
pled.

5.3.8 Resources

public class Resources
Created by calling
Vessel.getResources(),
Vessel.resourcesInDecoupleStage(int,
boolean) or Part.getResources().

java.util.List<String> getNames()
A list of resource names that can be stored.

boolean hasResource(String name)
Check whether the named resource can be stored.

Parameters

• name (String) – The name of the resource.

float max(String name)
Returns the amount of a resource that can be stored.

Parameters

• name (String) – The name of the resource.

214 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

float amount(String name)
Returns the amount of a resource that is currently
stored.

Parameters

• name (String) – The name of the resource.

float density(String name)
Returns the density of a resource, in kg/l.

Parameters

• name (String) – The name of the resource.

ResourceFlowMode flowMode(String name)
Returns the flow mode of a resource.

Parameters

• name (String) – The name of the resource.

public enum ResourceFlowMode
See Resources.flowMode(String).

public ResourceFlowMode VESSEL
The resource flows to any part in the vessel. For
example, electric charge.

public ResourceFlowMode STAGE
The resource flows from parts in the first stage,
followed by the second, and so on. For example,
mono-propellant.

public ResourceFlowMode ADJACENT
The resource flows between adjacent parts within
the vessel. For example, liquid fuel or oxidizer.

public ResourceFlowMode NONE
The resource does not flow. For example, solid fuel.

5.3.9 Node

public class Node
Represents a maneuver node. Can be created us-
ing Control.addNode(double, float,
float, float).

float getPrograde()

void setPrograde(float value)
The magnitude of the maneuver nodes delta-v in the
prograde direction, in meters per second.

float getNormal()

void setNormal(float value)
The magnitude of the maneuver nodes delta-v in the
normal direction, in meters per second.

5.3. SpaceCenter API 215

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

float getRadial()

void setRadial(float value)
The magnitude of the maneuver nodes delta-v in the
radial direction, in meters per second.

float getDeltaV()

void setDeltaV(float value)
The delta-v of the maneuver node, in meters per
second.

Note: Does not change when executing the maneu-
ver node. See Node.getRemainingDeltaV().

float getRemainingDeltaV()
Gets the remaining delta-v of the maneuver node, in
meters per second. Changes as the node is executed.
This is equivalent to the delta-v reported in-game.

org.javatuples.Triplet<Double, Double, Double> burnVector(ReferenceFrame referenceFrame)
Returns a vector whose direction the direction of the
maneuver node burn, and whose magnitude is the
delta-v of the burn in m/s.

Parameters

• referenceFrame (ReferenceFrame) –

Note: Does not
change when exe-
cuting the maneu-
ver node. See
Node.remainingBurnVector(ReferenceFrame).

org.javatuples.Triplet<Double, Double, Double> remainingBurnVector(ReferenceFrame refer-
enceFrame)

Returns a vector whose direction the direction of
the maneuver node burn, and whose magnitude is
the delta-v of the burn in m/s. The direction and
magnitude change as the burn is executed.

Parameters

• referenceFrame (ReferenceFrame) –

double getUT()

void setUT(double value)
The universal time at which the maneuver will occur,
in seconds.

double getTimeTo()
The time until the maneuver node will be encoun-
tered, in seconds.

216 Chapter 5. Java

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.2.3

Orbit getOrbit()
The orbit that results from executing the maneuver
node.

void remove()
Removes the maneuver node.

ReferenceFrame getReferenceFrame()
Gets the reference frame that is fixed relative to the
maneuver node’s burn.

•The origin is at the position of the maneuver node.

•The y-axis points in the direction of the burn.

•The x-axis and z-axis point in arbitrary but fixed di-
rections.

ReferenceFrame getOrbitalReferenceFrame()
Gets the reference frame that is fixed relative to
the maneuver node, and orientated with the orbital
prograde/normal/radial directions of the original
orbit at the maneuver node’s position.

•The origin is at the position of the maneuver node.

•The x-axis points in the orbital anti-radial direction
of the original orbit, at the position of the maneuver
node.

•The y-axis points in the orbital prograde direction
of the original orbit, at the position of the maneuver
node.

•The z-axis points in the orbital normal direction of
the original orbit, at the position of the maneuver
node.

org.javatuples.Triplet<Double, Double, Double> position(ReferenceFrame referenceFrame)
Returns the position vector of the maneuver node in
the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

org.javatuples.Triplet<Double, Double, Double> direction(ReferenceFrame referenceFrame)
Returns the unit direction vector of the maneuver
nodes burn in the given reference frame.

Parameters

• referenceFrame (ReferenceFrame) –

5.3.10 Comms

public class Comms
Used to interact with RemoteTech. Created using a
call to Vessel.getComms().

5.3. SpaceCenter API 217

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.2.3

Note: This class requires RemoteTech to be in-
stalled.

boolean getHasLocalControl()
Whether the vessel can be controlled locally.

boolean getHasFlightComputer()
Whether the vessel has a RemoteTech flight com-
puter on board.

boolean getHasConnection()
Whether the vessel can receive commands from the
KSC or a command station.

boolean getHasConnectionToGroundStation()
Whether the vessel can transmit science data to a
ground station.

double getSignalDelay()
The signal delay when sending commands to the
vessel, in seconds.

double getSignalDelayToGroundStation()
The signal delay between the vessel and the closest
ground station, in seconds.

double signalDelayToVessel(Vessel other)
Returns the signal delay between the current vessel
and another vessel, in seconds.

Parameters

• other (Vessel) –

5.3.11 ReferenceFrame

public class ReferenceFrame
Represents a reference frame for positions, rotations
and velocities. Contains:

•The position of the origin.

•The directions of the x, y and z axes.

•The linear velocity of the frame.

•The angular velocity of the frame.

Note: This class does not contain any properties
or methods. It is only used as a parameter to other
functions.

218 Chapter 5. Java

http://forum.kerbalspaceprogram.com/threads/83305

kRPC, Release 0.2.3

5.3.12 AutoPilot

public class AutoPilot
Provides basic auto-piloting utilities for a vessel.
Created by calling Vessel.getAutoPilot().

void engage()
Engage the auto-pilot.

void disengage()
Disengage the auto-pilot.

void wait()
Blocks until the vessel is pointing in the target di-
rection (if set) and has the target roll (if set).

float getError()
The error, in degrees, between the direction the
ship has been asked to point in and the direction
it is pointing in. Returns zero if the auto-pilot has
not been engaged, SAS is not enabled, SAS is in
stability assist mode, or no target direction is set.

float getRollError()
The error, in degrees, between the roll the ship has
been asked to be in and the actual roll. Returns zero
if the auto-pilot has not been engaged or no target
roll is set.

ReferenceFrame getReferenceFrame()

void setReferenceFrame(ReferenceFrame value)
The reference frame for the target direction
(AutoPilot.getTargetDirection()).

org.javatuples.Triplet<Double, Double, Double> getTargetDirection()

void setTargetDirection(org.javatuples.Triplet<Double, Double, Double> value)
The target direction. null if no target direction is
set.

void targetPitchAndHeading(float pitch, float heading)
Set (AutoPilot.getTargetDirection())
from a pitch and heading angle.

Parameters

• pitch (float) – Target pitch angle, in degrees be-
tween -90° and +90°.

• heading (float) – Target heading angle, in de-
grees between 0° and 360°.

float getTargetRoll()

void setTargetRoll(float value)
The target roll, in degrees. NaN if no target roll is
set.

5.3. SpaceCenter API 219

http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://www.javatuples.org/apidocs/org/javatuples/Triplet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html

kRPC, Release 0.2.3

boolean getSAS()

void setSAS(boolean value)
The state of SAS.

Note: Equivalent to Control.getSAS()

SASMode getSASMode()

void setSASMode(SASMode value)
The current SASMode. These modes are equivalent
to the mode buttons to the left of the navball that
appear when SAS is enabled.

Note: Equivalent to Control.getSASMode()

float getRotationSpeedMultiplier()

void setRotationSpeedMultiplier(float value)
Target rotation speed multiplier. Defaults to 1.

float getMaxRotationSpeed()

void setMaxRotationSpeed(float value)
Maximum target rotation speed. Defaults to 1.

float getRollSpeedMultiplier()

void setRollSpeedMultiplier(float value)
Target roll speed multiplier. Defaults to 1.

float getMaxRollSpeed()

void setMaxRollSpeed(float value)
Maximum target roll speed. Defaults to 1.

void setPIDParameters(float Kp, float Ki, float Kd)
Sets the gains for the rotation rate PID controller.

Parameters

• Kp (float) – Proportional gain.

• Ki (float) – Integral gain.

• Kd (float) – Derivative gain.

5.3.13 Geometry Types

3-dimensional vectors are represented as a 3-tuple.
For example:

220 Chapter 5. Java

kRPC, Release 0.2.3

import java.io.IOException;
import org.javatuples.Triplet;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Vessel;

public class Vector3 {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
Vessel vessel = SpaceCenter.newInstance(connection).getActiveVessel();
Triplet<Double, Double, Double> v = vessel.flight(null).getPrograde();
System.out.println(v.getValue0() + "," + v.getValue1() + "," + v.getValue2());

}
}

Quaternions (rotations in 3-dimensional space) are
encoded as a 4-tuple containing the x, y, z and w
components. For example:

import java.io.IOException;
import org.javatuples.Quartet;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.SpaceCenter.Vessel;

public class Quaternion {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance();
Vessel vessel = SpaceCenter.newInstance(connection).getActiveVessel();
Quartet<Double, Double, Double, Double> q = vessel.flight(null).getRotation();
System.out.println(q.getValue0() + "," + q.getValue1() + "," + q.getValue2() + "," + q.getValue3());

}
}

5.4 InfernalRobotics API

Provides RPCs to interact with the InfernalRobotics
mod. Provides the following classes:

5.4.1 InfernalRobotics

public class InfernalRobotics
This service provides functionality to interact with
the InfernalRobotics mod.

java.util.List<ControlGroup> getServoGroups()
A list of all the servo groups in the active vessel.

ControlGroup servoGroupWithName(String name)
Returns the servo group with the given name or
null if none exists. If multiple servo groups have
the same name, only one of them is returned.

5.4. InfernalRobotics API 221

http://forum.kerbalspaceprogram.com/threads/116064
http://forum.kerbalspaceprogram.com/threads/116064
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

Parameters

• name (String) – Name of servo group to find.

Servo servoWithName(String name)
Returns the servo with the given name, from all
servo groups, or null if none exists. If multiple
servos have the same name, only one of them is
returned.

Parameters

• name (String) – Name of the servo to find.

5.4.2 ControlGroup

public class ControlGroup
A group of servos, obtained by
calling getServoGroups() or
servoGroupWithName(String). Repre-
sents the “Servo Groups” in the InfernalRobotics
UI.

String getName()

void setName(String value)
The name of the group.

String getForwardKey()

void setForwardKey(String value)
The key assigned to be the “forward” key for the
group.

String getReverseKey()

void setReverseKey(String value)
The key assigned to be the “reverse” key for the
group.

float getSpeed()

void setSpeed(float value)
The speed multiplier for the group.

boolean getExpanded()

void setExpanded(boolean value)
Whether the group is expanded in the Infernal-
Robotics UI.

java.util.List<Servo> getServos()
The servos that are in the group.

222 Chapter 5. Java

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

kRPC, Release 0.2.3

Servo servoWithName(String name)
Returns the servo with the given name from this
group, or null if none exists.

Parameters

• name (String) – Name of servo to find.

void moveRight()
Moves all of the servos in the group to the right.

void moveLeft()
Moves all of the servos in the group to the left.

void moveCenter()
Moves all of the servos in the group to the center.

void moveNextPreset()
Moves all of the servos in the group to the next
preset.

void movePrevPreset()
Moves all of the servos in the group to the previous
preset.

void stop()
Stops the servos in the group.

5.4.3 Servo

public class Servo
Represents a servo. Obtained us-
ing ControlGroup.getServos(),
ControlGroup.servoWithName(String)
or servoWithName(String).

String getName()

void setName(String value)
The name of the servo.

void setHighlight(boolean value)
Whether the servo should be highlighted in-game.

float getPosition()
The position of the servo.

float getMinConfigPosition()
The minimum position of the servo, specified by the
part configuration.

float getMaxConfigPosition()
The maximum position of the servo, specified by
the part configuration.

float getMinPosition()

5.4. InfernalRobotics API 223

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

void setMinPosition(float value)
The minimum position of the servo, specified by the
in-game tweak menu.

float getMaxPosition()

void setMaxPosition(float value)
The maximum position of the servo, specified by
the in-game tweak menu.

float getConfigSpeed()
The speed multiplier of the servo, specified by the
part configuration.

float getSpeed()

void setSpeed(float value)
The speed multiplier of the servo, specified by the
in-game tweak menu.

float getCurrentSpeed()

void setCurrentSpeed(float value)
The current speed at which the servo is moving.

float getAcceleration()

void setAcceleration(float value)
The current speed multiplier set in the UI.

boolean getIsMoving()
Whether the servo is moving.

boolean getIsFreeMoving()
Whether the servo is freely moving.

boolean getIsLocked()

void setIsLocked(boolean value)
Whether the servo is locked.

boolean getIsAxisInverted()

void setIsAxisInverted(boolean value)
Whether the servos axis is inverted.

void moveRight()
Moves the servo to the right.

void moveLeft()
Moves the servo to the left.

void moveCenter()
Moves the servo to the center.

void moveNextPreset()
Moves the servo to the next preset.

224 Chapter 5. Java

kRPC, Release 0.2.3

void movePrevPreset()
Moves the servo to the previous preset.

void moveTo(float position, float speed)
Moves the servo to position and sets the speed mul-
tiplier to speed.

Parameters

• position (float) – The position to move the
servo to.

• speed (float) – Speed multiplier for the move-
ment.

void stop()
Stops the servo.

5.4.4 Example

The following example gets the control group named
“MyGroup”, prints out the names and positions of
all of the servos in the group, then moves all of the
servos to the right for 1 second.

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.InfernalRobotics;
import krpc.client.services.InfernalRobotics.ControlGroup;
import krpc.client.services.InfernalRobotics.Servo;

public class IR {
public static void main(String[] args) throws IOException, RPCException, InterruptedException {

Connection connection = Connection.newInstance("InfernalRobotics Example");
InfernalRobotics ir = InfernalRobotics.newInstance(connection);

ControlGroup group = ir.servoGroupWithName("MyGroup");
if (group == null) {

System.out.println("Group not found");
return;

}

for (Servo servo : group.getServos())
System.out.println(servo.getName() + " " + servo.getPosition());

group.moveRight();
Thread.sleep(1000);
group.stop();

}
}

5.5 Kerbal Alarm Clock API

Provides RPCs to interact with the Kerbal Alarm
Clock mod. Provides the following classes:

5.5. Kerbal Alarm Clock API 225

http://forum.kerbalspaceprogram.com/threads/24786
http://forum.kerbalspaceprogram.com/threads/24786

kRPC, Release 0.2.3

5.5.1 KerbalAlarmClock

public class KerbalAlarmClock
This service provides functionality to interact with
the Kerbal Alarm Clock mod.

java.util.List<Alarm> getAlarms()
A list of all the alarms.

Alarm alarmWithName(String name)
Get the alarm with the given name, or null if no
alarms have that name. If more than one alarm has
the name, only returns one of them.

Parameters

• name (String) – Name of the alarm to search for.

java.util.List<Alarm> alarmsWithType(AlarmType type)
Get a list of alarms of the specified type.

Parameters

• type (AlarmType) – Type of alarm to return.

Alarm createAlarm(AlarmType type, String name, double ut)
Create a new alarm and return it.

Parameters

• type (AlarmType) – Type of the new alarm.

• name (String) – Name of the new alarm.

• ut (double) – Time at which the new alarm should
trigger.

5.5.2 Alarm

public class Alarm
Represents an alarm. Obtained by calling
getAlarms(), alarmWithName(String) or
alarmsWithType(AlarmType).

AlarmAction getAction()

void setAction(AlarmAction value)
The action that the alarm triggers.

double getMargin()

void setMargin(double value)
The number of seconds before the event that the
alarm will fire.

double getTime()

void setTime(double value)
The time at which the alarm will fire.

226 Chapter 5. Java

http://forum.kerbalspaceprogram.com/threads/24786
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

AlarmType getType()
The type of the alarm.

String getID()
The unique identifier for the alarm.

String getName()

void setName(String value)
The short name of the alarm.

String getNotes()

void setNotes(String value)
The long description of the alarm.

double getRemaining()
The number of seconds until the alarm will fire.

boolean getRepeat()

void setRepeat(boolean value)
Whether the alarm will be repeated after it has fired.

double getRepeatPeriod()

void setRepeatPeriod(double value)
The time delay to automatically create an alarm
after it has fired.

Vessel getVessel()

void setVessel(Vessel value)
The vessel that the alarm is attached to.

CelestialBody getXferOriginBody()

void setXferOriginBody(CelestialBody value)
The celestial body the vessel is departing from.

CelestialBody getXferTargetBody()

void setXferTargetBody(CelestialBody value)
The celestial body the vessel is arriving at.

void remove()
Removes the alarm.

5.5.3 AlarmType

public enum AlarmType
The type of an alarm.

5.5. Kerbal Alarm Clock API 227

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

kRPC, Release 0.2.3

public AlarmType RAW
An alarm for a specific date/time or a specific period
in the future.

public AlarmType MANEUVER
An alarm based on the next maneuver node on the
current ships flight path. This node will be stored
and can be restored when you come back to the ship.

public AlarmType MANEUVER_AUTO
See AlarmType.MANEUVER.

public AlarmType APOAPSIS
An alarm for furthest part of the orbit from the
planet.

public AlarmType PERIAPSIS
An alarm for nearest part of the orbit from the planet.

public AlarmType ASCENDING_NODE
Ascending node for the targeted object, or equatorial
ascending node.

public AlarmType DESCENDING_NODE
Descending node for the targeted object, or equato-
rial descending node.

public AlarmType CLOSEST
An alarm based on the closest approach of this ves-
sel to the targeted vessel, some number of orbits
into the future.

public AlarmType CONTRACT
An alarm based on the expiry or deadline of con-
tracts in career modes.

public AlarmType CONTRACT_AUTO
See AlarmType.CONTRACT.

public AlarmType CREW
An alarm that is attached to a crew member.

public AlarmType DISTANCE
An alarm that is triggered when a selected target
comes within a chosen distance.

public AlarmType EARTH_TIME
An alarm based on the time in the “Earth” alternative
Universe (aka the Real World).

public AlarmType LAUNCH_RENDEVOUS
An alarm that fires as your landed craft passes under
the orbit of your target.

public AlarmType SOI_CHANGE
An alarm manually based on when the next SOI
point is on the flight path or set to continually
monitor the active flight path and add alarms as it
detects SOI changes.

228 Chapter 5. Java

kRPC, Release 0.2.3

public AlarmType SOI_CHANGE_AUTO
See AlarmType.SOI_CHANGE.

public AlarmType TRANSFER
An alarm based on Interplanetary Transfer Phase
Angles, i.e. when should I launch to planet X?
Based on Kosmo Not’s post and used in Olex’s
Calculator.

public AlarmType TRANSFER_MODELLED
See AlarmType.TRANSFER.

5.5.4 AlarmAction

public enum AlarmAction
The action performed by an alarm when it fires.

public AlarmAction DO_NOTHING
Don’t do anything at all...

public AlarmAction DO_NOTHING_DELETE_WHEN_PASSED
Don’t do anything, and delete the alarm.

public AlarmAction KILL_WARP
Drop out of time warp.

public AlarmAction KILL_WARP_ONLY
Drop out of time warp.

public AlarmAction MESSAGE_ONLY
Display a message.

public AlarmAction PAUSE_GAME
Pause the game.

5.5.5 Example

The following example creates a new alarm for the
active vessel. The alarm is set to trigger after 10 sec-
onds have passed, and display a message.

import java.io.IOException;
import krpc.client.Connection;
import krpc.client.RPCException;
import krpc.client.services.SpaceCenter;
import krpc.client.services.KerbalAlarmClock;
import krpc.client.services.KerbalAlarmClock.Alarm;
import krpc.client.services.KerbalAlarmClock.AlarmAction;
import krpc.client.services.KerbalAlarmClock.AlarmType;

public class KAC {
public static void main(String[] args) throws IOException, RPCException {

Connection connection = Connection.newInstance("Kerbal Alarm Clock Example", "10.0.2.2");
KerbalAlarmClock kac = KerbalAlarmClock.newInstance(connection);
Alarm alarm = kac.createAlarm(AlarmType.RAW, "My New Alarm", SpaceCenter.newInstance(connection).getUT() + 10);
alarm.setNotes("10 seconds have now passed since the alarm was created.");
alarm.setAction(AlarmAction.MESSAGE_ONLY);

5.5. Kerbal Alarm Clock API 229

kRPC, Release 0.2.3

}
}

230 Chapter 5. Java

CHAPTER

SIX

LUA

6.1 Lua Client

This client provides functionality to interact with a kRPC server from programs written in Lua. It can be installed
using LuaRocks or downloaded from GitHub.

6.1.1 Installing the Library

The Lua client and all of its dependencies can be installed using luarocks with a single command:

luarocks install krpc

6.1.2 Using the Library

Once it’s installed, simply require ’krpc’ and you are good to go!

6.1.3 Connecting to the Server

To connect to a server, use the krpc.connect() function. This returns a connection object through which you can
interact with the server. For example to connect to a server running on the local machine:

local krpc = require 'krpc'
local conn = krpc.connect('Example')
print(conn.krpc:get_status().version)

This function also accepts arguments that specify what address and port numbers to connect to. For example:

local krpc = require 'krpc'
local conn = krpc.connect('Remote example', 'my.domain.name', 1000, 1001)
print(conn.krpc:get_status().version)

6.1.4 Interacting with the Server

Interaction with the server is performed via the client object (of type krpc.Client) returned when connecting to
the server using krpc.connect().

Upon connecting, the client interrogates the server to find out what functionality it provides and dynamically adds all
of the classes, methods, properties to the client object.

231

https://luarocks.org/modules/djungelorm/krpc
https://luarocks.org/modules/djungelorm/krpc
https://github.com/krpc/krpc/releases/download/v0.2.3/krpc-lua-0.2.3.zip

kRPC, Release 0.2.3

For example, all of the functionality provided by the SpaceCenter service is accessible via conn.space_center
and the functionality provided by the InfernalRobotics service is accessible via conn.infernal_robotics.

Calling methods, getting or setting properties, etc. are mapped to remote procedure calls and passed to the server by
the lua client.

6.1.5 Streaming Data from the Server

Streams are not yet supported by the Lua client.

6.1.6 Reference

connect([name=nil][, address=‘127.0.0.1’][, rpc_port=50000][, stream_port=50001])
This function creates a connection to a kRPC server. It returns a krpc.Client object, through which the
server can be communicated with.

Parameters

• name (string) – A descriptive name for the connection. This is passed to the server and
appears, for example, in the client connection dialog on the in-game server window.

• address (string) – The address of the server to connect to. Can either be a hostname
or an IP address in dotted decimal notation. Defaults to ‘127.0.0.1’.

• rpc_port (number) – The port number of the RPC Server. Defaults to 50000.

• stream_port (number) – The port number of the Stream Server. Defaults to 50001.

class Client
This class provides the interface for communicating with the server. It is dynamically populated with all the
functionality provided by the server. Instances of this class should be obtained by calling krpc.connect().

close()
Closes the connection to the server.

krpc
The built-in KRPC class, providing basic interactions with the server.

Return type krpc.KRPC

class KRPC
This class provides access to the basic server functionality provided by the KRPC service. An instance can be
obtained by calling krpc.Client.krpc. Most of this functionality is used internally by the lua client and
therefore does not need to be used directly from application code. The only exception that may be useful is:

get_status()
Gets a status message from the server containing information including the server’s version string and
performance statistics.

For example, the following prints out the version string for the server:

print('Server version = ' .. conn.krpc:get_status().version)

Or to get the rate at which the server is sending and receiving data over the network:

local status = conn.krpc:get_status()
print('Data in = ' .. (status.bytes_read_rate/1024) .. ' KB/s')
print('Data out = ' .. (status.bytes_written_rate/1024) .. ' KB/s')

232 Chapter 6. Lua

kRPC, Release 0.2.3

6.2 KRPC API

Main kRPC service, used by clients to interact with basic server functionality.

static get_status()
Returns some information about the server, such as the version.

Return type krpc.schema.KRPC.Status

static get_services()
Returns information on all services, procedures, classes, properties etc. provided by the server. Can be used by
client libraries to automatically create functionality such as stubs.

Return type krpc.schema.KRPC.Services

current_game_scene
Get the current game scene.

Attribute Read-only, cannot be set

Return type KRPC.GameScene

static add_stream(request)
Add a streaming request and return its identifier.

Parameters request (krpc.schema.KRPC.Request) –

Return type number

Note: Streams are not supported by the Lua client.

static remove_stream(id)
Remove a streaming request.

Parameters id (number) –

Note: Streams are not supported by the Lua client.

class GameScene
The game scene. See KRPC.current_game_scene.

space_center
The game scene showing the Kerbal Space Center buildings.

flight
The game scene showing a vessel in flight (or on the launchpad/runway).

tracking_station
The tracking station.

editor_vab
The Vehicle Assembly Building.

editor_sph
The Space Plane Hangar.

6.2. KRPC API 233

kRPC, Release 0.2.3

6.3 SpaceCenter API

6.3.1 SpaceCenter

Provides functionality to interact with Kerbal Space Program. This includes controlling the active vessel, managing
its resources, planning maneuver nodes and auto-piloting.

active_vessel
The currently active vessel.

Attribute Can be read or written

Return type SpaceCenter.Vessel

vessels
A list of all the vessels in the game.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Vessel

bodies
A dictionary of all celestial bodies (planets, moons, etc.) in the game, keyed by the name of the body.

Attribute Read-only, cannot be set

Return type Map from string to SpaceCenter.CelestialBody

target_body
The currently targeted celestial body.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

target_vessel
The currently targeted vessel.

Attribute Can be read or written

Return type SpaceCenter.Vessel

target_docking_port
The currently targeted docking port.

Attribute Can be read or written

Return type SpaceCenter.DockingPort

static clear_target()
Clears the current target.

static launch_vessel_from_vab(name)
Launch a new vessel from the VAB onto the launchpad.

Parameters name (string) – Name of the vessel’s craft file.

static launch_vessel_from_sph(name)
Launch a new vessel from the SPH onto the runway.

Parameters name (string) – Name of the vessel’s craft file.

ut
The current universal time in seconds.

234 Chapter 6. Lua

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type number

g
The value of the gravitational constant G in 𝑁(𝑚/𝑘𝑔)2.

Attribute Read-only, cannot be set

Return type number

warp_mode
The current time warp mode. Returns SpaceCenter.WarpMode.none if time warp is
not active, SpaceCenter.WarpMode.rails if regular “on-rails” time warp is active, or
SpaceCenter.WarpMode.physics if physical time warp is active.

Attribute Read-only, cannot be set

Return type SpaceCenter.WarpMode

warp_rate
The current warp rate. This is the rate at which time is passing for either on-rails or physical time warp. For
example, a value of 10 means time is passing 10x faster than normal. Returns 1 if time warp is not active.

Attribute Read-only, cannot be set

Return type number

warp_factor
The current warp factor. This is the index of the rate at which time is passing for either regular “on-
rails” or physical time warp. Returns 0 if time warp is not active. When in on-rails time warp,
this is equal to SpaceCenter.rails_warp_factor, and in physics time warp, this is equal to
SpaceCenter.physics_warp_factor.

Attribute Read-only, cannot be set

Return type number

rails_warp_factor
The time warp rate, using regular “on-rails” time warp. A value between 0 and 7 inclusive. 0 means no time
warp. Returns 0 if physical time warp is active. If requested time warp factor cannot be set, it will be set to the
next lowest possible value. For example, if the vessel is too close to a planet. See the KSP wiki for details.

Attribute Can be read or written

Return type number

physics_warp_factor
The physical time warp rate. A value between 0 and 3 inclusive. 0 means no time warp. Returns 0 if regular
“on-rails” time warp is active.

Attribute Can be read or written

Return type number

static can_rails_warp_at([factor = 1])
Returns True if regular “on-rails” time warp can be used, at the specified warp factor. The maximum time
warp rate is limited by various things, including how close the active vessel is to a planet. See the KSP wiki for
details.

Parameters factor (number) – The warp factor to check.

Return type boolean

6.3. SpaceCenter API 235

http://en.wikipedia.org/wiki/Gravitational_constant
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.2.3

maximum_rails_warp_factor
The current maximum regular “on-rails” warp factor that can be set. A value between 0 and 7 inclusive. See the
KSP wiki for details.

Attribute Read-only, cannot be set

Return type number

static warp_to(ut[, max_rails_rate = 100000.0][, max_physics_rate = 2.0])
Uses time acceleration to warp forward to a time in the future, specified by universal time ut. This call blocks
until the desired time is reached. Uses regular “on-rails” or physical time warp as appropriate. For example,
physical time warp is used when the active vessel is traveling through an atmosphere. When using regular “on-
rails” time warp, the warp rate is limited by max_rails_rate, and when using physical time warp, the warp rate
is limited by max_physics_rate.

Parameters

• ut (number) – The universal time to warp to, in seconds.

• max_rails_rate (number) – The maximum warp rate in regular “on-rails” time warp.

• max_physics_rate (number) – The maximum warp rate in physical time warp.

Returns When the time warp is complete.

static transform_position(position, from, to)
Converts a position vector from one reference frame to another.

Parameters

• position (Tuple) – Position vector in reference frame from.

• from (SpaceCenter.ReferenceFrame) – The reference frame that the position vec-
tor is in.

• to (SpaceCenter.ReferenceFrame) – The reference frame to covert the position
vector to.

Returns The corresponding position vector in reference frame to.

Return type Tuple of (number, number, number)

static transform_direction(direction, from, to)
Converts a direction vector from one reference frame to another.

Parameters

• direction (Tuple) – Direction vector in reference frame from.

• from (SpaceCenter.ReferenceFrame) – The reference frame that the direction vec-
tor is in.

• to (SpaceCenter.ReferenceFrame) – The reference frame to covert the direction
vector to.

Returns The corresponding direction vector in reference frame to.

Return type Tuple of (number, number, number)

static transform_rotation(rotation, from, to)
Converts a rotation from one reference frame to another.

Parameters

• rotation (Tuple) – Rotation in reference frame from.

• from (SpaceCenter.ReferenceFrame) – The reference frame that the rotation is in.

236 Chapter 6. Lua

http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.2.3

• to (SpaceCenter.ReferenceFrame) – The corresponding rotation in reference
frame to.

Returns The corresponding rotation in reference frame to.

Return type Tuple of (number, number, number, number)

static transform_velocity(position, velocity, from, to)
Converts a velocity vector (acting at the specified position vector) from one reference frame to another. The
position vector is required to take the relative angular velocity of the reference frames into account.

Parameters

• position (Tuple) – Position vector in reference frame from.

• velocity (Tuple) – Velocity vector in reference frame from.

• from (SpaceCenter.ReferenceFrame) – The reference frame that the position and
velocity vectors are in.

• to (SpaceCenter.ReferenceFrame) – The reference frame to covert the velocity
vector to.

Returns The corresponding velocity in reference frame to.

Return type Tuple of (number, number, number)

far_available
Whether Ferram Aerospace Research is installed.

Attribute Read-only, cannot be set

Return type boolean

remote_tech_available
Whether RemoteTech is installed.

Attribute Read-only, cannot be set

Return type boolean

static draw_direction(direction, reference_frame, color[, length = 10.0])
Draw a direction vector on the active vessel.

Parameters

• direction (Tuple) – Direction to draw the line in.

• reference_frame (SpaceCenter.ReferenceFrame) – Reference frame that the
direction is in.

• color (Tuple) – The color to use for the line, as an RGB color.

• length (number) – The length of the line. Defaults to 10.

static draw_line(start, end, reference_frame, color)
Draw a line.

Parameters

• start (Tuple) – Position of the start of the line.

• end (Tuple) – Position of the end of the line.

• reference_frame (SpaceCenter.ReferenceFrame) – Reference frame that the
position are in.

• color (Tuple) – The color to use for the line, as an RGB color.

6.3. SpaceCenter API 237

http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/83305

kRPC, Release 0.2.3

static clear_drawing()
Remove all directions and lines currently being drawn.

class WarpMode
Returned by SpaceCenter.WarpMode

rails
Time warp is active, and in regular “on-rails” mode.

physics
Time warp is active, and in physical time warp mode.

none
Time warp is not active.

6.3.2 Vessel

class Vessel
These objects are used to interact with vessels in KSP. This includes getting orbital and flight data, manipulating
control inputs and managing resources.

name
The name of the vessel.

Attribute Can be read or written

Return type string

type
The type of the vessel.

Attribute Can be read or written

Return type SpaceCenter.VesselType

situation
The situation the vessel is in.

Attribute Read-only, cannot be set

Return type SpaceCenter.VesselSituation

met
The mission elapsed time in seconds.

Attribute Read-only, cannot be set

Return type number

flight([reference_frame = None])
Returns a SpaceCenter.Flight object that can be used to get flight telemetry for the vessel, in the
specified reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –
Reference frame. Defaults to the vessel’s surface reference frame
(SpaceCenter.Vessel.surface_reference_frame).

Return type SpaceCenter.Flight

238 Chapter 6. Lua

kRPC, Release 0.2.3

Note: When this is called with no arguments, the vessel’s surface reference frame is used. This reference
frame moves with the vessel, therefore velocities and speeds returned by the flight object will be zero. See
the reference frames tutorial for examples of getting the orbital speed and surface speed of a vessel.

target
The target vessel. nil if there is no target. When setting the target, the target cannot be the current vessel.

Attribute Can be read or written

Return type SpaceCenter.Vessel

orbit
The current orbit of the vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Orbit

control
Returns a SpaceCenter.Control object that can be used to manipulate the vessel’s control inputs.
For example, its pitch/yaw/roll controls, RCS and thrust.

Attribute Read-only, cannot be set

Return type SpaceCenter.Control

auto_pilot
An SpaceCenter.AutoPilot object, that can be used to perform simple auto-piloting of the vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.AutoPilot

resources
A SpaceCenter.Resources object, that can used to get information about resources stored in the
vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Resources

resources_in_decouple_stage(stage[, cumulative = True])
Returns a SpaceCenter.Resources object, that can used to get information about resources stored
in a given stage.

Parameters

• stage (number) – Get resources for parts that are decoupled in this stage.

• cumulative (boolean) – When False, returns the resources for parts decoupled in
just the given stage. When True returns the resources decoupled in the given stage and
all subsequent stages combined.

Return type SpaceCenter.Resources

Note: For details on stage numbering, see the discussion on Staging.

parts
A SpaceCenter.Parts object, that can used to interact with the parts that make up this vessel.

Attribute Read-only, cannot be set

6.3. SpaceCenter API 239

kRPC, Release 0.2.3

Return type SpaceCenter.Parts

comms
A SpaceCenter.Comms object, that can used to interact with RemoteTech for this vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Comms

Note: Requires RemoteTech to be installed.

mass
The total mass of the vessel, including resources, in kg.

Attribute Read-only, cannot be set

Return type number

dry_mass
The total mass of the vessel, excluding resources, in kg.

Attribute Read-only, cannot be set

Return type number

thrust
The total thrust currently being produced by the vessel’s engines, in Newtons. This is computed by sum-
ming SpaceCenter.Engine.thrust for every engine in the vessel.

Attribute Read-only, cannot be set

Return type number

available_thrust
Gets the total available thrust that can be produced by the vessel’s active engines, in Newtons. This is
computed by summing SpaceCenter.Engine.available_thrust for every active engine in the
vessel.

Attribute Read-only, cannot be set

Return type number

max_thrust
The total maximum thrust that can be produced by the vessel’s active engines, in Newtons. This is com-
puted by summing SpaceCenter.Engine.max_thrust for every active engine.

Attribute Read-only, cannot be set

Return type number

max_vacuum_thrust
The total maximum thrust that can be produced by the vessel’s active engines when the vessel is in a vac-
uum, in Newtons. This is computed by summing SpaceCenter.Engine.max_vacuum_thrust
for every active engine.

Attribute Read-only, cannot be set

Return type number

specific_impulse
The combined specific impulse of all active engines, in seconds. This is computed using the formula
described here.

Attribute Read-only, cannot be set

240 Chapter 6. Lua

http://forum.kerbalspaceprogram.com/threads/83305
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.2.3

Return type number

vacuum_specific_impulse
The combined vacuum specific impulse of all active engines, in seconds. This is computed using the
formula described here.

Attribute Read-only, cannot be set

Return type number

kerbin_sea_level_specific_impulse
The combined specific impulse of all active engines at sea level on Kerbin, in seconds. This is computed
using the formula described here.

Attribute Read-only, cannot be set

Return type number

reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the vessel.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel.

•The x-axis points out to the right of the vessel.

•The y-axis points in the forward direction of the vessel.

•The z-axis points out of the bottom off the vessel.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

Fig. 6.1: Vessel reference frame origin and axes for the Aeris 3A aircraft

orbital_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the vessels orbital pro-
grade/normal/radial directions.

•The origin is at the center of mass of the vessel.

6.3. SpaceCenter API 241

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.2.3

Fig. 6.2: Vessel reference frame origin and axes for the Kerbal-X rocket

242 Chapter 6. Lua

kRPC, Release 0.2.3

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

Note: Be careful not to confuse this with ‘orbit’ mode on the navball.

Fig. 6.3: Vessel orbital reference frame origin and axes

surface_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the surface of the body being
orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the north and up directions on the surface of the body.

•The x-axis points in the zenith direction (upwards, normal to the body being orbited, from the center
of the body towards the center of mass of the vessel).

•The y-axis points northwards towards the astronomical horizon (north, and tangential to the surface
of the body – the direction in which a compass would point when on the surface).

•The z-axis points eastwards towards the astronomical horizon (east, and tangential to the surface of
the body – east on a compass when on the surface).

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

6.3. SpaceCenter API 243

http://en.wikipedia.org/wiki/Zenith
http://en.wikipedia.org/wiki/Horizon
http://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.2.3

Note: Be careful not to confuse this with ‘surface’ mode on the navball.

Fig. 6.4: Vessel surface reference frame origin and axes

surface_velocity_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the velocity vector of the vessel
relative to the surface of the body being orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel’s velocity vector.

•The y-axis points in the direction of the vessel’s velocity vector, relative to the surface of the body
being orbited.

•The z-axis is in the plane of the astronomical horizon.

•The x-axis is orthogonal to the other two axes.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

244 Chapter 6. Lua

http://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.2.3

Fig. 6.5: Vessel surface velocity reference frame origin and axes

position(reference_frame)
Returns the position vector of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

velocity(reference_frame)
Returns the velocity vector of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

rotation(reference_frame)
Returns the rotation of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number, number)

direction(reference_frame)
Returns the direction in which the vessel is pointing, as a unit vector, in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

angular_velocity(reference_frame)
Returns the angular velocity of the vessel in the given reference frame. The magnitude of the returned
vector is the rotational speed in radians per second, and the direction of the vector indicates the axis of
rotation (using the right hand rule).

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

class VesselType
See SpaceCenter.Vessel.type.

6.3. SpaceCenter API 245

kRPC, Release 0.2.3

ship
Ship.

station
Station.

lander
Lander.

probe
Probe.

rover
Rover.

base
Base.

debris
Debris.

class VesselSituation
See SpaceCenter.Vessel.situation.

docked
Vessel is docked to another.

escaping
Escaping.

flying
Vessel is flying through an atmosphere.

landed
Vessel is landed on the surface of a body.

orbiting
Vessel is orbiting a body.

pre_launch
Vessel is awaiting launch.

splashed
Vessel has splashed down in an ocean.

sub_orbital
Vessel is on a sub-orbital trajectory.

6.3.3 CelestialBody

class CelestialBody
Represents a celestial body (such as a planet or moon).

name
The name of the body.

Attribute Read-only, cannot be set

Return type string

satellites
A list of celestial bodies that are in orbit around this celestial body.

246 Chapter 6. Lua

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type List of SpaceCenter.CelestialBody

orbit
The orbit of the body.

Attribute Read-only, cannot be set

Return type SpaceCenter.Orbit

mass
The mass of the body, in kilograms.

Attribute Read-only, cannot be set

Return type number

gravitational_parameter
The standard gravitational parameter of the body in 𝑚3𝑠−2.

Attribute Read-only, cannot be set

Return type number

surface_gravity
The acceleration due to gravity at sea level (mean altitude) on the body, in 𝑚/𝑠2.

Attribute Read-only, cannot be set

Return type number

rotational_period
The sidereal rotational period of the body, in seconds.

Attribute Read-only, cannot be set

Return type number

rotational_speed
The rotational speed of the body, in radians per second.

Attribute Read-only, cannot be set

Return type number

equatorial_radius
The equatorial radius of the body, in meters.

Attribute Read-only, cannot be set

Return type number

surface_height(latitude, longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water this
is equal to 0.

Parameters

• latitude (number) – Latitude in degrees

• longitude (number) – Longitude in degrees

Return type number

bedrock_height(latitude, longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water, this
is the height of the sea-bed and is therefore a negative value.

6.3. SpaceCenter API 247

http://en.wikipedia.org/wiki/Standard_gravitational_parameter

kRPC, Release 0.2.3

Parameters

• latitude (number) – Latitude in degrees

• longitude (number) – Longitude in degrees

Return type number

msl_position(latitude, longitude, reference_frame)
The position at mean sea level at the given latitude and longitude, in the given reference frame.

Parameters

• latitude (number) – Latitude in degrees

• longitude (number) – Longitude in degrees

• reference_frame (SpaceCenter.ReferenceFrame) – Reference frame for the
returned position vector

Return type Tuple of (number, number, number)

surface_position(latitude, longitude, reference_frame)
The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position of the surface of the water.

Parameters

• latitude (number) – Latitude in degrees

• longitude (number) – Longitude in degrees

• reference_frame (SpaceCenter.ReferenceFrame) – Reference frame for the
returned position vector

Return type Tuple of (number, number, number)

bedrock_position(latitude, longitude, reference_frame)
The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position at the bottom of the sea-bed.

Parameters

• latitude (number) – Latitude in degrees

• longitude (number) – Longitude in degrees

• reference_frame (SpaceCenter.ReferenceFrame) – Reference frame for the
returned position vector

Return type Tuple of (number, number, number)

sphere_of_influence
The radius of the sphere of influence of the body, in meters.

Attribute Read-only, cannot be set

Return type number

has_atmosphere
True if the body has an atmosphere.

Attribute Read-only, cannot be set

Return type boolean

atmosphere_depth
The depth of the atmosphere, in meters.

248 Chapter 6. Lua

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type number

has_atmospheric_oxygen
True if there is oxygen in the atmosphere, required for air-breathing engines.

Attribute Read-only, cannot be set

Return type boolean

reference_frame
The reference frame that is fixed relative to the celestial body.

•The origin is at the center of the body.

•The axes rotate with the body.

•The x-axis points from the center of the body towards the intersection of the prime meridian and
equator (the position at 0° longitude, 0° latitude).

•The y-axis points from the center of the body towards the north pole.

•The z-axis points from the center of the body towards the equator at 90°E longitude.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

Fig. 6.6: Celestial body reference frame origin and axes. The equator is shown in blue, and the prime meridian in red.

non_rotating_reference_frame
The reference frame that is fixed relative to this celestial body, and orientated in a fixed direction (it does
not rotate with the body).

•The origin is at the center of the body.

•The axes do not rotate.

•The x-axis points in an arbitrary direction through the equator.

6.3. SpaceCenter API 249

kRPC, Release 0.2.3

•The y-axis points from the center of the body towards the north pole.

•The z-axis points in an arbitrary direction through the equator.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

orbital_reference_frame
Gets the reference frame that is fixed relative to this celestial body, but orientated with the body’s orbital
prograde/normal/radial directions.

•The origin is at the center of the body.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

position(reference_frame)
Returns the position vector of the center of the body in the specified reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

velocity(reference_frame)
Returns the velocity vector of the body in the specified reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

rotation(reference_frame)
Returns the rotation of the body in the specified reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number, number)

direction(reference_frame)
Returns the direction in which the north pole of the celestial body is pointing, as a unit vector, in the
specified reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

angular_velocity(reference_frame)
Returns the angular velocity of the body in the specified reference frame. The magnitude of the vector is
the rotational speed of the body, in radians per second, and the direction of the vector indicates the axis of
rotation, using the right-hand rule.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

250 Chapter 6. Lua

kRPC, Release 0.2.3

6.3.4 Flight

class Flight
Used to get flight telemetry for a vessel, by calling SpaceCenter.Vessel.flight(). All of the infor-
mation returned by this class is given in the reference frame passed to that method.

Note: To get orbital information, such as the apoapsis or inclination, see SpaceCenter.Orbit.

g_force
The current G force acting on the vessel in 𝑚/𝑠2.

Attribute Read-only, cannot be set

Return type number

mean_altitude
The altitude above sea level, in meters.

Attribute Read-only, cannot be set

Return type number

surface_altitude
The altitude above the surface of the body or sea level, whichever is closer, in meters.

Attribute Read-only, cannot be set

Return type number

bedrock_altitude
The altitude above the surface of the body, in meters. When over water, this is the altitude above the sea
floor.

Attribute Read-only, cannot be set

Return type number

elevation
The elevation of the terrain under the vessel, in meters. This is the height of the terrain above sea level,
and is negative when the vessel is over the sea.

Attribute Read-only, cannot be set

Return type number

latitude
The latitude of the vessel for the body being orbited, in degrees.

Attribute Read-only, cannot be set

Return type number

longitude
The longitude of the vessel for the body being orbited, in degrees.

Attribute Read-only, cannot be set

Return type number

velocity
The velocity vector of the vessel. The magnitude of the vector is the speed of the vessel in meters per
second. The direction of the vector is the direction of the vessels motion.

Attribute Read-only, cannot be set

6.3. SpaceCenter API 251

http://en.wikipedia.org/wiki/Latitude
http://en.wikipedia.org/wiki/Longitude

kRPC, Release 0.2.3

Return type Tuple of (number, number, number)

speed
The speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type number

horizontal_speed
The horizontal speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type number

vertical_speed
The vertical speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type number

center_of_mass
The position of the center of mass of the vessel.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

rotation
The rotation of the vessel.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number, number)

direction
The direction vector that the vessel is pointing in.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

pitch
The pitch angle of the vessel relative to the horizon, in degrees. A value between -90° and +90°.

Attribute Read-only, cannot be set

Return type number

heading
The heading angle of the vessel relative to north, in degrees. A value between 0° and 360°.

Attribute Read-only, cannot be set

Return type number

roll
The roll angle of the vessel relative to the horizon, in degrees. A value between -180° and +180°.

Attribute Read-only, cannot be set

Return type number

prograde
The unit direction vector pointing in the prograde direction.

252 Chapter 6. Lua

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

retrograde
The unit direction vector pointing in the retrograde direction.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

normal
The unit direction vector pointing in the normal direction.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

anti_normal
The unit direction vector pointing in the anti-normal direction.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

radial
The unit direction vector pointing in the radial direction.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

anti_radial
The unit direction vector pointing in the anti-radial direction.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

atmosphere_density
The current density of the atmosphere around the vessel, in 𝑘𝑔/𝑚3.

Attribute Read-only, cannot be set

Return type number

dynamic_pressure
The dynamic pressure acting on the vessel, in Pascals. This is a measure of the strength of the aerodynamic
forces. It is equal to 1

2 .air density.velocity2. It is commonly denoted as 𝑄.

Attribute Read-only, cannot be set

Return type number

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

static_pressure
The static atmospheric pressure acting on the vessel, in Pascals.

Attribute Read-only, cannot be set

Return type number

6.3. SpaceCenter API 253

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

aerodynamic_force
The total aerodynamic forces acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

lift
The aerodynamic lift currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

drag
The aerodynamic drag currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

Return type Tuple of (number, number, number)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

speed_of_sound
The speed of sound, in the atmosphere around the vessel, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type number

Note: Not available when Ferram Aerospace Research is installed.

mach
The speed of the vessel, in multiples of the speed of sound.

Attribute Read-only, cannot be set

Return type number

254 Chapter 6. Lua

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

Note: Not available when Ferram Aerospace Research is installed.

equivalent_air_speed
The equivalent air speed of the vessel, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type number

Note: Not available when Ferram Aerospace Research is installed.

terminal_velocity
An estimate of the current terminal velocity of the vessel, in 𝑚/𝑠. This is the speed at which the drag
forces cancel out the force of gravity.

Attribute Read-only, cannot be set

Return type number

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

angle_of_attack
Gets the pitch angle between the orientation of the vessel and its velocity vector, in degrees.

Attribute Read-only, cannot be set

Return type number

sideslip_angle
Gets the yaw angle between the orientation of the vessel and its velocity vector, in degrees.

Attribute Read-only, cannot be set

Return type number

total_air_temperature
The total air temperature of the atmosphere around the vessel, in Kelvin. This temperature includes the
SpaceCenter.Flight.static_air_temperature and the vessel’s kinetic energy.

Attribute Read-only, cannot be set

Return type number

static_air_temperature
The static (ambient) temperature of the atmosphere around the vessel, in Kelvin.

Attribute Read-only, cannot be set

Return type number

stall_fraction
Gets the current amount of stall, between 0 and 1. A value greater than 0.005 indicates a minor stall and a
value greater than 0.5 indicates a large-scale stall.

Attribute Read-only, cannot be set

Return type number

6.3. SpaceCenter API 255

http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Equivalent_airspeed
http://forum.kerbalspaceprogram.com/threads/20451
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Total_air_temperature
http://en.wikipedia.org/wiki/Total_air_temperature

kRPC, Release 0.2.3

Note: Requires Ferram Aerospace Research.

drag_coefficient
Gets the coefficient of drag. This is the amount of drag produced by the vessel. It depends on air speed,
air density and wing area.

Attribute Read-only, cannot be set

Return type number

Note: Requires Ferram Aerospace Research.

lift_coefficient
Gets the coefficient of lift. This is the amount of lift produced by the vessel, and depends on air speed, air
density and wing area.

Attribute Read-only, cannot be set

Return type number

Note: Requires Ferram Aerospace Research.

ballistic_coefficient
Gets the ballistic coefficient.

Attribute Read-only, cannot be set

Return type number

Note: Requires Ferram Aerospace Research.

thrust_specific_fuel_consumption
Gets the thrust specific fuel consumption for the jet engines on the vessel. This is a measure of the
efficiency of the engines, with a lower value indicating a more efficient vessel. This value is the number of
Newtons of fuel that are burned, per hour, to product one newton of thrust.

Attribute Read-only, cannot be set

Return type number

Note: Requires Ferram Aerospace Research.

6.3.5 Orbit

class Orbit
Describes an orbit. For example, the orbit of a vessel, obtained by calling SpaceCenter.Vessel.orbit,
or a celestial body, obtained by calling SpaceCenter.CelestialBody.orbit.

body
The celestial body (e.g. planet or moon) around which the object is orbiting.

Attribute Read-only, cannot be set

256 Chapter 6. Lua

http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Ballistic_coefficient
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

Return type SpaceCenter.CelestialBody

apoapsis
Gets the apoapsis of the orbit, in meters, from the center of mass of the body being orbited.

Attribute Read-only, cannot be set

Return type number

Note: For the apoapsis altitude reported on the in-game map view, use
SpaceCenter.Orbit.apoapsis_altitude.

periapsis
The periapsis of the orbit, in meters, from the center of mass of the body being orbited.

Attribute Read-only, cannot be set

Return type number

Note: For the periapsis altitude reported on the in-game map view, use
SpaceCenter.Orbit.periapsis_altitude.

apoapsis_altitude
The apoapsis of the orbit, in meters, above the sea level of the body being orbited.

Attribute Read-only, cannot be set

Return type number

Note: This is equal to SpaceCenter.Orbit.apoapsis minus the equatorial radius of the body.

periapsis_altitude
The periapsis of the orbit, in meters, above the sea level of the body being orbited.

Attribute Read-only, cannot be set

Return type number

Note: This is equal to SpaceCenter.Orbit.periapsis minus the equatorial radius of the body.

semi_major_axis
The semi-major axis of the orbit, in meters.

Attribute Read-only, cannot be set

Return type number

semi_minor_axis
The semi-minor axis of the orbit, in meters.

Attribute Read-only, cannot be set

Return type number

radius
The current radius of the orbit, in meters. This is the distance between the center of mass of the object in
orbit, and the center of mass of the body around which it is orbiting.

6.3. SpaceCenter API 257

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type number

Note: This value will change over time if the orbit is elliptical.

speed
The current orbital speed of the object in meters per second.

Attribute Read-only, cannot be set

Return type number

Note: This value will change over time if the orbit is elliptical.

period
The orbital period, in seconds.

Attribute Read-only, cannot be set

Return type number

time_to_apoapsis
The time until the object reaches apoapsis, in seconds.

Attribute Read-only, cannot be set

Return type number

time_to_periapsis
The time until the object reaches periapsis, in seconds.

Attribute Read-only, cannot be set

Return type number

eccentricity
The eccentricity of the orbit.

Attribute Read-only, cannot be set

Return type number

inclination
The inclination of the orbit, in radians.

Attribute Read-only, cannot be set

Return type number

longitude_of_ascending_node
The longitude of the ascending node, in radians.

Attribute Read-only, cannot be set

Return type number

argument_of_periapsis
The argument of periapsis, in radians.

Attribute Read-only, cannot be set

Return type number

258 Chapter 6. Lua

http://en.wikipedia.org/wiki/Orbital_eccentricity
http://en.wikipedia.org/wiki/Orbital_inclination
http://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
http://en.wikipedia.org/wiki/Argument_of_periapsis

kRPC, Release 0.2.3

mean_anomaly_at_epoch
The mean anomaly at epoch.

Attribute Read-only, cannot be set

Return type number

epoch
The time since the epoch (the point at which the mean anomaly at epoch was measured, in seconds.

Attribute Read-only, cannot be set

Return type number

mean_anomaly
The mean anomaly.

Attribute Read-only, cannot be set

Return type number

eccentric_anomaly
The eccentric anomaly.

Attribute Read-only, cannot be set

Return type number

static reference_plane_normal(reference_frame)
The unit direction vector that is normal to the orbits reference plane, in the given reference frame. The
reference plane is the plane from which the orbits inclination is measured.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

static reference_plane_direction(reference_frame)
The unit direction vector from which the orbits longitude of ascending node is measured, in the given
reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

time_to_soi_change
The time until the object changes sphere of influence, in seconds. Returns NaN if the object is not going
to change sphere of influence.

Attribute Read-only, cannot be set

Return type number

next_orbit
If the object is going to change sphere of influence in the future, returns the new orbit after the change.
Otherwise returns nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Orbit

6.3.6 Control

class Control
Used to manipulate the controls of a vessel. This includes adjusting the throttle, enabling/disabling systems such
as SAS and RCS, or altering the direction in which the vessel is pointing.

6.3. SpaceCenter API 259

http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Eccentric_anomaly

kRPC, Release 0.2.3

Note: Control inputs (such as pitch, yaw and roll) are zeroed when all clients that have set one or more of these
inputs are no longer connected.

sas
The state of SAS.

Attribute Can be read or written

Return type boolean

Note: Equivalent to SpaceCenter.AutoPilot.sas

sas_mode
The current SpaceCenter.SASMode. These modes are equivalent to the mode buttons to the left of
the navball that appear when SAS is enabled.

Attribute Can be read or written

Return type SpaceCenter.SASMode

Note: Equivalent to SpaceCenter.AutoPilot.sas_mode

speed_mode
The current SpaceCenter.SpeedMode of the navball. This is the mode displayed next to the speed at
the top of the navball.

Attribute Can be read or written

Return type SpaceCenter.SpeedMode

rcs
The state of RCS.

Attribute Can be read or written

Return type boolean

gear
The state of the landing gear/legs.

Attribute Can be read or written

Return type boolean

lights
The state of the lights.

Attribute Can be read or written

Return type boolean

brakes
The state of the wheel brakes.

Attribute Can be read or written

Return type boolean

abort
The state of the abort action group.

260 Chapter 6. Lua

kRPC, Release 0.2.3

Attribute Can be read or written

Return type boolean

throttle
The state of the throttle. A value between 0 and 1.

Attribute Can be read or written

Return type number

pitch
The state of the pitch control. A value between -1 and 1. Equivalent to the w and s keys.

Attribute Can be read or written

Return type number

yaw
The state of the yaw control. A value between -1 and 1. Equivalent to the a and d keys.

Attribute Can be read or written

Return type number

roll
The state of the roll control. A value between -1 and 1. Equivalent to the q and e keys.

Attribute Can be read or written

Return type number

forward
The state of the forward translational control. A value between -1 and 1. Equivalent to the h and n keys.

Attribute Can be read or written

Return type number

up
The state of the up translational control. A value between -1 and 1. Equivalent to the i and k keys.

Attribute Can be read or written

Return type number

right
The state of the right translational control. A value between -1 and 1. Equivalent to the j and l keys.

Attribute Can be read or written

Return type number

wheel_throttle
The state of the wheel throttle. A value between -1 and 1. A value of 1 rotates the wheels forwards, a value
of -1 rotates the wheels backwards.

Attribute Can be read or written

Return type number

wheel_steering
The state of the wheel steering. A value between -1 and 1. A value of 1 steers to the left, and a value of -1
steers to the right.

Attribute Can be read or written

Return type number

6.3. SpaceCenter API 261

kRPC, Release 0.2.3

current_stage
The current stage of the vessel. Corresponds to the stage number in the in-game UI.

Attribute Read-only, cannot be set

Return type number

activate_next_stage()
Activates the next stage. Equivalent to pressing the space bar in-game.

Returns A list of vessel objects that are jettisoned from the active vessel.

Return type List of SpaceCenter.Vessel

get_action_group(group)
Returns True if the given action group is enabled.

Parameters group (number) – A number between 0 and 9 inclusive.

Return type boolean

set_action_group(group, state)
Sets the state of the given action group (a value between 0 and 9 inclusive).

Parameters

• group (number) – A number between 0 and 9 inclusive.

• state (boolean) –

toggle_action_group(group)
Toggles the state of the given action group.

Parameters group (number) – A number between 0 and 9 inclusive.

add_node(ut[, prograde = 0.0][, normal = 0.0][, radial = 0.0])
Creates a maneuver node at the given universal time, and returns a SpaceCenter.Node object that can
be used to modify it. Optionally sets the magnitude of the delta-v for the maneuver node in the prograde,
normal and radial directions.

Parameters

• ut (number) – Universal time of the maneuver node.

• prograde (number) – Delta-v in the prograde direction.

• normal (number) – Delta-v in the normal direction.

• radial (number) – Delta-v in the radial direction.

Return type SpaceCenter.Node

nodes
Returns a list of all existing maneuver nodes, ordered by time from first to last.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Node

remove_nodes()
Remove all maneuver nodes.

class SASMode
The behavior of the SAS auto-pilot. See SpaceCenter.AutoPilot.sas_mode.

stability_assist
Stability assist mode. Dampen out any rotation.

262 Chapter 6. Lua

kRPC, Release 0.2.3

maneuver
Point in the burn direction of the next maneuver node.

prograde
Point in the prograde direction.

retrograde
Point in the retrograde direction.

normal
Point in the orbit normal direction.

anti_normal
Point in the orbit anti-normal direction.

radial
Point in the orbit radial direction.

anti_radial
Point in the orbit anti-radial direction.

target
Point in the direction of the current target.

anti_target
Point away from the current target.

class SpeedMode
See SpaceCenter.Control.speed_mode.

orbit
Speed is relative to the vessel’s orbit.

surface
Speed is relative to the surface of the body being orbited.

target
Speed is relative to the current target.

6.3.7 Parts

The following classes allow interaction with a vessels individual parts.

6.3. SpaceCenter API 263

kRPC, Release 0.2.3

• Parts
• Part
• Module
• Specific Types of Part

– Cargo Bay
– Decoupler
– Docking Port
– Engine
– Fairing
– Intake
– Landing Gear
– Landing Leg
– Launch Clamp
– Light
– Parachute
– Radiator
– Resource Converter
– Resource Harvester
– Reaction Wheel
– Sensor
– Solar Panel

• Trees of Parts
– Traversing the Tree
– Attachment Modes

• Fuel Lines
• Staging

Parts

class Parts
Instances of this class are used to interact with the parts of a vessel. An instance can be obtained by calling
SpaceCenter.Vessel.parts.

all
A list of all of the vessels parts.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Part

root
The vessels root part.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

Note: See the discussion on Trees of Parts.

controlling
The part from which the vessel is controlled.

Attribute Can be read or written

Return type SpaceCenter.Part

264 Chapter 6. Lua

kRPC, Release 0.2.3

with_name(name)
A list of parts whose SpaceCenter.Part.name is name.

Parameters name (string) –

Return type List of SpaceCenter.Part

with_title(title)
A list of all parts whose SpaceCenter.Part.title is title.

Parameters title (string) –

Return type List of SpaceCenter.Part

with_module(module_name)
A list of all parts that contain a SpaceCenter.Module whose SpaceCenter.Module.name is
module_name.

Parameters module_name (string) –

Return type List of SpaceCenter.Part

in_stage(stage)
A list of all parts that are activated in the given stage.

Parameters stage (number) –

Return type List of SpaceCenter.Part

Note: See the discussion on Staging.

in_decouple_stage(stage)
A list of all parts that are decoupled in the given stage.

Parameters stage (number) –

Return type List of SpaceCenter.Part

Note: See the discussion on Staging.

modules_with_name(module_name)
A list of modules (combined across all parts in the vessel) whose SpaceCenter.Module.name is
module_name.

Parameters module_name (string) –

Return type List of SpaceCenter.Module

cargo_bays
A list of all cargo bays in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.CargoBay

decouplers
A list of all decouplers in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Decoupler

6.3. SpaceCenter API 265

kRPC, Release 0.2.3

docking_ports
A list of all docking ports in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.DockingPort

docking_port_with_name(name)
The first docking port in the vessel with the given port name, as returned by
SpaceCenter.DockingPort.name. Returns nil if there are no such docking ports.

Parameters name (string) –

Return type SpaceCenter.DockingPort

engines
A list of all engines in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Engine

fairings
A list of all fairings in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Fairing

intakes
A list of all intakes in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Intake

landing_gear
A list of all landing gear attached to the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.LandingGear

landing_legs
A list of all landing legs attached to the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.LandingLeg

launch_clamps
A list of all launch clamps attached to the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.LaunchClamp

lights
A list of all lights in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Light

parachutes
A list of all parachutes in the vessel.

Attribute Read-only, cannot be set

266 Chapter 6. Lua

kRPC, Release 0.2.3

Return type List of SpaceCenter.Parachute

radiators
A list of all radiators in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Radiator

reaction_wheels
A list of all reaction wheels in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.ReactionWheel

resource_converters
A list of all resource converters in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.ResourceConverter

resource_harvesters
A list of all resource harvesters in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.ResourceHarvester

sensors
A list of all sensors in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Sensor

solar_panels
A list of all solar panels in the vessel.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.SolarPanel

Part

class Part
Instances of this class represents a part. A vessel is made of multiple parts. Instances can be obtained by various
methods in SpaceCenter.Parts.

name
Internal name of the part, as used in part cfg files. For example “Mark1-2Pod”.

Attribute Read-only, cannot be set

Return type string

title
Title of the part, as shown when the part is right clicked in-game. For example “Mk1-2 Command Pod”.

Attribute Read-only, cannot be set

Return type string

cost
The cost of the part, in units of funds.

6.3. SpaceCenter API 267

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type number

vessel
The vessel that contains this part.

Attribute Read-only, cannot be set

Return type SpaceCenter.Vessel

parent
The parts parent. Returns nil if the part does not have a parent. This, in combination with
SpaceCenter.Part.children, can be used to traverse the vessels parts tree.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

Note: See the discussion on Trees of Parts.

children
The parts children. Returns an empty list if the part has no children. This, in combination with
SpaceCenter.Part.parent, can be used to traverse the vessels parts tree.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Part

Note: See the discussion on Trees of Parts.

axially_attached
Whether the part is axially attached to its parent, i.e. on the top or bottom of its parent. If the part has no
parent, returns False.

Attribute Read-only, cannot be set

Return type boolean

Note: See the discussion on Attachment Modes.

radially_attached
Whether the part is radially attached to its parent, i.e. on the side of its parent. If the part has no parent,
returns False.

Attribute Read-only, cannot be set

Return type boolean

Note: See the discussion on Attachment Modes.

stage
The stage in which this part will be activated. Returns -1 if the part is not activated by staging.

Attribute Read-only, cannot be set

Return type number

268 Chapter 6. Lua

kRPC, Release 0.2.3

Note: See the discussion on Staging.

decouple_stage
The stage in which this part will be decoupled. Returns -1 if the part is never decoupled from the vessel.

Attribute Read-only, cannot be set

Return type number

Note: See the discussion on Staging.

massless
Whether the part is massless.

Attribute Read-only, cannot be set

Return type boolean

mass
The current mass of the part, including resources it contains, in kilograms. Returns zero if the part is
massless.

Attribute Read-only, cannot be set

Return type number

dry_mass
The mass of the part, not including any resources it contains, in kilograms. Returns zero if the part is
massless.

Attribute Read-only, cannot be set

Return type number

impact_tolerance
The impact tolerance of the part, in meters per second.

Attribute Read-only, cannot be set

Return type number

temperature
Temperature of the part, in Kelvin.

Attribute Read-only, cannot be set

Return type number

skin_temperature
Temperature of the skin of the part, in Kelvin.

Attribute Read-only, cannot be set

Return type number

max_temperature
Maximum temperature that the part can survive, in Kelvin.

Attribute Read-only, cannot be set

Return type number

6.3. SpaceCenter API 269

http://wiki.kerbalspaceprogram.com/wiki/Massless_part

kRPC, Release 0.2.3

max_skin_temperature
Maximum temperature that the skin of the part can survive, in Kelvin.

Attribute Read-only, cannot be set

Return type number

thermal_mass
A measure of how much energy it takes to increase the internal temperature of the part, in Joules per
Kelvin.

Attribute Read-only, cannot be set

Return type number

thermal_skin_mass
A measure of how much energy it takes to increase the skin temperature of the part, in Joules per Kelvin.

Attribute Read-only, cannot be set

Return type number

thermal_resource_mass
A measure of how much energy it takes to increase the temperature of the resources contained in the part,
in Joules per Kelvin.

Attribute Read-only, cannot be set

Return type number

thermal_conduction_flux
The rate at which heat energy is conducting into or out of the part via contact with other parts. Measured
in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy, and
negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type number

thermal_convection_flux
The rate at which heat energy is convecting into or out of the part from the surrounding atmosphere.
Measured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat
energy, and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type number

thermal_radiation_flux
The rate at which heat energy is radiating into or out of the part from the surrounding environment. Mea-
sured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy,
and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type number

thermal_internal_flux
The rate at which heat energy is begin generated by the part. For example, some engines generate heat by
combusting fuel. Measured in energy per unit time, or power, in Watts. A positive value means the part is
gaining heat energy, and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type number

270 Chapter 6. Lua

kRPC, Release 0.2.3

thermal_skin_to_internal_flux
The rate at which heat energy is transferring between the part’s skin and its internals. Measured in energy
per unit time, or power, in Watts. A positive value means the part’s internals are gaining heat energy, and
negative means its skin is gaining heat energy.

Attribute Read-only, cannot be set

Return type number

resources
A SpaceCenter.Resources object for the part.

Attribute Read-only, cannot be set

Return type SpaceCenter.Resources

crossfeed
Whether this part is crossfeed capable.

Attribute Read-only, cannot be set

Return type boolean

is_fuel_line
Whether this part is a fuel line.

Attribute Read-only, cannot be set

Return type boolean

fuel_lines_from
The parts that are connected to this part via fuel lines, where the direction of the fuel line is into this part.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Part

Note: See the discussion on Fuel Lines.

fuel_lines_to
The parts that are connected to this part via fuel lines, where the direction of the fuel line is out of this part.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Part

Note: See the discussion on Fuel Lines.

modules
The modules for this part.

Attribute Read-only, cannot be set

Return type List of SpaceCenter.Module

cargo_bay
A SpaceCenter.CargoBay if the part is a cargo bay, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.CargoBay

6.3. SpaceCenter API 271

kRPC, Release 0.2.3

decoupler
A SpaceCenter.Decoupler if the part is a decoupler, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Decoupler

docking_port
A SpaceCenter.DockingPort if the part is a docking port, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.DockingPort

engine
An SpaceCenter.Engine if the part is an engine, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Engine

fairing
A SpaceCenter.Fairing if the part is a fairing, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Fairing

intake
An SpaceCenter.Intake if the part is an intake, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Intake

landing_gear
A SpaceCenter.LandingGear if the part is a landing gear , otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.LandingGear

landing_leg
A SpaceCenter.LandingLeg if the part is a landing leg, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.LandingLeg

launch_clamp
A SpaceCenter.LaunchClamp if the part is a launch clamp, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.LaunchClamp

light
A SpaceCenter.Light if the part is a light, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Light

parachute
A SpaceCenter.Parachute if the part is a parachute, otherwise nil.

Attribute Read-only, cannot be set

272 Chapter 6. Lua

kRPC, Release 0.2.3

Return type SpaceCenter.Parachute

radiator
A SpaceCenter.Radiator if the part is a radiator, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Radiator

reaction_wheel
A SpaceCenter.ReactionWheel if the part is a reaction wheel, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReactionWheel

resource_converter
A SpaceCenter.ResourceConverter if the part is a resource converter, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.ResourceConverter

resource_harvester
A SpaceCenter.ResourceHarvester if the part is a resource harvester, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.ResourceHarvester

sensor
A SpaceCenter.Sensor if the part is a sensor, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.Sensor

solar_panel
A SpaceCenter.SolarPanel if the part is a solar panel, otherwise nil.

Attribute Read-only, cannot be set

Return type SpaceCenter.SolarPanel

position(reference_frame)
The position of the part in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

direction(reference_frame)
The direction of the part in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

velocity(reference_frame)
The velocity of the part in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

rotation(reference_frame)
The rotation of the part in the given reference frame.

6.3. SpaceCenter API 273

kRPC, Release 0.2.3

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number, number)

reference_frame
The reference frame that is fixed relative to this part.

•The origin is at the position of the part.

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by SpaceCenter.DockingPort.reference_frame.

Fig. 6.7: Mk1 Command Pod reference frame origin and axes

Module

class Module
In KSP, each part has zero or more PartModules associated with it. Each one contains some of the functionality
of the part. For example, an engine has a “ModuleEngines” PartModule that contains all the functionality of an
engine. This class allows you to interact with KSPs PartModules, and any PartModules that have been added by
other mods.

name
Name of the PartModule. For example, “ModuleEngines”.

274 Chapter 6. Lua

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation#MODULES

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type string

part
The part that contains this module.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

fields
The modules field names and their associated values, as a dictionary. These are the values visible in the
right-click menu of the part.

Attribute Read-only, cannot be set

Return type Map from string to string

has_field(name)
Returns True if the module has a field with the given name.

Parameters name (string) – Name of the field.

Return type boolean

get_field(name)
Returns the value of a field.

Parameters name (string) – Name of the field.

Return type string

events
A list of the names of all of the modules events. Events are the clickable buttons visible in the right-click
menu of the part.

Attribute Read-only, cannot be set

Return type List of string

has_event(name)
True if the module has an event with the given name.

Parameters name (string) –

Return type boolean

trigger_event(name)
Trigger the named event. Equivalent to clicking the button in the right-click menu of the part.

Parameters name (string) –

actions
A list of all the names of the modules actions. These are the parts actions that can be assigned to action
groups in the in-game editor.

Attribute Read-only, cannot be set

Return type List of string

has_action(name)
True if the part has an action with the given name.

Parameters name (string) –

Return type boolean

6.3. SpaceCenter API 275

kRPC, Release 0.2.3

set_action(name[, value = True])
Set the value of an action with the given name.

Parameters

• name (string) –

• value (boolean) –

Specific Types of Part

The following classes provide functionality for specific types of part.

• Cargo Bay
• Decoupler
• Docking Port
• Engine
• Fairing
• Intake
• Landing Gear
• Landing Leg
• Launch Clamp
• Light
• Parachute
• Radiator
• Resource Converter
• Resource Harvester
• Reaction Wheel
• Sensor
• Solar Panel

Cargo Bay

class CargoBay
Obtained by calling SpaceCenter.Part.cargo_bay .

part
The part object for this cargo bay.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

state
The state of the cargo bay.

Attribute Read-only, cannot be set

Return type SpaceCenter.CargoBayState

open
Whether the cargo bay is open.

Attribute Can be read or written

Return type boolean

276 Chapter 6. Lua

kRPC, Release 0.2.3

class CargoBayState
See SpaceCenter.CargoBay.state.

open
Cargo bay is fully open.

closed
Cargo bay closed and locked.

opening
Cargo bay is opening.

closing
Cargo bay is closing.

Decoupler

class Decoupler
Obtained by calling SpaceCenter.Part.decoupler

part
The part object for this decoupler.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

decouple()
Fires the decoupler. Has no effect if the decoupler has already fired.

decoupled
Whether the decoupler has fired.

Attribute Read-only, cannot be set

Return type boolean

impulse
The impulse that the decoupler imparts when it is fired, in Newton seconds.

Attribute Read-only, cannot be set

Return type number

Docking Port

class DockingPort
Obtained by calling SpaceCenter.Part.docking_port

part
The part object for this docking port.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

name
The port name of the docking port. This is the name of the port that can be set in the right click menu,
when the Docking Port Alignment Indicator mod is installed. If this mod is not installed, returns the title
of the part (SpaceCenter.Part.title).

Attribute Can be read or written

6.3. SpaceCenter API 277

http://forum.kerbalspaceprogram.com/threads/43901

kRPC, Release 0.2.3

Return type string

state
The current state of the docking port.

Attribute Read-only, cannot be set

Return type SpaceCenter.DockingPortState

docked_part
The part that this docking port is docked to. Returns nil if this docking port is not docked to anything.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

undock()
Undocks the docking port and returns the vessel that was undocked from. After undocking, the active
vessel may change (SpaceCenter.active_vessel). This method can be called for either docking
port in a docked pair - both calls will have the same effect. Returns nil if the docking port is not docked
to anything.

Return type SpaceCenter.Vessel

reengage_distance
The distance a docking port must move away when it undocks before it becomes ready to dock with another
port, in meters.

Attribute Read-only, cannot be set

Return type number

has_shield
Whether the docking port has a shield.

Attribute Read-only, cannot be set

Return type boolean

shielded
The state of the docking ports shield, if it has one. Returns True if the docking port has a shield, and
the shield is closed. Otherwise returns False. When set to True, the shield is closed, and when set to
False the shield is opened. If the docking port does not have a shield, setting this attribute has no effect.

Attribute Can be read or written

Return type boolean

position(reference_frame)
The position of the docking port in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

direction(reference_frame)
The direction that docking port points in, in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

rotation(reference_frame)
The rotation of the docking port, in the given reference frame.

Parameters reference_frame (SpaceCenter.ReferenceFrame) –

278 Chapter 6. Lua

kRPC, Release 0.2.3

Return type Tuple of (number, number, number, number)

reference_frame
The reference frame that is fixed relative to this docking port, and oriented with the port.

•The origin is at the position of the docking port.

•The axes rotate with the docking port.

•The x-axis points out to the right side of the docking port.

•The y-axis points in the direction the docking port is facing.

•The z-axis points out of the bottom off the docking port.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

Note: This reference frame is not necessarily equivalent to the reference frame for the part, returned by
SpaceCenter.Part.reference_frame.

Fig. 6.8: Docking port reference frame origin and axes

class DockingPortState
See SpaceCenter.DockingPort.state.

ready
The docking port is ready to dock to another docking port.

docked
The docking port is docked to another docking port, or docked to another part (from the VAB/SPH).

6.3. SpaceCenter API 279

kRPC, Release 0.2.3

Fig. 6.9: Inline docking port reference frame origin and axes

docking
The docking port is very close to another docking port, but has not docked. It is using magnetic force to
acquire a solid dock.

undocking
The docking port has just been undocked from another docking port, and is disabled until it moves away
by a sufficient distance (SpaceCenter.DockingPort.reengage_distance).

shielded
The docking port has a shield, and the shield is closed.

moving
The docking ports shield is currently opening/closing.

Engine

class Engine
Obtained by calling SpaceCenter.Part.engine.

part
The part object for this engine.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

active
Whether the engine is active. Setting this attribute may have no effect, depending on
SpaceCenter.Engine.can_shutdown and SpaceCenter.Engine.can_restart.

Attribute Can be read or written

Return type boolean

280 Chapter 6. Lua

kRPC, Release 0.2.3

thrust
The current amount of thrust being produced by the engine, in Newtons. Returns zero if the engine is not
active or if it has no fuel.

Attribute Read-only, cannot be set

Return type number

available_thrust
The maximum available amount of thrust that can be produced by the engine, in Newtons. This takes
SpaceCenter.Engine.thrust_limit into account, and is the amount of thrust produced by the
engine when activated and the main throttle is set to 100%. Returns zero if the engine does not have any
fuel.

Attribute Read-only, cannot be set

Return type number

max_thrust
Gets the maximum amount of thrust that can be produced by the engine, in Newtons. This is the amount
of thrust produced by the engine when activated, SpaceCenter.Engine.thrust_limit is set to
100% and the main vessel’s throttle is set to 100%.

Attribute Read-only, cannot be set

Return type number

max_vacuum_thrust
The maximum amount of thrust that can be produced by the engine in a vacuum, in Newtons. This is the
amount of thrust produced by the engine when activated, SpaceCenter.Engine.thrust_limit is
set to 100%, the main vessel’s throttle is set to 100% and the engine is in a vacuum.

Attribute Read-only, cannot be set

Return type number

thrust_limit
The thrust limiter of the engine. A value between 0 and 1. Setting this attribute may have no effect, for
example the thrust limit for a solid rocket booster cannot be changed in flight.

Attribute Can be read or written

Return type number

specific_impulse
The current specific impulse of the engine, in seconds. Returns zero if the engine is not active.

Attribute Read-only, cannot be set

Return type number

vacuum_specific_impulse
The vacuum specific impulse of the engine, in seconds.

Attribute Read-only, cannot be set

Return type number

kerbin_sea_level_specific_impulse
The specific impulse of the engine at sea level on Kerbin, in seconds.

Attribute Read-only, cannot be set

Return type number

6.3. SpaceCenter API 281

kRPC, Release 0.2.3

propellants
The names of resources that the engine consumes.

Attribute Read-only, cannot be set

Return type List of string

propellant_ratios
The ratios of resources that the engine consumes. A dictionary mapping resource names to the ratios at
which they are consumed by the engine.

Attribute Read-only, cannot be set

Return type Map from string to number

has_fuel
Whether the engine has run out of fuel (or flamed out).

Attribute Read-only, cannot be set

Return type boolean

throttle
The current throttle setting for the engine. A value between 0 and 1. This is not necessarily the same as
the vessel’s main throttle setting, as some engines take time to adjust their throttle (such as jet engines).

Attribute Read-only, cannot be set

Return type number

throttle_locked
Whether the SpaceCenter.Control.throttle affects the engine. For example, this is True for
liquid fueled rockets, and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type boolean

can_restart
Whether the engine can be restarted once shutdown. If the engine cannot be shutdown, returns False.
For example, this is True for liquid fueled rockets and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type boolean

can_shutdown
Gets whether the engine can be shutdown once activated. For example, this is True for liquid fueled
rockets and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type boolean

has_modes
Whether the engine has multiple modes of operation.

Attribute Read-only, cannot be set

Return type boolean

mode
The name of the current engine mode.

Attribute Can be read or written

Return type string

282 Chapter 6. Lua

kRPC, Release 0.2.3

modes
The available modes for the engine. A dictionary mapping mode names to SpaceCenter.Engine
objects.

Attribute Read-only, cannot be set

Return type Map from string to SpaceCenter.Engine

toggle_mode()
Toggle the current engine mode.

auto_mode_switch
Whether the engine will automatically switch modes.

Attribute Can be read or written

Return type boolean

gimballed
Whether the engine nozzle is gimballed, i.e. can provide a turning force.

Attribute Read-only, cannot be set

Return type boolean

gimbal_range
The range over which the gimbal can move, in degrees. Returns 0 if the engine is not gimballed.

Attribute Read-only, cannot be set

Return type number

gimbal_locked
Whether the engines gimbal is locked in place. Setting this attribute has no effect if the engine is not
gimballed.

Attribute Can be read or written

Return type boolean

gimbal_limit
The gimbal limiter of the engine. A value between 0 and 1. Returns 0 if the gimbal is locked.

Attribute Can be read or written

Return type number

Fairing

class Fairing
Obtained by calling SpaceCenter.Part.fairing.

part
The part object for this fairing.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

jettison()
Jettison the fairing. Has no effect if it has already been jettisoned.

jettisoned
Whether the fairing has been jettisoned.

6.3. SpaceCenter API 283

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type boolean

Intake

class Intake
Obtained by calling SpaceCenter.Part.intake.

part
The part object for this intake.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

open
Whether the intake is open.

Attribute Can be read or written

Return type boolean

speed
Speed of the flow into the intake, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type number

flow
The rate of flow into the intake, in units of resource per second.

Attribute Read-only, cannot be set

Return type number

area
The area of the intake’s opening, in square meters.

Attribute Read-only, cannot be set

Return type number

Landing Gear

class LandingGear
Obtained by calling SpaceCenter.Part.landing_gear.

part
The part object for this landing gear.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

state
Gets the current state of the landing gear.

Attribute Read-only, cannot be set

Return type SpaceCenter.LandingGearState

284 Chapter 6. Lua

kRPC, Release 0.2.3

Note: Fixed landing gear are always deployed.

deployable
Whether the landing gear is deployable.

Attribute Read-only, cannot be set

Return type boolean

deployed
Whether the landing gear is deployed.

Attribute Can be read or written

Return type boolean

Note: Fixed landing gear are always deployed. Returns an error if you try to deploy fixed landing gear.

class LandingGearState
See SpaceCenter.LandingGear.state.

deployed
Landing gear is fully deployed.

retracted
Landing gear is fully retracted.

deploying
Landing gear is being deployed.

retracting
Landing gear is being retracted.

Landing Leg

class LandingLeg
Obtained by calling SpaceCenter.Part.landing_leg.

part
The part object for this landing leg.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

state
The current state of the landing leg.

Attribute Read-only, cannot be set

Return type SpaceCenter.LandingLegState

deployed
Whether the landing leg is deployed.

Attribute Can be read or written

Return type boolean

6.3. SpaceCenter API 285

kRPC, Release 0.2.3

class LandingLegState
See SpaceCenter.LandingLeg.state.

deployed
Landing leg is fully deployed.

retracted
Landing leg is fully retracted.

deploying
Landing leg is being deployed.

retracting
Landing leg is being retracted.

broken
Landing leg is broken.

repairing
Landing leg is being repaired.

Launch Clamp

class LaunchClamp
Obtained by calling SpaceCenter.Part.launch_clamp.

part
The part object for this launch clamp.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

release()
Releases the docking clamp. Has no effect if the clamp has already been released.

Light

class Light
Obtained by calling SpaceCenter.Part.light.

part
The part object for this light.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

active
Whether the light is switched on.

Attribute Can be read or written

Return type boolean

power_usage
The current power usage, in units of charge per second.

Attribute Read-only, cannot be set

Return type number

286 Chapter 6. Lua

kRPC, Release 0.2.3

Parachute

class Parachute
Obtained by calling SpaceCenter.Part.parachute.

part
The part object for this parachute.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

deploy()
Deploys the parachute. This has no effect if the parachute has already been deployed.

deployed
Whether the parachute has been deployed.

Attribute Read-only, cannot be set

Return type boolean

state
The current state of the parachute.

Attribute Read-only, cannot be set

Return type SpaceCenter.ParachuteState

deploy_altitude
The altitude at which the parachute will full deploy, in meters.

Attribute Can be read or written

Return type number

deploy_min_pressure
The minimum pressure at which the parachute will semi-deploy, in atmospheres.

Attribute Can be read or written

Return type number

class ParachuteState
See SpaceCenter.Parachute.state.

stowed
The parachute is safely tucked away inside its housing.

active
The parachute is still stowed, but ready to semi-deploy.

semi_deployed
The parachute has been deployed and is providing some drag, but is not fully deployed yet.

deployed
The parachute is fully deployed.

cut
The parachute has been cut.

6.3. SpaceCenter API 287

kRPC, Release 0.2.3

Radiator

class Radiator
Obtained by calling SpaceCenter.Part.radiator.

part
The part object for this radiator.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

deployable
Whether the radiator is deployable.

Attribute Read-only, cannot be set

Return type boolean

deployed
For a deployable radiator, True if the radiator is extended. If the radiator is not deployable, this is always
True.

Attribute Can be read or written

Return type boolean

state
The current state of the radiator.

Attribute Read-only, cannot be set

Return type SpaceCenter.RadiatorState

Note: A fixed radiator is always SpaceCenter.RadiatorState.extended.

class RadiatorState
SpaceCenter.RadiatorState

extended
Radiator is fully extended.

retracted
Radiator is fully retracted.

extending
Radiator is being extended.

retracting
Radiator is being retracted.

broken
Radiator is being broken.

Resource Converter

class ResourceConverter
Obtained by calling SpaceCenter.Part.resource_converter.

part
The part object for this converter.

288 Chapter 6. Lua

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

count
The number of converters in the part.

Attribute Read-only, cannot be set

Return type number

name(index)
The name of the specified converter.

Parameters index (number) – Index of the converter.

Return type string

active(index)
True if the specified converter is active.

Parameters index (number) – Index of the converter.

Return type boolean

start(index)
Start the specified converter.

Parameters index (number) – Index of the converter.

stop(index)
Stop the specified converter.

Parameters index (number) – Index of the converter.

state(index)
The state of the specified converter.

Parameters index (number) – Index of the converter.

Return type SpaceCenter.ResourceConverterState

status_info(index)
Status information for the specified converter. This is the full status message shown in the in-game UI.

Parameters index (number) – Index of the converter.

Return type string

inputs(index)
List of the names of resources consumed by the specified converter.

Parameters index (number) – Index of the converter.

Return type List of string

outputs(index)
List of the names of resources produced by the specified converter.

Parameters index (number) – Index of the converter.

Return type List of string

class ResourceConverterState
See SpaceCenter.ResourceConverter.state().

running
Converter is running.

6.3. SpaceCenter API 289

kRPC, Release 0.2.3

idle
Converter is idle.

missing_resource
Converter is missing a required resource.

storage_full
No available storage for output resource.

capacity
At preset resource capacity.

unknown
Unknown state. Possible with modified resource converters. In this case, check
SpaceCenter.ResourceConverter.status_info() for more information.

Resource Harvester

class ResourceHarvester
Obtained by calling SpaceCenter.Part.resource_harvester.

part
The part object for this harvester.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

state
The state of the harvester.

Attribute Read-only, cannot be set

Return type SpaceCenter.ResourceHarvesterState

deployed
Whether the harvester is deployed.

Attribute Can be read or written

Return type boolean

active
Whether the harvester is actively drilling.

Attribute Can be read or written

Return type boolean

extraction_rate
The rate at which the drill is extracting ore, in units per second.

Attribute Read-only, cannot be set

Return type number

thermal_efficiency
The thermal efficiency of the drill, as a percentage of its maximum.

Attribute Read-only, cannot be set

Return type number

290 Chapter 6. Lua

kRPC, Release 0.2.3

core_temperature
The core temperature of the drill, in Kelvin.

Attribute Read-only, cannot be set

Return type number

optimum_core_temperature
The core temperature at which the drill will operate with peak efficiency, in Kelvin.

Attribute Read-only, cannot be set

Return type number

class ResourceHarvesterState
See SpaceCenter.ResourceHarvester.state.

deploying
The drill is deploying.

deployed
The drill is deployed and ready.

retracting
The drill is retracting.

retracted
The drill is retracted.

active
The drill is running.

Reaction Wheel

class ReactionWheel
Obtained by calling SpaceCenter.Part.reaction_wheel.

part
The part object for this reaction wheel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

active
Whether the reaction wheel is active.

Attribute Can be read or written

Return type boolean

broken
Whether the reaction wheel is broken.

Attribute Read-only, cannot be set

Return type boolean

pitch_torque
The torque in the pitch axis, in Newton meters.

Attribute Read-only, cannot be set

Return type number

6.3. SpaceCenter API 291

kRPC, Release 0.2.3

yaw_torque
The torque in the yaw axis, in Newton meters.

Attribute Read-only, cannot be set

Return type number

roll_torque
The torque in the roll axis, in Newton meters.

Attribute Read-only, cannot be set

Return type number

Sensor

class Sensor
Obtained by calling SpaceCenter.Part.sensor.

part
The part object for this sensor.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

active
Whether the sensor is active.

Attribute Can be read or written

Return type boolean

value
The current value of the sensor.

Attribute Read-only, cannot be set

Return type string

power_usage
The current power usage of the sensor, in units of charge per second.

Attribute Read-only, cannot be set

Return type number

Solar Panel

class SolarPanel
Obtained by calling SpaceCenter.Part.solar_panel.

part
The part object for this solar panel.

Attribute Read-only, cannot be set

Return type SpaceCenter.Part

deployed
Whether the solar panel is extended.

Attribute Can be read or written

292 Chapter 6. Lua

kRPC, Release 0.2.3

Return type boolean

state
The current state of the solar panel.

Attribute Read-only, cannot be set

Return type SpaceCenter.SolarPanelState

energy_flow
The current amount of energy being generated by the solar panel, in units of charge per second.

Attribute Read-only, cannot be set

Return type number

sun_exposure
The current amount of sunlight that is incident on the solar panel, as a percentage. A value between 0 and
1.

Attribute Read-only, cannot be set

Return type number

class SolarPanelState
See SpaceCenter.SolarPanel.state.

extended
Solar panel is fully extended.

retracted
Solar panel is fully retracted.

extending
Solar panel is being extended.

retracting
Solar panel is being retracted.

broken
Solar panel is broken.

Trees of Parts

Vessels in KSP are comprised of a number of parts, connected to one another in a
tree structure. An example vessel is shown in Figure 1, and the corresponding tree of
parts in Figure 2. The craft file for this example can also be downloaded here.

Fig. 6.10: Figure 1 – Example parts making up a vessel.

Traversing the Tree

The tree of parts can be traversed using the
attributes SpaceCenter.Parts.root,
SpaceCenter.Part.parent and
SpaceCenter.Part.children.

The root of the tree is the same as the
vessels root part (part number 1 in the
example above) and can be obtained by
calling SpaceCenter.Parts.root.

6.3. SpaceCenter API 293

kRPC, Release 0.2.3

A parts children can be obtained by call-
ing SpaceCenter.Part.children.
If the part does not have any children,
SpaceCenter.Part.children returns
an empty list. A parts parent can be obtained
by calling SpaceCenter.Part.parent.
If the part does not have a parent
(as is the case for the root part),
SpaceCenter.Part.parent returns
nil.

The following Lua example uses these at-
tributes to perform a depth-first traversal over
all of the parts in a vessel:

local root = vessel.parts.root
local stack = {{root,0}}
while #stack > 0 do
local part,depth = unpack(table.remove(stack))
print(string.rep(' ', depth) .. part.title)
for _,child in ipairs(part.children) do
table.insert(stack, {child, depth+1})

end
end

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1
TR-18A Stack Decoupler
FL-T400 Fuel Tank
LV-909 Liquid Fuel Engine
TR-18A Stack Decoupler
FL-T800 Fuel Tank
LV-909 Liquid Fuel Engine
TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

LT-1 Landing Struts
LT-1 Landing Struts

Mk16 Parachute

Attachment Modes

Parts can be attached to other parts either ra-
dially (on the side of the parent part) or axially
(on the end of the parent part, to form a stack).

294 Chapter 6. Lua

kRPC, Release 0.2.3

For example, in the vessel pictured above, the
parachute (part 2) is axially connected to its

parent (the command pod – part 1), and the landing leg (part 5) is radially connected to its parent (the fuel tank – part
4).

Fig. 6.11: Figure 2 – Tree of parts for the vessel in Figure 1. Arrows
point from the parent part to the child part.

The root part of a vessel (for example the com-
mand pod – part 1) does not have a parent part,
so does not have an attachment mode. How-
ever, the part is consider to be axially attached
to nothing.

The following Lua example does a depth-first
traversal as before, but also prints out the at-
tachment mode used by the part:

local root = vessel.parts.root
local stack = {{root, 0}}
while #stack > 0 do

local part,depth = unpack(table.remove(stack))
local attach_mode
if part.axially_attached then
attach_mode = 'axial'

else -- radially_attached
attach_mode = 'radial'

end
print(string.rep(' ', depth) .. part.title .. ' - ' .. attach_mode)
for _,child in ipairs(part.children) do
table.insert(stack, {child, depth+1})

end
end

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1 - axial
TR-18A Stack Decoupler - axial
FL-T400 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TR-18A Stack Decoupler - axial
FL-T800 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

LT-1 Landing Struts - radial
LT-1 Landing Struts - radial

Mk16 Parachute - axial

6.3. SpaceCenter API 295

kRPC, Release 0.2.3

Fuel Lines

Fig. 6.12: Figure 5 – Fuel lines from the example
in Figure 1. Fuel flows from the parts highlighted
in green, into the part highlighted in blue.

Fig. 6.13: Figure 4 – A subset of the parts tree
from Figure 2 above.

Fuel lines are considered parts, and are included in the parts tree
(for example, as pictured in Figure 4). However, the parts tree
does not contain information about which parts fuel lines connect
to. The parent part of a fuel line is the part from which it will take
fuel (as shown in Figure 4) however the part that it will send fuel
to is not represented in the parts tree.

Figure 5 shows the fuel lines from the example vessel pictured
earlier. Fuel line part 15 (in red) takes fuel from a fuel tank (part
11 – in green) and feeds it into another fuel tank (part 9 – in blue).
The fuel line is therefore a child of part 11, but its connection to
part 9 is not represented in the tree.

The attributes SpaceCenter.Part.fuel_lines_from
and SpaceCenter.Part.fuel_lines_to can be used
to discover these connections. In the example in Fig-
ure 5, when SpaceCenter.Part.fuel_lines_to is
called on fuel tank part 11, it will return a list of parts
containing just fuel tank part 9 (the blue part). When
SpaceCenter.Part.fuel_lines_from is called on fuel
tank part 9, it will return a list containing fuel tank parts 11 and
17 (the parts colored green).

Staging

Each part has two staging numbers associated with
it: the stage in which the part is activated and the
stage in which the part is decoupled. These values
can be obtained using SpaceCenter.Part.stage
and SpaceCenter.Part.decouple_stage re-
spectively. For parts that are not activated by staging,
SpaceCenter.Part.stage returns -1. For parts that are
never decoupled, SpaceCenter.Part.decouple_stage
returns a value of -1.

296 Chapter 6. Lua

kRPC, Release 0.2.3

Fig. 6.14: Figure 6 – Example vessel from Figure 1 with a staging sequence.

Figure 6 shows an example
staging sequence for a ves-
sel. Figure 7 shows the
stages in which each part
of the vessel will be acti-
vated. Figure 8 shows the
stages in which each part of
the vessel will be decoupled.

Fig. 6.15: Figure 7 – The stage in which each part is activated.

Fig. 6.16: Figure 8 – The stage in which each part is decou-
pled.

6.3.8 Resources

class Resources
Created by calling
SpaceCenter.Vessel.resources,
SpaceCenter.Vessel.resources_in_decouple_stage()
or SpaceCenter.Part.resources.

names
A list of resource names that can be stored.

Attribute Read-only, cannot be set

Return type List of string

6.3. SpaceCenter API 297

kRPC, Release 0.2.3

has_resource(name)
Check whether the named resource can be stored.

Parameters name (string) – The name of the re-
source.

Return type boolean

max(name)
Returns the amount of a resource that can be stored.

Parameters name (string) – The name of the re-
source.

Return type number

amount(name)
Returns the amount of a resource that is currently
stored.

Parameters name (string) – The name of the re-
source.

Return type number

static density(name)
Returns the density of a resource, in kg/l.

Parameters name (string) – The name of the re-
source.

Return type number

static flow_mode(name)
Returns the flow mode of a resource.

Parameters name (string) – The name of the re-
source.

Return type SpaceCenter.ResourceFlowMode

class ResourceFlowMode
See SpaceCenter.Resources.flow_mode().

vessel
The resource flows to any part in the vessel. For
example, electric charge.

stage
The resource flows from parts in the first stage,
followed by the second, and so on. For example,
mono-propellant.

adjacent
The resource flows between adjacent parts within
the vessel. For example, liquid fuel or oxidizer.

none
The resource does not flow. For example, solid fuel.

298 Chapter 6. Lua

kRPC, Release 0.2.3

6.3.9 Node

class Node
Represents a maneuver node. Can be created using
SpaceCenter.Control.add_node().

prograde
The magnitude of the maneuver nodes delta-v in the
prograde direction, in meters per second.

Attribute Can be read or written

Return type number

normal
The magnitude of the maneuver nodes delta-v in the
normal direction, in meters per second.

Attribute Can be read or written

Return type number

radial
The magnitude of the maneuver nodes delta-v in the
radial direction, in meters per second.

Attribute Can be read or written

Return type number

delta_v
The delta-v of the maneuver node, in meters per
second.

Attribute Can be read or written

Return type number

Note: Does not change when ex-
ecuting the maneuver node. See
SpaceCenter.Node.remaining_delta_v .

remaining_delta_v
Gets the remaining delta-v of the maneuver node, in
meters per second. Changes as the node is executed.
This is equivalent to the delta-v reported in-game.

Attribute Read-only, cannot be set

Return type number

burn_vector([reference_frame = None])
Returns a vector whose direction the direction of the
maneuver node burn, and whose magnitude is the
delta-v of the burn in m/s.

Parameters reference_frame
(SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

6.3. SpaceCenter API 299

kRPC, Release 0.2.3

Note: Does not
change when exe-
cuting the maneu-
ver node. See
SpaceCenter.Node.remaining_burn_vector().

remaining_burn_vector([reference_frame = None])
Returns a vector whose direction the direction of
the maneuver node burn, and whose magnitude is
the delta-v of the burn in m/s. The direction and
magnitude change as the burn is executed.

Parameters reference_frame
(SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

ut
The universal time at which the maneuver will occur,
in seconds.

Attribute Can be read or written

Return type number

time_to
The time until the maneuver node will be encoun-
tered, in seconds.

Attribute Read-only, cannot be set

Return type number

orbit
The orbit that results from executing the maneuver
node.

Attribute Read-only, cannot be set

Return type SpaceCenter.Orbit

remove()
Removes the maneuver node.

reference_frame
Gets the reference frame that is fixed relative to the
maneuver node’s burn.

•The origin is at the position of the maneuver node.

•The y-axis points in the direction of the burn.

•The x-axis and z-axis point in arbitrary but fixed di-
rections.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

300 Chapter 6. Lua

kRPC, Release 0.2.3

orbital_reference_frame
Gets the reference frame that is fixed relative to
the maneuver node, and orientated with the orbital
prograde/normal/radial directions of the original
orbit at the maneuver node’s position.

•The origin is at the position of the maneuver node.

•The x-axis points in the orbital anti-radial direction
of the original orbit, at the position of the maneuver
node.

•The y-axis points in the orbital prograde direction
of the original orbit, at the position of the maneuver
node.

•The z-axis points in the orbital normal direction of
the original orbit, at the position of the maneuver
node.

Attribute Read-only, cannot be set

Return type SpaceCenter.ReferenceFrame

position(reference_frame)
Returns the position vector of the maneuver node in
the given reference frame.

Parameters reference_frame
(SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

direction(reference_frame)
Returns the unit direction vector of the maneuver
nodes burn in the given reference frame.

Parameters reference_frame
(SpaceCenter.ReferenceFrame) –

Return type Tuple of (number, number, number)

6.3.10 Comms

class Comms
Used to interact with RemoteTech. Created using a
call to SpaceCenter.Vessel.comms.

Note: This class requires RemoteTech to be in-
stalled.

has_local_control
Whether the vessel can be controlled locally.

Attribute Read-only, cannot be set

Return type boolean

6.3. SpaceCenter API 301

http://forum.kerbalspaceprogram.com/threads/83305

kRPC, Release 0.2.3

has_flight_computer
Whether the vessel has a RemoteTech flight com-
puter on board.

Attribute Read-only, cannot be set

Return type boolean

has_connection
Whether the vessel can receive commands from the
KSC or a command station.

Attribute Read-only, cannot be set

Return type boolean

has_connection_to_ground_station
Whether the vessel can transmit science data to a
ground station.

Attribute Read-only, cannot be set

Return type boolean

signal_delay
The signal delay when sending commands to the
vessel, in seconds.

Attribute Read-only, cannot be set

Return type number

signal_delay_to_ground_station
The signal delay between the vessel and the closest
ground station, in seconds.

Attribute Read-only, cannot be set

Return type number

signal_delay_to_vessel(other)
Returns the signal delay between the current vessel
and another vessel, in seconds.

Parameters other (SpaceCenter.Vessel) –

Return type number

6.3.11 ReferenceFrame

class ReferenceFrame
Represents a reference frame for positions, rotations
and velocities. Contains:

•The position of the origin.

•The directions of the x, y and z axes.

•The linear velocity of the frame.

•The angular velocity of the frame.

302 Chapter 6. Lua

kRPC, Release 0.2.3

Note: This class does not contain any properties
or methods. It is only used as a parameter to other
functions.

6.3.12 AutoPilot

class AutoPilot
Provides basic auto-piloting utili-
ties for a vessel. Created by calling
SpaceCenter.Vessel.auto_pilot.

engage()
Engage the auto-pilot.

disengage()
Disengage the auto-pilot.

wait()
Blocks until the vessel is pointing in the target di-
rection (if set) and has the target roll (if set).

error
The error, in degrees, between the direction the
ship has been asked to point in and the direction
it is pointing in. Returns zero if the auto-pilot has
not been engaged, SAS is not enabled, SAS is in
stability assist mode, or no target direction is set.

Attribute Read-only, cannot be set

Return type number

roll_error
The error, in degrees, between the roll the ship has
been asked to be in and the actual roll. Returns zero
if the auto-pilot has not been engaged or no target
roll is set.

Attribute Read-only, cannot be set

Return type number

reference_frame
The reference frame
for the target di-
rection (SpaceCenter.AutoPilot.target_direction).

Attribute Can be read or written

Return type SpaceCenter.ReferenceFrame

target_direction
The target direction. nil if no target direction is
set.

Attribute Can be read or written

Return type Tuple of (number, number, number)

6.3. SpaceCenter API 303

kRPC, Release 0.2.3

target_pitch_and_heading(pitch, heading)
Set (SpaceCenter.AutoPilot.target_direction)
from a pitch and heading angle.

Parameters

• pitch (number) – Target pitch angle, in degrees
between -90° and +90°.

• heading (number) – Target heading angle, in de-
grees between 0° and 360°.

target_roll
The target roll, in degrees. NaN if no target roll is
set.

Attribute Can be read or written

Return type number

sas
The state of SAS.

Attribute Can be read or written

Return type boolean

Note: Equivalent to
SpaceCenter.Control.sas

sas_mode
The current SpaceCenter.SASMode. These
modes are equivalent to the mode buttons to the left
of the navball that appear when SAS is enabled.

Attribute Can be read or written

Return type SpaceCenter.SASMode

Note: Equivalent to
SpaceCenter.Control.sas_mode

rotation_speed_multiplier
Target rotation speed multiplier. Defaults to 1.

Attribute Can be read or written

Return type number

max_rotation_speed
Maximum target rotation speed. Defaults to 1.

Attribute Can be read or written

Return type number

roll_speed_multiplier
Target roll speed multiplier. Defaults to 1.

Attribute Can be read or written

304 Chapter 6. Lua

kRPC, Release 0.2.3

Return type number

max_roll_speed
Maximum target roll speed. Defaults to 1.

Attribute Can be read or written

Return type number

set_pid_parameters([kp = 1.0][, ki = 0.0][, kd = 0.0])
Sets the gains for the rotation rate PID controller.

Parameters

• kp (number) – Proportional gain.

• ki (number) – Integral gain.

• kd (number) – Derivative gain.

6.3.13 Geometry Types

class Vector3
3-dimensional vectors are represented as a 3-tuple.
For example:

local krpc = require 'krpc.init'
local conn = krpc.connect()
local v = conn.space_center.active_vessel:flight().prograde
print(v[1], v[2], v[3])

class Quaternion
Quaternions (rotations in 3-dimensional space) are
encoded as a 4-tuple containing the x, y, z and w
components. For example:

local krpc = require 'krpc.init'
local conn = krpc.connect()
local q = conn.space_center.active_vessel:flight().rotation
print(q[1], q[2], q[3], q[4])

6.4 InfernalRobotics API

Provides RPCs to interact with the InfernalRobotics
mod. Provides the following classes:

6.4.1 InfernalRobotics

This service provides functionality to interact with
the InfernalRobotics mod.

servo_groups
A list of all the servo groups in the active vessel.

Attribute Read-only, cannot be set

Return type List of InfernalRobotics.ControlGroup

6.4. InfernalRobotics API 305

http://forum.kerbalspaceprogram.com/threads/116064
http://forum.kerbalspaceprogram.com/threads/116064

kRPC, Release 0.2.3

static servo_group_with_name(name)
Returns the servo group with the given name or nil
if none exists. If multiple servo groups have the
same name, only one of them is returned.

Parameters name (string) – Name of servo group to
find.

Return type InfernalRobotics.ControlGroup

static servo_with_name(name)
Returns the servo with the given name, from all
servo groups, or nil if none exists. If multiple
servos have the same name, only one of them is
returned.

Parameters name (string) – Name of the servo to
find.

Return type InfernalRobotics.Servo

6.4.2 ControlGroup

class ControlGroup
A group of ser-
vos, obtained by calling
InfernalRobotics.servo_groups
or InfernalRobotics.servo_group_with_name().
Represents the “Servo Groups” in the Infernal-
Robotics UI.

name
The name of the group.

Attribute Can be read or written

Return type string

forward_key
The key assigned to be the “forward” key for the
group.

Attribute Can be read or written

Return type string

reverse_key
The key assigned to be the “reverse” key for the
group.

Attribute Can be read or written

Return type string

speed
The speed multiplier for the group.

Attribute Can be read or written

Return type number

306 Chapter 6. Lua

kRPC, Release 0.2.3

expanded
Whether the group is expanded in the Infernal-
Robotics UI.

Attribute Can be read or written

Return type boolean

servos
The servos that are in the group.

Attribute Read-only, cannot be set

Return type List of InfernalRobotics.Servo

servo_with_name(name)
Returns the servo with the given name from this
group, or nil if none exists.

Parameters name (string) – Name of servo to find.

Return type InfernalRobotics.Servo

move_right()
Moves all of the servos in the group to the right.

move_left()
Moves all of the servos in the group to the left.

move_center()
Moves all of the servos in the group to the center.

move_next_preset()
Moves all of the servos in the group to the next
preset.

move_prev_preset()
Moves all of the servos in the group to the previous
preset.

stop()
Stops the servos in the group.

6.4.3 Servo

class Servo
Represents a servo.
Obtained using InfernalRobotics.ControlGroup.servos,
InfernalRobotics.ControlGroup.servo_with_name()
or InfernalRobotics.servo_with_name().

name
The name of the servo.

Attribute Can be read or written

Return type string

highlight
Whether the servo should be highlighted in-game.

Attribute Write-only, cannot be read

6.4. InfernalRobotics API 307

kRPC, Release 0.2.3

Return type boolean

position
The position of the servo.

Attribute Read-only, cannot be set

Return type number

min_config_position
The minimum position of the servo, specified by the
part configuration.

Attribute Read-only, cannot be set

Return type number

max_config_position
The maximum position of the servo, specified by
the part configuration.

Attribute Read-only, cannot be set

Return type number

min_position
The minimum position of the servo, specified by the
in-game tweak menu.

Attribute Can be read or written

Return type number

max_position
The maximum position of the servo, specified by
the in-game tweak menu.

Attribute Can be read or written

Return type number

config_speed
The speed multiplier of the servo, specified by the
part configuration.

Attribute Read-only, cannot be set

Return type number

speed
The speed multiplier of the servo, specified by the
in-game tweak menu.

Attribute Can be read or written

Return type number

current_speed
The current speed at which the servo is moving.

Attribute Can be read or written

Return type number

acceleration
The current speed multiplier set in the UI.

308 Chapter 6. Lua

kRPC, Release 0.2.3

Attribute Can be read or written

Return type number

is_moving
Whether the servo is moving.

Attribute Read-only, cannot be set

Return type boolean

is_free_moving
Whether the servo is freely moving.

Attribute Read-only, cannot be set

Return type boolean

is_locked
Whether the servo is locked.

Attribute Can be read or written

Return type boolean

is_axis_inverted
Whether the servos axis is inverted.

Attribute Can be read or written

Return type boolean

move_right()
Moves the servo to the right.

move_left()
Moves the servo to the left.

move_center()
Moves the servo to the center.

move_next_preset()
Moves the servo to the next preset.

move_prev_preset()
Moves the servo to the previous preset.

move_to(position, speed)
Moves the servo to position and sets the speed mul-
tiplier to speed.

Parameters

• position (number) – The position to move the
servo to.

• speed (number) – Speed multiplier for the move-
ment.

stop()
Stops the servo.

6.4. InfernalRobotics API 309

kRPC, Release 0.2.3

6.4.4 Example

The following example gets the control group named
“MyGroup”, prints out the names and positions of
all of the servos in the group, then moves all of the
servos to the right for 1 second.

local krpc = require 'krpc.init'
local platform = require 'krpc.platform'
local Types = require 'krpc.types'

local conn = krpc.connect(nil, nil, nil, 'InfernalRobotics Example')

local group = conn.infernal_robotics.servo_group_with_name('MyGroup')
if group == Types.none then

print('Group not found')
os.exit(1)

end

for _,servo in ipairs(group.servos) do
print(servo.name, servo.position)

end

group:move_right()
platform.sleep(1)
group:stop()

6.5 Kerbal Alarm Clock API

Provides RPCs to interact with the Kerbal Alarm
Clock mod. Provides the following classes:

6.5.1 KerbalAlarmClock

This service provides functionality to interact with
the Kerbal Alarm Clock mod.

alarms
A list of all the alarms.

Attribute Read-only, cannot be set

Return type List of KerbalAlarmClock.Alarm

static alarm_with_name(name)
Get the alarm with the given name, or nil if no
alarms have that name. If more than one alarm has
the name, only returns one of them.

Parameters name (string) – Name of the alarm to
search for.

Return type KerbalAlarmClock.Alarm

static alarms_with_type(type)
Get a list of alarms of the specified type.

310 Chapter 6. Lua

http://forum.kerbalspaceprogram.com/threads/24786
http://forum.kerbalspaceprogram.com/threads/24786
http://forum.kerbalspaceprogram.com/threads/24786

kRPC, Release 0.2.3

Parameters type (KerbalAlarmClock.AlarmType)
– Type of alarm to return.

Return type List of KerbalAlarmClock.Alarm

static create_alarm(type, name, ut)
Create a new alarm and return it.

Parameters

• type (KerbalAlarmClock.AlarmType) –
Type of the new alarm.

• name (string) – Name of the new alarm.

• ut (number) – Time at which the new alarm should
trigger.

Return type KerbalAlarmClock.Alarm

6.5.2 Alarm

class Alarm
Represents an alarm.
Obtained by calling
KerbalAlarmClock.alarms,
KerbalAlarmClock.alarm_with_name()
or KerbalAlarmClock.alarms_with_type().

action
The action that the alarm triggers.

Attribute Can be read or written

Return type KerbalAlarmClock.AlarmAction

margin
The number of seconds before the event that the
alarm will fire.

Attribute Can be read or written

Return type number

time
The time at which the alarm will fire.

Attribute Can be read or written

Return type number

type
The type of the alarm.

Attribute Read-only, cannot be set

Return type KerbalAlarmClock.AlarmType

id
The unique identifier for the alarm.

Attribute Read-only, cannot be set

6.5. Kerbal Alarm Clock API 311

kRPC, Release 0.2.3

Return type string

name
The short name of the alarm.

Attribute Can be read or written

Return type string

notes
The long description of the alarm.

Attribute Can be read or written

Return type string

remaining
The number of seconds until the alarm will fire.

Attribute Read-only, cannot be set

Return type number

repeat
Whether the alarm will be repeated after it has fired.

Attribute Can be read or written

Return type boolean

repeat_period
The time delay to automatically create an alarm
after it has fired.

Attribute Can be read or written

Return type number

vessel
The vessel that the alarm is attached to.

Attribute Can be read or written

Return type SpaceCenter.Vessel

xfer_origin_body
The celestial body the vessel is departing from.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

xfer_target_body
The celestial body the vessel is arriving at.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

remove()
Removes the alarm.

6.5.3 AlarmType

class AlarmType
The type of an alarm.

312 Chapter 6. Lua

kRPC, Release 0.2.3

raw
An alarm for a specific date/time or a specific period
in the future.

maneuver
An alarm based on the next maneuver node on the
current ships flight path. This node will be stored
and can be restored when you come back to the ship.

maneuver_auto
See KerbalAlarmClock.AlarmType.maneuver.

apoapsis
An alarm for furthest part of the orbit from the
planet.

periapsis
An alarm for nearest part of the orbit from the planet.

ascending_node
Ascending node for the targeted object, or equatorial
ascending node.

descending_node
Descending node for the targeted object, or equato-
rial descending node.

closest
An alarm based on the closest approach of this ves-
sel to the targeted vessel, some number of orbits
into the future.

contract
An alarm based on the expiry or deadline of con-
tracts in career modes.

contract_auto
See KerbalAlarmClock.AlarmType.contract.

crew
An alarm that is attached to a crew member.

distance
An alarm that is triggered when a selected target
comes within a chosen distance.

earth_time
An alarm based on the time in the “Earth” alternative
Universe (aka the Real World).

launch_rendevous
An alarm that fires as your landed craft passes under
the orbit of your target.

soi_change
An alarm manually based on when the next SOI
point is on the flight path or set to continually
monitor the active flight path and add alarms as it
detects SOI changes.

6.5. Kerbal Alarm Clock API 313

kRPC, Release 0.2.3

soi_change_auto
See KerbalAlarmClock.AlarmType.soi_change.

transfer
An alarm based on Interplanetary Transfer Phase
Angles, i.e. when should I launch to planet X?
Based on Kosmo Not’s post and used in Olex’s
Calculator.

transfer_modelled
See KerbalAlarmClock.AlarmType.transfer.

6.5.4 AlarmAction

class AlarmAction
The action performed by an alarm when it fires.

do_nothing
Don’t do anything at all...

do_nothing_delete_when_passed
Don’t do anything, and delete the alarm.

kill_warp
Drop out of time warp.

kill_warp_only
Drop out of time warp.

message_only
Display a message.

pause_game
Pause the game.

6.5.5 Example

The following example creates a new alarm for the
active vessel. The alarm is set to trigger after 10 sec-
onds have passed, and display a message.

local krpc = require 'krpc.init'
local conn = krpc.connect(nil, nil, nil, 'Kerbal Alarm Clock Example')

local alarm = conn.kerbal_alarm_clock.create_alarm(
conn.kerbal_alarm_clock.AlarmType.raw,
'My New Alarm',
conn.space_center.ut+10)

alarm.notes = '10 seconds have now passed since the alarm was created.'
alarm.action = conn.kerbal_alarm_clock.AlarmAction.message_only

314 Chapter 6. Lua

CHAPTER

SEVEN

PYTHON

7.1 Python Client

This client provides functionality to interact with a kRPC server from programs written in Python. It can be installed
using PyPI or downloaded from GitHub.

7.1.1 Installing the Library

The python client and all of its dependencies can be installed using pip with a single command. It supports Python
2.7+ and 3.x

On linux:

pip install krpc

On Windows:

C:\Python27\Scripts\pip.exe install krpc

7.1.2 Using the Library

Once it’s installed, simply import krpc and you are good to go! You can check what version you have installed by
running the following script:

import krpc
print(krpc.__version__)

7.1.3 Connecting to the Server

To connect to a server, use the krpc.connect() function. This returns a connection object through which you can
interact with the server. For example to connect to a server running on the local machine:

import krpc
conn = krpc.connect(name='Example')
print(conn.krpc.get_status().version)

This function also accepts arguments that specify what address and port numbers to connect to. For example:

import krpc
conn = krpc.connect(name='Remote example', address='my.domain.name', rpc_port=1000, stream_port=1001)
print(conn.krpc.get_status().version)

315

https://pypi.python.org/pypi/krpc
https://pypi.python.org/pypi/krpc
https://github.com/krpc/krpc/releases/download/v0.2.3/krpc-python-0.2.3.zip

kRPC, Release 0.2.3

7.1.4 Interacting with the Server

Interaction with the server is performed via the client object (of type krpc.client.Client) returned when con-
necting to the server using krpc.connect().

Upon connecting, the client interrogates the server to find out what functionality it provides and dynamically adds all
of the classes, methods, properties to the client object.

For example, all of the functionality provided by the SpaceCenter service is accessible via conn.space_center
and the functionality provided by the InfernalRobotics service is accessible via conn.infernal_robotics. To
explore the functionality provided by a service, you can use the help() function from an interactive terminal. For
example, running help(conn.space_center) will list all of the classes, enumerations, procedures and proper-
ties provides by the SpaceCenter service. Or for a class, such as the vessel class provided by the SpaceCenter service
by calling help(conn.space_center.Vessel).

Calling methods, getting or setting properties, etc. are mapped to remote procedure calls and passed to the server by
the python client.

7.1.5 Streaming Data from the Server

A stream repeatedly executes a function on the server, with a fixed set of argument values. It provides a more efficient
way of repeatedly getting the result of a function, avoiding the network overhead of having to invoke it directly.

For example, consider the following loop that continuously prints out the position of the active vessel. This loop incurs
significant communication overheads, as the vessel.position function is called repeatedly.

vessel = conn.space_center.active_vessel
refframe = vessel.orbit.body.reference_frame
while True:

print vessel.position(refframe)

The following code achieves the same thing, but is far more efficient. It calls
krpc.client.Client.add_stream() once at the start of the program to create a stream, and then
repeatedly gets the position from the stream.

vessel = conn.space_center.active_vessel
refframe = vessel.orbit.body.reference_frame
position = conn.add_stream(vessel.position, refframe)
while True:

print position()

A stream can be created by calling krpc.client.Client.add_stream() or using the with state-
ment applied to krpc.client.Client.stream(). Both of these approaches return an instance of the
krpc.stream.Stream class.

Both methods and attributes can be streamed. The example given above demonstrates how to stream methods. The
following example shows how to stream an attribute (in this case vessel.control.abort):

abort = conn.add_stream(getattr, vessel.control, 'abort')
while not abort():

...

7.1.6 Client API Reference

connect([address=‘127.0.0.1’][, rpc_port=50000][, stream_port=50001][, name=None])
This function creates a connection to a kRPC server. It returns a krpc.client.Client object, through
which the server can be communicated with.

316 Chapter 7. Python

kRPC, Release 0.2.3

Parameters

• address (str) – The address of the server to connect to. Can either be a hostname or an
IP address in dotted decimal notation. Defaults to ‘127.0.0.1’.

• rpc_port (int) – The port number of the RPC Server. Defaults to 50000.

• stream_port (int) – The port number of the Stream Server. Defaults to 50001.

• name (str) – A descriptive name for the connection. This is passed to the server and
appears, for example, in the client connection dialog on the in-game server window.

class Client
This class provides the interface for communicating with the server. It is dynamically populated with all the
functionality provided by the server. Instances of this class should be obtained by calling krpc.connect().

add_stream(func, *args, **kwargs)
Create a stream for the function func called with arguments args and kwargs. Returns a
krpc.stream.Stream object.

stream(func, *args, **kwargs)
Allows use of the with statement to create a stream and automatically remove it from the server when it
goes out of scope. The function to be streamed should be passed as func, and its arguments as args and
kwargs.

For example, to stream the result of method call vessel.position(refframe):

vessel = conn.space_center.active_vessel
refframe = vessel.orbit.body.reference_frame
with conn.stream(vessel.position, refframe) as pos:

print('Position =', pos())

Or to stream the property conn.space_center.ut:

with conn.stream(getattr(conn.space_center, 'ut')) as ut:
print('Universal Time =', ut())

close()
Closes the connection to the server.

krpc
The built-in KRPC class, providing basic interactions with the server.

Return type krpc.client.KRPC

class KRPC
This class provides access to the basic server functionality provided by the KRPC service. An instance can
be obtained by calling krpc.client.Client.krpc. Most of this functionality is used internally by the
python client (for example to create and remove streams) and therefore does not need to be used directly from
application code. The only exception that may be useful is:

get_status()
Gets a status message from the server containing information including the server’s version string and
performance statistics.

For example, the following prints out the version string for the server:

print('Server version =', conn.krpc.get_status().version)

Or to get the rate at which the server is sending and receiving data over the network:

7.1. Python Client 317

kRPC, Release 0.2.3

status = conn.krpc.get_status()
print('Data in =', (status.bytes_read_rate/1024.0), 'KB/s')
print('Data out =', (status.bytes_written_rate/1024.0), 'KB/s')

class Stream

__call__()
Gets the most recently received value for the stream.

remove()
Remove the stream from the server.

7.2 KRPC API

Main kRPC service, used by clients to interact with basic server functionality.

static get_status()
Returns some information about the server, such as the version.

Return type krpc.schema.KRPC.Status

static get_services()
Returns information on all services, procedures, classes, properties etc. provided by the server. Can be used by
client libraries to automatically create functionality such as stubs.

Return type krpc.schema.KRPC.Services

current_game_scene
Get the current game scene.

Attribute Read-only, cannot be set

Return type GameScene

static add_stream(request)
Add a streaming request and return its identifier.

Parameters request (krpc.schema.KRPC.Request) –

Return type int

Note: Do not call this method from client code. Use streams provided by the Python client library.

static remove_stream(id)
Remove a streaming request.

Parameters id (int) –

Note: Do not call this method from client code. Use streams provided by the Python client library.

class GameScene
The game scene. See current_game_scene.

space_center
The game scene showing the Kerbal Space Center buildings.

318 Chapter 7. Python

kRPC, Release 0.2.3

flight
The game scene showing a vessel in flight (or on the launchpad/runway).

tracking_station
The tracking station.

editor_vab
The Vehicle Assembly Building.

editor_sph
The Space Plane Hangar.

7.3 SpaceCenter API

7.3.1 SpaceCenter

Provides functionality to interact with Kerbal Space Program. This includes controlling the active vessel, managing
its resources, planning maneuver nodes and auto-piloting.

active_vessel
The currently active vessel.

Attribute Can be read or written

Return type Vessel

vessels
A list of all the vessels in the game.

Attribute Read-only, cannot be set

Return type list of Vessel

bodies
A dictionary of all celestial bodies (planets, moons, etc.) in the game, keyed by the name of the body.

Attribute Read-only, cannot be set

Return type dict from str to CelestialBody

target_body
The currently targeted celestial body.

Attribute Can be read or written

Return type CelestialBody

target_vessel
The currently targeted vessel.

Attribute Can be read or written

Return type Vessel

target_docking_port
The currently targeted docking port.

Attribute Can be read or written

Return type DockingPort

static clear_target()
Clears the current target.

7.3. SpaceCenter API 319

kRPC, Release 0.2.3

static launch_vessel_from_vab(name)
Launch a new vessel from the VAB onto the launchpad.

Parameters name (str) – Name of the vessel’s craft file.

static launch_vessel_from_sph(name)
Launch a new vessel from the SPH onto the runway.

Parameters name (str) – Name of the vessel’s craft file.

ut
The current universal time in seconds.

Attribute Read-only, cannot be set

Return type float

g
The value of the gravitational constant G in 𝑁(𝑚/𝑘𝑔)2.

Attribute Read-only, cannot be set

Return type float

warp_mode
The current time warp mode. Returns WarpMode.none if time warp is not active, WarpMode.rails if
regular “on-rails” time warp is active, or WarpMode.physics if physical time warp is active.

Attribute Read-only, cannot be set

Return type WarpMode

warp_rate
The current warp rate. This is the rate at which time is passing for either on-rails or physical time warp. For
example, a value of 10 means time is passing 10x faster than normal. Returns 1 if time warp is not active.

Attribute Read-only, cannot be set

Return type float

warp_factor
The current warp factor. This is the index of the rate at which time is passing for either regular “on-rails”
or physical time warp. Returns 0 if time warp is not active. When in on-rails time warp, this is equal to
rails_warp_factor, and in physics time warp, this is equal to physics_warp_factor.

Attribute Read-only, cannot be set

Return type float

rails_warp_factor
The time warp rate, using regular “on-rails” time warp. A value between 0 and 7 inclusive. 0 means no time
warp. Returns 0 if physical time warp is active. If requested time warp factor cannot be set, it will be set to the
next lowest possible value. For example, if the vessel is too close to a planet. See the KSP wiki for details.

Attribute Can be read or written

Return type int

physics_warp_factor
The physical time warp rate. A value between 0 and 3 inclusive. 0 means no time warp. Returns 0 if regular
“on-rails” time warp is active.

Attribute Can be read or written

Return type int

320 Chapter 7. Python

http://en.wikipedia.org/wiki/Gravitational_constant
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.2.3

static can_rails_warp_at([factor = 1])
Returns True if regular “on-rails” time warp can be used, at the specified warp factor. The maximum time
warp rate is limited by various things, including how close the active vessel is to a planet. See the KSP wiki for
details.

Parameters factor (int) – The warp factor to check.

Return type bool

maximum_rails_warp_factor
The current maximum regular “on-rails” warp factor that can be set. A value between 0 and 7 inclusive. See the
KSP wiki for details.

Attribute Read-only, cannot be set

Return type int

static warp_to(ut[, max_rails_rate = 100000.0][, max_physics_rate = 2.0])
Uses time acceleration to warp forward to a time in the future, specified by universal time ut. This call blocks
until the desired time is reached. Uses regular “on-rails” or physical time warp as appropriate. For example,
physical time warp is used when the active vessel is traveling through an atmosphere. When using regular “on-
rails” time warp, the warp rate is limited by max_rails_rate, and when using physical time warp, the warp rate
is limited by max_physics_rate.

Parameters

• ut (float) – The universal time to warp to, in seconds.

• max_rails_rate (float) – The maximum warp rate in regular “on-rails” time warp.

• max_physics_rate (float) – The maximum warp rate in physical time warp.

Returns When the time warp is complete.

static transform_position(position, from, to)
Converts a position vector from one reference frame to another.

Parameters

• position (tuple) – Position vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the position vector is in.

• to (ReferenceFrame) – The reference frame to covert the position vector to.

Returns The corresponding position vector in reference frame to.

Return type tuple of (float, float, float)

static transform_direction(direction, from, to)
Converts a direction vector from one reference frame to another.

Parameters

• direction (tuple) – Direction vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the direction vector is in.

• to (ReferenceFrame) – The reference frame to covert the direction vector to.

Returns The corresponding direction vector in reference frame to.

Return type tuple of (float, float, float)

static transform_rotation(rotation, from, to)
Converts a rotation from one reference frame to another.

7.3. SpaceCenter API 321

http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp
http://wiki.kerbalspaceprogram.com/wiki/Time_warp

kRPC, Release 0.2.3

Parameters

• rotation (tuple) – Rotation in reference frame from.

• from (ReferenceFrame) – The reference frame that the rotation is in.

• to (ReferenceFrame) – The corresponding rotation in reference frame to.

Returns The corresponding rotation in reference frame to.

Return type tuple of (float, float, float, float)

static transform_velocity(position, velocity, from, to)
Converts a velocity vector (acting at the specified position vector) from one reference frame to another. The
position vector is required to take the relative angular velocity of the reference frames into account.

Parameters

• position (tuple) – Position vector in reference frame from.

• velocity (tuple) – Velocity vector in reference frame from.

• from (ReferenceFrame) – The reference frame that the position and velocity vectors
are in.

• to (ReferenceFrame) – The reference frame to covert the velocity vector to.

Returns The corresponding velocity in reference frame to.

Return type tuple of (float, float, float)

far_available
Whether Ferram Aerospace Research is installed.

Attribute Read-only, cannot be set

Return type bool

remote_tech_available
Whether RemoteTech is installed.

Attribute Read-only, cannot be set

Return type bool

static draw_direction(direction, reference_frame, color[, length = 10.0])
Draw a direction vector on the active vessel.

Parameters

• direction (tuple) – Direction to draw the line in.

• reference_frame (ReferenceFrame) – Reference frame that the direction is in.

• color (tuple) – The color to use for the line, as an RGB color.

• length (float) – The length of the line. Defaults to 10.

static draw_line(start, end, reference_frame, color)
Draw a line.

Parameters

• start (tuple) – Position of the start of the line.

• end (tuple) – Position of the end of the line.

• reference_frame (ReferenceFrame) – Reference frame that the position are in.

322 Chapter 7. Python

http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/83305

kRPC, Release 0.2.3

• color (tuple) – The color to use for the line, as an RGB color.

static clear_drawing()
Remove all directions and lines currently being drawn.

class WarpMode
Returned by WarpMode

rails
Time warp is active, and in regular “on-rails” mode.

physics
Time warp is active, and in physical time warp mode.

none
Time warp is not active.

7.3.2 Vessel

class Vessel
These objects are used to interact with vessels in KSP. This includes getting orbital and flight data, manipulating
control inputs and managing resources.

name
The name of the vessel.

Attribute Can be read or written

Return type str

type
The type of the vessel.

Attribute Can be read or written

Return type VesselType

situation
The situation the vessel is in.

Attribute Read-only, cannot be set

Return type VesselSituation

met
The mission elapsed time in seconds.

Attribute Read-only, cannot be set

Return type float

flight([reference_frame = None])
Returns a Flight object that can be used to get flight telemetry for the vessel, in the specified reference
frame.

Parameters reference_frame (ReferenceFrame) – Reference frame. Defaults to the
vessel’s surface reference frame (Vessel.surface_reference_frame).

Return type Flight

7.3. SpaceCenter API 323

kRPC, Release 0.2.3

Note: When this is called with no arguments, the vessel’s surface reference frame is used. This reference
frame moves with the vessel, therefore velocities and speeds returned by the flight object will be zero. See
the reference frames tutorial for examples of getting the orbital speed and surface speed of a vessel.

target
The target vessel. None if there is no target. When setting the target, the target cannot be the current
vessel.

Attribute Can be read or written

Return type Vessel

orbit
The current orbit of the vessel.

Attribute Read-only, cannot be set

Return type Orbit

control
Returns a Control object that can be used to manipulate the vessel’s control inputs. For example, its
pitch/yaw/roll controls, RCS and thrust.

Attribute Read-only, cannot be set

Return type Control

auto_pilot
An AutoPilot object, that can be used to perform simple auto-piloting of the vessel.

Attribute Read-only, cannot be set

Return type AutoPilot

resources
A Resources object, that can used to get information about resources stored in the vessel.

Attribute Read-only, cannot be set

Return type Resources

resources_in_decouple_stage(stage[, cumulative = True])
Returns a Resources object, that can used to get information about resources stored in a given stage.

Parameters

• stage (int) – Get resources for parts that are decoupled in this stage.

• cumulative (bool) – When False, returns the resources for parts decoupled in just
the given stage. When True returns the resources decoupled in the given stage and all
subsequent stages combined.

Return type Resources

Note: For details on stage numbering, see the discussion on Staging.

parts
A Parts object, that can used to interact with the parts that make up this vessel.

Attribute Read-only, cannot be set

Return type Parts

324 Chapter 7. Python

kRPC, Release 0.2.3

comms
A Comms object, that can used to interact with RemoteTech for this vessel.

Attribute Read-only, cannot be set

Return type Comms

Note: Requires RemoteTech to be installed.

mass
The total mass of the vessel, including resources, in kg.

Attribute Read-only, cannot be set

Return type float

dry_mass
The total mass of the vessel, excluding resources, in kg.

Attribute Read-only, cannot be set

Return type float

thrust
The total thrust currently being produced by the vessel’s engines, in Newtons. This is computed by sum-
ming Engine.thrust for every engine in the vessel.

Attribute Read-only, cannot be set

Return type float

available_thrust
Gets the total available thrust that can be produced by the vessel’s active engines, in Newtons. This is
computed by summing Engine.available_thrust for every active engine in the vessel.

Attribute Read-only, cannot be set

Return type float

max_thrust
The total maximum thrust that can be produced by the vessel’s active engines, in Newtons. This is com-
puted by summing Engine.max_thrust for every active engine.

Attribute Read-only, cannot be set

Return type float

max_vacuum_thrust
The total maximum thrust that can be produced by the vessel’s active engines when the vessel is in a
vacuum, in Newtons. This is computed by summing Engine.max_vacuum_thrust for every active
engine.

Attribute Read-only, cannot be set

Return type float

specific_impulse
The combined specific impulse of all active engines, in seconds. This is computed using the formula
described here.

Attribute Read-only, cannot be set

Return type float

7.3. SpaceCenter API 325

http://forum.kerbalspaceprogram.com/threads/83305
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.2.3

vacuum_specific_impulse
The combined vacuum specific impulse of all active engines, in seconds. This is computed using the
formula described here.

Attribute Read-only, cannot be set

Return type float

kerbin_sea_level_specific_impulse
The combined specific impulse of all active engines at sea level on Kerbin, in seconds. This is computed
using the formula described here.

Attribute Read-only, cannot be set

Return type float

reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the vessel.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel.

•The x-axis points out to the right of the vessel.

•The y-axis points in the forward direction of the vessel.

•The z-axis points out of the bottom off the vessel.

Attribute Read-only, cannot be set

Return type ReferenceFrame

Fig. 7.1: Vessel reference frame origin and axes for the Aeris 3A aircraft

orbital_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the vessels orbital pro-
grade/normal/radial directions.

•The origin is at the center of mass of the vessel.

•The axes rotate with the orbital prograde/normal/radial directions.

326 Chapter 7. Python

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse#Multiple_engines

kRPC, Release 0.2.3

Fig. 7.2: Vessel reference frame origin and axes for the Kerbal-X rocket

7.3. SpaceCenter API 327

kRPC, Release 0.2.3

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Attribute Read-only, cannot be set

Return type ReferenceFrame

Note: Be careful not to confuse this with ‘orbit’ mode on the navball.

Fig. 7.3: Vessel orbital reference frame origin and axes

surface_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the surface of the body being
orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the north and up directions on the surface of the body.

•The x-axis points in the zenith direction (upwards, normal to the body being orbited, from the center
of the body towards the center of mass of the vessel).

•The y-axis points northwards towards the astronomical horizon (north, and tangential to the surface
of the body – the direction in which a compass would point when on the surface).

•The z-axis points eastwards towards the astronomical horizon (east, and tangential to the surface of
the body – east on a compass when on the surface).

Attribute Read-only, cannot be set

Return type ReferenceFrame

328 Chapter 7. Python

http://en.wikipedia.org/wiki/Zenith
http://en.wikipedia.org/wiki/Horizon
http://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.2.3

Note: Be careful not to confuse this with ‘surface’ mode on the navball.

Fig. 7.4: Vessel surface reference frame origin and axes

surface_velocity_reference_frame
The reference frame that is fixed relative to the vessel, and orientated with the velocity vector of the vessel
relative to the surface of the body being orbited.

•The origin is at the center of mass of the vessel.

•The axes rotate with the vessel’s velocity vector.

•The y-axis points in the direction of the vessel’s velocity vector, relative to the surface of the body
being orbited.

•The z-axis is in the plane of the astronomical horizon.

•The x-axis is orthogonal to the other two axes.

Attribute Read-only, cannot be set

Return type ReferenceFrame

7.3. SpaceCenter API 329

http://en.wikipedia.org/wiki/Horizon

kRPC, Release 0.2.3

Fig. 7.5: Vessel surface velocity reference frame origin and axes

position(reference_frame)
Returns the position vector of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

velocity(reference_frame)
Returns the velocity vector of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

rotation(reference_frame)
Returns the rotation of the center of mass of the vessel in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float, float)

direction(reference_frame)
Returns the direction in which the vessel is pointing, as a unit vector, in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

angular_velocity(reference_frame)
Returns the angular velocity of the vessel in the given reference frame. The magnitude of the returned
vector is the rotational speed in radians per second, and the direction of the vector indicates the axis of
rotation (using the right hand rule).

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

class VesselType
See Vessel.type.

330 Chapter 7. Python

kRPC, Release 0.2.3

ship
Ship.

station
Station.

lander
Lander.

probe
Probe.

rover
Rover.

base
Base.

debris
Debris.

class VesselSituation
See Vessel.situation.

docked
Vessel is docked to another.

escaping
Escaping.

flying
Vessel is flying through an atmosphere.

landed
Vessel is landed on the surface of a body.

orbiting
Vessel is orbiting a body.

pre_launch
Vessel is awaiting launch.

splashed
Vessel has splashed down in an ocean.

sub_orbital
Vessel is on a sub-orbital trajectory.

7.3.3 CelestialBody

class CelestialBody
Represents a celestial body (such as a planet or moon).

name
The name of the body.

Attribute Read-only, cannot be set

Return type str

satellites
A list of celestial bodies that are in orbit around this celestial body.

7.3. SpaceCenter API 331

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type list of CelestialBody

orbit
The orbit of the body.

Attribute Read-only, cannot be set

Return type Orbit

mass
The mass of the body, in kilograms.

Attribute Read-only, cannot be set

Return type float

gravitational_parameter
The standard gravitational parameter of the body in 𝑚3𝑠−2.

Attribute Read-only, cannot be set

Return type float

surface_gravity
The acceleration due to gravity at sea level (mean altitude) on the body, in 𝑚/𝑠2.

Attribute Read-only, cannot be set

Return type float

rotational_period
The sidereal rotational period of the body, in seconds.

Attribute Read-only, cannot be set

Return type float

rotational_speed
The rotational speed of the body, in radians per second.

Attribute Read-only, cannot be set

Return type float

equatorial_radius
The equatorial radius of the body, in meters.

Attribute Read-only, cannot be set

Return type float

surface_height(latitude, longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water this
is equal to 0.

Parameters

• latitude (float) – Latitude in degrees

• longitude (float) – Longitude in degrees

Return type float

bedrock_height(latitude, longitude)
The height of the surface relative to mean sea level at the given position, in meters. When over water, this
is the height of the sea-bed and is therefore a negative value.

332 Chapter 7. Python

http://en.wikipedia.org/wiki/Standard_gravitational_parameter

kRPC, Release 0.2.3

Parameters

• latitude (float) – Latitude in degrees

• longitude (float) – Longitude in degrees

Return type float

msl_position(latitude, longitude, reference_frame)
The position at mean sea level at the given latitude and longitude, in the given reference frame.

Parameters

• latitude (float) – Latitude in degrees

• longitude (float) – Longitude in degrees

• reference_frame (ReferenceFrame) – Reference frame for the returned position
vector

Return type tuple of (float, float, float)

surface_position(latitude, longitude, reference_frame)
The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position of the surface of the water.

Parameters

• latitude (float) – Latitude in degrees

• longitude (float) – Longitude in degrees

• reference_frame (ReferenceFrame) – Reference frame for the returned position
vector

Return type tuple of (float, float, float)

bedrock_position(latitude, longitude, reference_frame)
The position of the surface at the given latitude and longitude, in the given reference frame. When over
water, this is the position at the bottom of the sea-bed.

Parameters

• latitude (float) – Latitude in degrees

• longitude (float) – Longitude in degrees

• reference_frame (ReferenceFrame) – Reference frame for the returned position
vector

Return type tuple of (float, float, float)

sphere_of_influence
The radius of the sphere of influence of the body, in meters.

Attribute Read-only, cannot be set

Return type float

has_atmosphere
True if the body has an atmosphere.

Attribute Read-only, cannot be set

Return type bool

atmosphere_depth
The depth of the atmosphere, in meters.

7.3. SpaceCenter API 333

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type float

has_atmospheric_oxygen
True if there is oxygen in the atmosphere, required for air-breathing engines.

Attribute Read-only, cannot be set

Return type bool

reference_frame
The reference frame that is fixed relative to the celestial body.

•The origin is at the center of the body.

•The axes rotate with the body.

•The x-axis points from the center of the body towards the intersection of the prime meridian and
equator (the position at 0° longitude, 0° latitude).

•The y-axis points from the center of the body towards the north pole.

•The z-axis points from the center of the body towards the equator at 90°E longitude.

Attribute Read-only, cannot be set

Return type ReferenceFrame

Fig. 7.6: Celestial body reference frame origin and axes. The equator is shown in blue, and the prime meridian in red.

non_rotating_reference_frame
The reference frame that is fixed relative to this celestial body, and orientated in a fixed direction (it does
not rotate with the body).

•The origin is at the center of the body.

•The axes do not rotate.

•The x-axis points in an arbitrary direction through the equator.

334 Chapter 7. Python

kRPC, Release 0.2.3

•The y-axis points from the center of the body towards the north pole.

•The z-axis points in an arbitrary direction through the equator.

Attribute Read-only, cannot be set

Return type ReferenceFrame

orbital_reference_frame
Gets the reference frame that is fixed relative to this celestial body, but orientated with the body’s orbital
prograde/normal/radial directions.

•The origin is at the center of the body.

•The axes rotate with the orbital prograde/normal/radial directions.

•The x-axis points in the orbital anti-radial direction.

•The y-axis points in the orbital prograde direction.

•The z-axis points in the orbital normal direction.

Attribute Read-only, cannot be set

Return type ReferenceFrame

position(reference_frame)
Returns the position vector of the center of the body in the specified reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

velocity(reference_frame)
Returns the velocity vector of the body in the specified reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

rotation(reference_frame)
Returns the rotation of the body in the specified reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float, float)

direction(reference_frame)
Returns the direction in which the north pole of the celestial body is pointing, as a unit vector, in the
specified reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

angular_velocity(reference_frame)
Returns the angular velocity of the body in the specified reference frame. The magnitude of the vector is
the rotational speed of the body, in radians per second, and the direction of the vector indicates the axis of
rotation, using the right-hand rule.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

7.3. SpaceCenter API 335

kRPC, Release 0.2.3

7.3.4 Flight

class Flight
Used to get flight telemetry for a vessel, by calling Vessel.flight(). All of the information returned by
this class is given in the reference frame passed to that method.

Note: To get orbital information, such as the apoapsis or inclination, see Orbit.

g_force
The current G force acting on the vessel in 𝑚/𝑠2.

Attribute Read-only, cannot be set

Return type float

mean_altitude
The altitude above sea level, in meters.

Attribute Read-only, cannot be set

Return type float

surface_altitude
The altitude above the surface of the body or sea level, whichever is closer, in meters.

Attribute Read-only, cannot be set

Return type float

bedrock_altitude
The altitude above the surface of the body, in meters. When over water, this is the altitude above the sea
floor.

Attribute Read-only, cannot be set

Return type float

elevation
The elevation of the terrain under the vessel, in meters. This is the height of the terrain above sea level,
and is negative when the vessel is over the sea.

Attribute Read-only, cannot be set

Return type float

latitude
The latitude of the vessel for the body being orbited, in degrees.

Attribute Read-only, cannot be set

Return type float

longitude
The longitude of the vessel for the body being orbited, in degrees.

Attribute Read-only, cannot be set

Return type float

velocity
The velocity vector of the vessel. The magnitude of the vector is the speed of the vessel in meters per
second. The direction of the vector is the direction of the vessels motion.

Attribute Read-only, cannot be set

336 Chapter 7. Python

http://en.wikipedia.org/wiki/Latitude
http://en.wikipedia.org/wiki/Longitude

kRPC, Release 0.2.3

Return type tuple of (float, float, float)

speed
The speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type float

horizontal_speed
The horizontal speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type float

vertical_speed
The vertical speed of the vessel in meters per second.

Attribute Read-only, cannot be set

Return type float

center_of_mass
The position of the center of mass of the vessel.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

rotation
The rotation of the vessel.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float, float)

direction
The direction vector that the vessel is pointing in.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

pitch
The pitch angle of the vessel relative to the horizon, in degrees. A value between -90° and +90°.

Attribute Read-only, cannot be set

Return type float

heading
The heading angle of the vessel relative to north, in degrees. A value between 0° and 360°.

Attribute Read-only, cannot be set

Return type float

roll
The roll angle of the vessel relative to the horizon, in degrees. A value between -180° and +180°.

Attribute Read-only, cannot be set

Return type float

prograde
The unit direction vector pointing in the prograde direction.

7.3. SpaceCenter API 337

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

retrograde
The unit direction vector pointing in the retrograde direction.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

normal
The unit direction vector pointing in the normal direction.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

anti_normal
The unit direction vector pointing in the anti-normal direction.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

radial
The unit direction vector pointing in the radial direction.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

anti_radial
The unit direction vector pointing in the anti-radial direction.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

atmosphere_density
The current density of the atmosphere around the vessel, in 𝑘𝑔/𝑚3.

Attribute Read-only, cannot be set

Return type float

dynamic_pressure
The dynamic pressure acting on the vessel, in Pascals. This is a measure of the strength of the aerodynamic
forces. It is equal to 1

2 .air density.velocity2. It is commonly denoted as 𝑄.

Attribute Read-only, cannot be set

Return type float

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

static_pressure
The static atmospheric pressure acting on the vessel, in Pascals.

Attribute Read-only, cannot be set

Return type float

338 Chapter 7. Python

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

aerodynamic_force
The total aerodynamic forces acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

lift
The aerodynamic lift currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

drag
The aerodynamic drag currently acting on the vessel, as a vector pointing in the direction of the force, with
its magnitude equal to the strength of the force in Newtons.

Attribute Read-only, cannot be set

Return type tuple of (float, float, float)

Note: Calculated using KSPs stock aerodynamic model. Not available when Ferram Aerospace Research
is installed.

speed_of_sound
The speed of sound, in the atmosphere around the vessel, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type float

Note: Not available when Ferram Aerospace Research is installed.

mach
The speed of the vessel, in multiples of the speed of sound.

Attribute Read-only, cannot be set

Return type float

7.3. SpaceCenter API 339

http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Aerodynamic_force
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

Note: Not available when Ferram Aerospace Research is installed.

equivalent_air_speed
The equivalent air speed of the vessel, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type float

Note: Not available when Ferram Aerospace Research is installed.

terminal_velocity
An estimate of the current terminal velocity of the vessel, in 𝑚/𝑠. This is the speed at which the drag
forces cancel out the force of gravity.

Attribute Read-only, cannot be set

Return type float

Note: Calculated using KSPs stock aerodynamic model, or Ferram Aerospace Research if it is installed.

angle_of_attack
Gets the pitch angle between the orientation of the vessel and its velocity vector, in degrees.

Attribute Read-only, cannot be set

Return type float

sideslip_angle
Gets the yaw angle between the orientation of the vessel and its velocity vector, in degrees.

Attribute Read-only, cannot be set

Return type float

total_air_temperature
The total air temperature of the atmosphere around the vessel, in Kelvin. This temperature includes the
Flight.static_air_temperature and the vessel’s kinetic energy.

Attribute Read-only, cannot be set

Return type float

static_air_temperature
The static (ambient) temperature of the atmosphere around the vessel, in Kelvin.

Attribute Read-only, cannot be set

Return type float

stall_fraction
Gets the current amount of stall, between 0 and 1. A value greater than 0.005 indicates a minor stall and a
value greater than 0.5 indicates a large-scale stall.

Attribute Read-only, cannot be set

Return type float

340 Chapter 7. Python

http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Equivalent_airspeed
http://forum.kerbalspaceprogram.com/threads/20451
http://wiki.kerbalspaceprogram.com/wiki/Atmosphere
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Total_air_temperature
http://en.wikipedia.org/wiki/Total_air_temperature

kRPC, Release 0.2.3

Note: Requires Ferram Aerospace Research.

drag_coefficient
Gets the coefficient of drag. This is the amount of drag produced by the vessel. It depends on air speed,
air density and wing area.

Attribute Read-only, cannot be set

Return type float

Note: Requires Ferram Aerospace Research.

lift_coefficient
Gets the coefficient of lift. This is the amount of lift produced by the vessel, and depends on air speed, air
density and wing area.

Attribute Read-only, cannot be set

Return type float

Note: Requires Ferram Aerospace Research.

ballistic_coefficient
Gets the ballistic coefficient.

Attribute Read-only, cannot be set

Return type float

Note: Requires Ferram Aerospace Research.

thrust_specific_fuel_consumption
Gets the thrust specific fuel consumption for the jet engines on the vessel. This is a measure of the
efficiency of the engines, with a lower value indicating a more efficient vessel. This value is the number of
Newtons of fuel that are burned, per hour, to product one newton of thrust.

Attribute Read-only, cannot be set

Return type float

Note: Requires Ferram Aerospace Research.

7.3.5 Orbit

class Orbit
Describes an orbit. For example, the orbit of a vessel, obtained by calling Vessel.orbit, or a celestial body,
obtained by calling CelestialBody.orbit.

body
The celestial body (e.g. planet or moon) around which the object is orbiting.

Attribute Read-only, cannot be set

7.3. SpaceCenter API 341

http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451
http://en.wikipedia.org/wiki/Ballistic_coefficient
http://forum.kerbalspaceprogram.com/threads/20451
http://forum.kerbalspaceprogram.com/threads/20451

kRPC, Release 0.2.3

Return type CelestialBody

apoapsis
Gets the apoapsis of the orbit, in meters, from the center of mass of the body being orbited.

Attribute Read-only, cannot be set

Return type float

Note: For the apoapsis altitude reported on the in-game map view, use Orbit.apoapsis_altitude.

periapsis
The periapsis of the orbit, in meters, from the center of mass of the body being orbited.

Attribute Read-only, cannot be set

Return type float

Note: For the periapsis altitude reported on the in-game map view, use
Orbit.periapsis_altitude.

apoapsis_altitude
The apoapsis of the orbit, in meters, above the sea level of the body being orbited.

Attribute Read-only, cannot be set

Return type float

Note: This is equal to Orbit.apoapsis minus the equatorial radius of the body.

periapsis_altitude
The periapsis of the orbit, in meters, above the sea level of the body being orbited.

Attribute Read-only, cannot be set

Return type float

Note: This is equal to Orbit.periapsis minus the equatorial radius of the body.

semi_major_axis
The semi-major axis of the orbit, in meters.

Attribute Read-only, cannot be set

Return type float

semi_minor_axis
The semi-minor axis of the orbit, in meters.

Attribute Read-only, cannot be set

Return type float

radius
The current radius of the orbit, in meters. This is the distance between the center of mass of the object in
orbit, and the center of mass of the body around which it is orbiting.

Attribute Read-only, cannot be set

342 Chapter 7. Python

kRPC, Release 0.2.3

Return type float

Note: This value will change over time if the orbit is elliptical.

speed
The current orbital speed of the object in meters per second.

Attribute Read-only, cannot be set

Return type float

Note: This value will change over time if the orbit is elliptical.

period
The orbital period, in seconds.

Attribute Read-only, cannot be set

Return type float

time_to_apoapsis
The time until the object reaches apoapsis, in seconds.

Attribute Read-only, cannot be set

Return type float

time_to_periapsis
The time until the object reaches periapsis, in seconds.

Attribute Read-only, cannot be set

Return type float

eccentricity
The eccentricity of the orbit.

Attribute Read-only, cannot be set

Return type float

inclination
The inclination of the orbit, in radians.

Attribute Read-only, cannot be set

Return type float

longitude_of_ascending_node
The longitude of the ascending node, in radians.

Attribute Read-only, cannot be set

Return type float

argument_of_periapsis
The argument of periapsis, in radians.

Attribute Read-only, cannot be set

Return type float

7.3. SpaceCenter API 343

http://en.wikipedia.org/wiki/Orbital_eccentricity
http://en.wikipedia.org/wiki/Orbital_inclination
http://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
http://en.wikipedia.org/wiki/Argument_of_periapsis

kRPC, Release 0.2.3

mean_anomaly_at_epoch
The mean anomaly at epoch.

Attribute Read-only, cannot be set

Return type float

epoch
The time since the epoch (the point at which the mean anomaly at epoch was measured, in seconds.

Attribute Read-only, cannot be set

Return type float

mean_anomaly
The mean anomaly.

Attribute Read-only, cannot be set

Return type float

eccentric_anomaly
The eccentric anomaly.

Attribute Read-only, cannot be set

Return type float

static reference_plane_normal(reference_frame)
The unit direction vector that is normal to the orbits reference plane, in the given reference frame. The
reference plane is the plane from which the orbits inclination is measured.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

static reference_plane_direction(reference_frame)
The unit direction vector from which the orbits longitude of ascending node is measured, in the given
reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

time_to_soi_change
The time until the object changes sphere of influence, in seconds. Returns NaN if the object is not going
to change sphere of influence.

Attribute Read-only, cannot be set

Return type float

next_orbit
If the object is going to change sphere of influence in the future, returns the new orbit after the change.
Otherwise returns None.

Attribute Read-only, cannot be set

Return type Orbit

7.3.6 Control

class Control
Used to manipulate the controls of a vessel. This includes adjusting the throttle, enabling/disabling systems such
as SAS and RCS, or altering the direction in which the vessel is pointing.

344 Chapter 7. Python

http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Mean_anomaly
http://en.wikipedia.org/wiki/Eccentric_anomaly

kRPC, Release 0.2.3

Note: Control inputs (such as pitch, yaw and roll) are zeroed when all clients that have set one or more of these
inputs are no longer connected.

sas
The state of SAS.

Attribute Can be read or written

Return type bool

Note: Equivalent to AutoPilot.sas

sas_mode
The current SASMode. These modes are equivalent to the mode buttons to the left of the navball that
appear when SAS is enabled.

Attribute Can be read or written

Return type SASMode

Note: Equivalent to AutoPilot.sas_mode

speed_mode
The current SpeedMode of the navball. This is the mode displayed next to the speed at the top of the
navball.

Attribute Can be read or written

Return type SpeedMode

rcs
The state of RCS.

Attribute Can be read or written

Return type bool

gear
The state of the landing gear/legs.

Attribute Can be read or written

Return type bool

lights
The state of the lights.

Attribute Can be read or written

Return type bool

brakes
The state of the wheel brakes.

Attribute Can be read or written

Return type bool

abort
The state of the abort action group.

7.3. SpaceCenter API 345

kRPC, Release 0.2.3

Attribute Can be read or written

Return type bool

throttle
The state of the throttle. A value between 0 and 1.

Attribute Can be read or written

Return type float

pitch
The state of the pitch control. A value between -1 and 1. Equivalent to the w and s keys.

Attribute Can be read or written

Return type float

yaw
The state of the yaw control. A value between -1 and 1. Equivalent to the a and d keys.

Attribute Can be read or written

Return type float

roll
The state of the roll control. A value between -1 and 1. Equivalent to the q and e keys.

Attribute Can be read or written

Return type float

forward
The state of the forward translational control. A value between -1 and 1. Equivalent to the h and n keys.

Attribute Can be read or written

Return type float

up
The state of the up translational control. A value between -1 and 1. Equivalent to the i and k keys.

Attribute Can be read or written

Return type float

right
The state of the right translational control. A value between -1 and 1. Equivalent to the j and l keys.

Attribute Can be read or written

Return type float

wheel_throttle
The state of the wheel throttle. A value between -1 and 1. A value of 1 rotates the wheels forwards, a value
of -1 rotates the wheels backwards.

Attribute Can be read or written

Return type float

wheel_steering
The state of the wheel steering. A value between -1 and 1. A value of 1 steers to the left, and a value of -1
steers to the right.

Attribute Can be read or written

Return type float

346 Chapter 7. Python

kRPC, Release 0.2.3

current_stage
The current stage of the vessel. Corresponds to the stage number in the in-game UI.

Attribute Read-only, cannot be set

Return type int

activate_next_stage()
Activates the next stage. Equivalent to pressing the space bar in-game.

Returns A list of vessel objects that are jettisoned from the active vessel.

Return type list of Vessel

get_action_group(group)
Returns True if the given action group is enabled.

Parameters group (int) – A number between 0 and 9 inclusive.

Return type bool

set_action_group(group, state)
Sets the state of the given action group (a value between 0 and 9 inclusive).

Parameters

• group (int) – A number between 0 and 9 inclusive.

• state (bool) –

toggle_action_group(group)
Toggles the state of the given action group.

Parameters group (int) – A number between 0 and 9 inclusive.

add_node(ut[, prograde = 0.0][, normal = 0.0][, radial = 0.0])
Creates a maneuver node at the given universal time, and returns a Node object that can be used to modify
it. Optionally sets the magnitude of the delta-v for the maneuver node in the prograde, normal and radial
directions.

Parameters

• ut (float) – Universal time of the maneuver node.

• prograde (float) – Delta-v in the prograde direction.

• normal (float) – Delta-v in the normal direction.

• radial (float) – Delta-v in the radial direction.

Return type Node

nodes
Returns a list of all existing maneuver nodes, ordered by time from first to last.

Attribute Read-only, cannot be set

Return type list of Node

remove_nodes()
Remove all maneuver nodes.

class SASMode
The behavior of the SAS auto-pilot. See AutoPilot.sas_mode.

stability_assist
Stability assist mode. Dampen out any rotation.

7.3. SpaceCenter API 347

kRPC, Release 0.2.3

maneuver
Point in the burn direction of the next maneuver node.

prograde
Point in the prograde direction.

retrograde
Point in the retrograde direction.

normal
Point in the orbit normal direction.

anti_normal
Point in the orbit anti-normal direction.

radial
Point in the orbit radial direction.

anti_radial
Point in the orbit anti-radial direction.

target
Point in the direction of the current target.

anti_target
Point away from the current target.

class SpeedMode
See Control.speed_mode.

orbit
Speed is relative to the vessel’s orbit.

surface
Speed is relative to the surface of the body being orbited.

target
Speed is relative to the current target.

7.3.7 Parts

The following classes allow interaction with a vessels individual parts.

348 Chapter 7. Python

kRPC, Release 0.2.3

• Parts
• Part
• Module
• Specific Types of Part

– Cargo Bay
– Decoupler
– Docking Port
– Engine
– Fairing
– Intake
– Landing Gear
– Landing Leg
– Launch Clamp
– Light
– Parachute
– Radiator
– Resource Converter
– Resource Harvester
– Reaction Wheel
– Sensor
– Solar Panel

• Trees of Parts
– Traversing the Tree
– Attachment Modes

• Fuel Lines
• Staging

Parts

class Parts
Instances of this class are used to interact with the parts of a vessel. An instance can be obtained by calling
Vessel.parts.

all
A list of all of the vessels parts.

Attribute Read-only, cannot be set

Return type list of Part

root
The vessels root part.

Attribute Read-only, cannot be set

Return type Part

Note: See the discussion on Trees of Parts.

controlling
The part from which the vessel is controlled.

Attribute Can be read or written

Return type Part

7.3. SpaceCenter API 349

kRPC, Release 0.2.3

with_name(name)
A list of parts whose Part.name is name.

Parameters name (str) –

Return type list of Part

with_title(title)
A list of all parts whose Part.title is title.

Parameters title (str) –

Return type list of Part

with_module(module_name)
A list of all parts that contain a Module whose Module.name is module_name.

Parameters module_name (str) –

Return type list of Part

in_stage(stage)
A list of all parts that are activated in the given stage.

Parameters stage (int) –

Return type list of Part

Note: See the discussion on Staging.

in_decouple_stage(stage)
A list of all parts that are decoupled in the given stage.

Parameters stage (int) –

Return type list of Part

Note: See the discussion on Staging.

modules_with_name(module_name)
A list of modules (combined across all parts in the vessel) whose Module.name is module_name.

Parameters module_name (str) –

Return type list of Module

cargo_bays
A list of all cargo bays in the vessel.

Attribute Read-only, cannot be set

Return type list of CargoBay

decouplers
A list of all decouplers in the vessel.

Attribute Read-only, cannot be set

Return type list of Decoupler

docking_ports
A list of all docking ports in the vessel.

350 Chapter 7. Python

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type list of DockingPort

docking_port_with_name(name)
The first docking port in the vessel with the given port name, as returned by DockingPort.name.
Returns None if there are no such docking ports.

Parameters name (str) –

Return type DockingPort

engines
A list of all engines in the vessel.

Attribute Read-only, cannot be set

Return type list of Engine

fairings
A list of all fairings in the vessel.

Attribute Read-only, cannot be set

Return type list of Fairing

intakes
A list of all intakes in the vessel.

Attribute Read-only, cannot be set

Return type list of Intake

landing_gear
A list of all landing gear attached to the vessel.

Attribute Read-only, cannot be set

Return type list of LandingGear

landing_legs
A list of all landing legs attached to the vessel.

Attribute Read-only, cannot be set

Return type list of LandingLeg

launch_clamps
A list of all launch clamps attached to the vessel.

Attribute Read-only, cannot be set

Return type list of LaunchClamp

lights
A list of all lights in the vessel.

Attribute Read-only, cannot be set

Return type list of Light

parachutes
A list of all parachutes in the vessel.

Attribute Read-only, cannot be set

Return type list of Parachute

7.3. SpaceCenter API 351

kRPC, Release 0.2.3

radiators
A list of all radiators in the vessel.

Attribute Read-only, cannot be set

Return type list of Radiator

reaction_wheels
A list of all reaction wheels in the vessel.

Attribute Read-only, cannot be set

Return type list of ReactionWheel

resource_converters
A list of all resource converters in the vessel.

Attribute Read-only, cannot be set

Return type list of ResourceConverter

resource_harvesters
A list of all resource harvesters in the vessel.

Attribute Read-only, cannot be set

Return type list of ResourceHarvester

sensors
A list of all sensors in the vessel.

Attribute Read-only, cannot be set

Return type list of Sensor

solar_panels
A list of all solar panels in the vessel.

Attribute Read-only, cannot be set

Return type list of SolarPanel

Part

class Part
Instances of this class represents a part. A vessel is made of multiple parts. Instances can be obtained by various
methods in Parts.

name
Internal name of the part, as used in part cfg files. For example “Mark1-2Pod”.

Attribute Read-only, cannot be set

Return type str

title
Title of the part, as shown when the part is right clicked in-game. For example “Mk1-2 Command Pod”.

Attribute Read-only, cannot be set

Return type str

cost
The cost of the part, in units of funds.

Attribute Read-only, cannot be set

352 Chapter 7. Python

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation

kRPC, Release 0.2.3

Return type float

vessel
The vessel that contains this part.

Attribute Read-only, cannot be set

Return type Vessel

parent
The parts parent. Returns None if the part does not have a parent. This, in combination with
Part.children, can be used to traverse the vessels parts tree.

Attribute Read-only, cannot be set

Return type Part

Note: See the discussion on Trees of Parts.

children
The parts children. Returns an empty list if the part has no children. This, in combination with
Part.parent, can be used to traverse the vessels parts tree.

Attribute Read-only, cannot be set

Return type list of Part

Note: See the discussion on Trees of Parts.

axially_attached
Whether the part is axially attached to its parent, i.e. on the top or bottom of its parent. If the part has no
parent, returns False.

Attribute Read-only, cannot be set

Return type bool

Note: See the discussion on Attachment Modes.

radially_attached
Whether the part is radially attached to its parent, i.e. on the side of its parent. If the part has no parent,
returns False.

Attribute Read-only, cannot be set

Return type bool

Note: See the discussion on Attachment Modes.

stage
The stage in which this part will be activated. Returns -1 if the part is not activated by staging.

Attribute Read-only, cannot be set

Return type int

7.3. SpaceCenter API 353

kRPC, Release 0.2.3

Note: See the discussion on Staging.

decouple_stage
The stage in which this part will be decoupled. Returns -1 if the part is never decoupled from the vessel.

Attribute Read-only, cannot be set

Return type int

Note: See the discussion on Staging.

massless
Whether the part is massless.

Attribute Read-only, cannot be set

Return type bool

mass
The current mass of the part, including resources it contains, in kilograms. Returns zero if the part is
massless.

Attribute Read-only, cannot be set

Return type float

dry_mass
The mass of the part, not including any resources it contains, in kilograms. Returns zero if the part is
massless.

Attribute Read-only, cannot be set

Return type float

impact_tolerance
The impact tolerance of the part, in meters per second.

Attribute Read-only, cannot be set

Return type float

temperature
Temperature of the part, in Kelvin.

Attribute Read-only, cannot be set

Return type float

skin_temperature
Temperature of the skin of the part, in Kelvin.

Attribute Read-only, cannot be set

Return type float

max_temperature
Maximum temperature that the part can survive, in Kelvin.

Attribute Read-only, cannot be set

Return type float

354 Chapter 7. Python

http://wiki.kerbalspaceprogram.com/wiki/Massless_part

kRPC, Release 0.2.3

max_skin_temperature
Maximum temperature that the skin of the part can survive, in Kelvin.

Attribute Read-only, cannot be set

Return type float

thermal_mass
A measure of how much energy it takes to increase the internal temperature of the part, in Joules per
Kelvin.

Attribute Read-only, cannot be set

Return type float

thermal_skin_mass
A measure of how much energy it takes to increase the skin temperature of the part, in Joules per Kelvin.

Attribute Read-only, cannot be set

Return type float

thermal_resource_mass
A measure of how much energy it takes to increase the temperature of the resources contained in the part,
in Joules per Kelvin.

Attribute Read-only, cannot be set

Return type float

thermal_conduction_flux
The rate at which heat energy is conducting into or out of the part via contact with other parts. Measured
in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy, and
negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type float

thermal_convection_flux
The rate at which heat energy is convecting into or out of the part from the surrounding atmosphere.
Measured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat
energy, and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type float

thermal_radiation_flux
The rate at which heat energy is radiating into or out of the part from the surrounding environment. Mea-
sured in energy per unit time, or power, in Watts. A positive value means the part is gaining heat energy,
and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type float

thermal_internal_flux
The rate at which heat energy is begin generated by the part. For example, some engines generate heat by
combusting fuel. Measured in energy per unit time, or power, in Watts. A positive value means the part is
gaining heat energy, and negative means it is losing heat energy.

Attribute Read-only, cannot be set

Return type float

7.3. SpaceCenter API 355

kRPC, Release 0.2.3

thermal_skin_to_internal_flux
The rate at which heat energy is transferring between the part’s skin and its internals. Measured in energy
per unit time, or power, in Watts. A positive value means the part’s internals are gaining heat energy, and
negative means its skin is gaining heat energy.

Attribute Read-only, cannot be set

Return type float

resources
A Resources object for the part.

Attribute Read-only, cannot be set

Return type Resources

crossfeed
Whether this part is crossfeed capable.

Attribute Read-only, cannot be set

Return type bool

is_fuel_line
Whether this part is a fuel line.

Attribute Read-only, cannot be set

Return type bool

fuel_lines_from
The parts that are connected to this part via fuel lines, where the direction of the fuel line is into this part.

Attribute Read-only, cannot be set

Return type list of Part

Note: See the discussion on Fuel Lines.

fuel_lines_to
The parts that are connected to this part via fuel lines, where the direction of the fuel line is out of this part.

Attribute Read-only, cannot be set

Return type list of Part

Note: See the discussion on Fuel Lines.

modules
The modules for this part.

Attribute Read-only, cannot be set

Return type list of Module

cargo_bay
A CargoBay if the part is a cargo bay, otherwise None.

Attribute Read-only, cannot be set

Return type CargoBay

356 Chapter 7. Python

kRPC, Release 0.2.3

decoupler
A Decoupler if the part is a decoupler, otherwise None.

Attribute Read-only, cannot be set

Return type Decoupler

docking_port
A DockingPort if the part is a docking port, otherwise None.

Attribute Read-only, cannot be set

Return type DockingPort

engine
An Engine if the part is an engine, otherwise None.

Attribute Read-only, cannot be set

Return type Engine

fairing
A Fairing if the part is a fairing, otherwise None.

Attribute Read-only, cannot be set

Return type Fairing

intake
An Intake if the part is an intake, otherwise None.

Attribute Read-only, cannot be set

Return type Intake

landing_gear
A LandingGear if the part is a landing gear , otherwise None.

Attribute Read-only, cannot be set

Return type LandingGear

landing_leg
A LandingLeg if the part is a landing leg, otherwise None.

Attribute Read-only, cannot be set

Return type LandingLeg

launch_clamp
A LaunchClamp if the part is a launch clamp, otherwise None.

Attribute Read-only, cannot be set

Return type LaunchClamp

light
A Light if the part is a light, otherwise None.

Attribute Read-only, cannot be set

Return type Light

parachute
A Parachute if the part is a parachute, otherwise None.

Attribute Read-only, cannot be set

7.3. SpaceCenter API 357

kRPC, Release 0.2.3

Return type Parachute

radiator
A Radiator if the part is a radiator, otherwise None.

Attribute Read-only, cannot be set

Return type Radiator

reaction_wheel
A ReactionWheel if the part is a reaction wheel, otherwise None.

Attribute Read-only, cannot be set

Return type ReactionWheel

resource_converter
A ResourceConverter if the part is a resource converter, otherwise None.

Attribute Read-only, cannot be set

Return type ResourceConverter

resource_harvester
A ResourceHarvester if the part is a resource harvester, otherwise None.

Attribute Read-only, cannot be set

Return type ResourceHarvester

sensor
A Sensor if the part is a sensor, otherwise None.

Attribute Read-only, cannot be set

Return type Sensor

solar_panel
A SolarPanel if the part is a solar panel, otherwise None.

Attribute Read-only, cannot be set

Return type SolarPanel

position(reference_frame)
The position of the part in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

direction(reference_frame)
The direction of the part in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

velocity(reference_frame)
The velocity of the part in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

rotation(reference_frame)
The rotation of the part in the given reference frame.

358 Chapter 7. Python

kRPC, Release 0.2.3

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float, float)

reference_frame
The reference frame that is fixed relative to this part.

•The origin is at the position of the part.

•The axes rotate with the part.

•The x, y and z axis directions depend on the design of the part.

Attribute Read-only, cannot be set

Return type ReferenceFrame

Note: For docking port parts, this reference frame is not necessarily equivalent to the reference frame for
the docking port, returned by DockingPort.reference_frame.

Fig. 7.7: Mk1 Command Pod reference frame origin and axes

Module

class Module
In KSP, each part has zero or more PartModules associated with it. Each one contains some of the functionality
of the part. For example, an engine has a “ModuleEngines” PartModule that contains all the functionality of an
engine. This class allows you to interact with KSPs PartModules, and any PartModules that have been added by
other mods.

name
Name of the PartModule. For example, “ModuleEngines”.

7.3. SpaceCenter API 359

http://wiki.kerbalspaceprogram.com/wiki/CFG_File_Documentation#MODULES

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type str

part
The part that contains this module.

Attribute Read-only, cannot be set

Return type Part

fields
The modules field names and their associated values, as a dictionary. These are the values visible in the
right-click menu of the part.

Attribute Read-only, cannot be set

Return type dict from str to str

has_field(name)
Returns True if the module has a field with the given name.

Parameters name (str) – Name of the field.

Return type bool

get_field(name)
Returns the value of a field.

Parameters name (str) – Name of the field.

Return type str

events
A list of the names of all of the modules events. Events are the clickable buttons visible in the right-click
menu of the part.

Attribute Read-only, cannot be set

Return type list of str

has_event(name)
True if the module has an event with the given name.

Parameters name (str) –

Return type bool

trigger_event(name)
Trigger the named event. Equivalent to clicking the button in the right-click menu of the part.

Parameters name (str) –

actions
A list of all the names of the modules actions. These are the parts actions that can be assigned to action
groups in the in-game editor.

Attribute Read-only, cannot be set

Return type list of str

has_action(name)
True if the part has an action with the given name.

Parameters name (str) –

Return type bool

360 Chapter 7. Python

kRPC, Release 0.2.3

set_action(name[, value = True])
Set the value of an action with the given name.

Parameters

• name (str) –

• value (bool) –

Specific Types of Part

The following classes provide functionality for specific types of part.

• Cargo Bay
• Decoupler
• Docking Port
• Engine
• Fairing
• Intake
• Landing Gear
• Landing Leg
• Launch Clamp
• Light
• Parachute
• Radiator
• Resource Converter
• Resource Harvester
• Reaction Wheel
• Sensor
• Solar Panel

Cargo Bay

class CargoBay
Obtained by calling Part.cargo_bay .

part
The part object for this cargo bay.

Attribute Read-only, cannot be set

Return type Part

state
The state of the cargo bay.

Attribute Read-only, cannot be set

Return type CargoBayState

open
Whether the cargo bay is open.

Attribute Can be read or written

Return type bool

7.3. SpaceCenter API 361

kRPC, Release 0.2.3

class CargoBayState
See CargoBay.state.

open
Cargo bay is fully open.

closed
Cargo bay closed and locked.

opening
Cargo bay is opening.

closing
Cargo bay is closing.

Decoupler

class Decoupler
Obtained by calling Part.decoupler

part
The part object for this decoupler.

Attribute Read-only, cannot be set

Return type Part

decouple()
Fires the decoupler. Has no effect if the decoupler has already fired.

decoupled
Whether the decoupler has fired.

Attribute Read-only, cannot be set

Return type bool

impulse
The impulse that the decoupler imparts when it is fired, in Newton seconds.

Attribute Read-only, cannot be set

Return type float

Docking Port

class DockingPort
Obtained by calling Part.docking_port

part
The part object for this docking port.

Attribute Read-only, cannot be set

Return type Part

name
The port name of the docking port. This is the name of the port that can be set in the right click menu,
when the Docking Port Alignment Indicator mod is installed. If this mod is not installed, returns the title
of the part (Part.title).

Attribute Can be read or written

362 Chapter 7. Python

http://forum.kerbalspaceprogram.com/threads/43901

kRPC, Release 0.2.3

Return type str

state
The current state of the docking port.

Attribute Read-only, cannot be set

Return type DockingPortState

docked_part
The part that this docking port is docked to. Returns None if this docking port is not docked to anything.

Attribute Read-only, cannot be set

Return type Part

undock()
Undocks the docking port and returns the vessel that was undocked from. After undocking, the active
vessel may change (active_vessel). This method can be called for either docking port in a docked
pair - both calls will have the same effect. Returns None if the docking port is not docked to anything.

Return type Vessel

reengage_distance
The distance a docking port must move away when it undocks before it becomes ready to dock with another
port, in meters.

Attribute Read-only, cannot be set

Return type float

has_shield
Whether the docking port has a shield.

Attribute Read-only, cannot be set

Return type bool

shielded
The state of the docking ports shield, if it has one. Returns True if the docking port has a shield, and
the shield is closed. Otherwise returns False. When set to True, the shield is closed, and when set to
False the shield is opened. If the docking port does not have a shield, setting this attribute has no effect.

Attribute Can be read or written

Return type bool

position(reference_frame)
The position of the docking port in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

direction(reference_frame)
The direction that docking port points in, in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float)

rotation(reference_frame)
The rotation of the docking port, in the given reference frame.

Parameters reference_frame (ReferenceFrame) –

Return type tuple of (float, float, float, float)

7.3. SpaceCenter API 363

kRPC, Release 0.2.3

reference_frame
The reference frame that is fixed relative to this docking port, and oriented with the port.

•The origin is at the position of the docking port.

•The axes rotate with the docking port.

•The x-axis points out to the right side of the docking port.

•The y-axis points in the direction the docking port is facing.

•The z-axis points out of the bottom off the docking port.

Attribute Read-only, cannot be set

Return type ReferenceFrame

Note: This reference frame is not necessarily equivalent to the reference frame for the part, returned by
Part.reference_frame.

Fig. 7.8: Docking port reference frame origin and axes

class DockingPortState
See DockingPort.state.

ready
The docking port is ready to dock to another docking port.

docked
The docking port is docked to another docking port, or docked to another part (from the VAB/SPH).

364 Chapter 7. Python

kRPC, Release 0.2.3

Fig. 7.9: Inline docking port reference frame origin and axes

docking
The docking port is very close to another docking port, but has not docked. It is using magnetic force to
acquire a solid dock.

undocking
The docking port has just been undocked from another docking port, and is disabled until it moves away
by a sufficient distance (DockingPort.reengage_distance).

shielded
The docking port has a shield, and the shield is closed.

moving
The docking ports shield is currently opening/closing.

Engine

class Engine
Obtained by calling Part.engine.

part
The part object for this engine.

Attribute Read-only, cannot be set

Return type Part

active
Whether the engine is active. Setting this attribute may have no effect, depending on
Engine.can_shutdown and Engine.can_restart.

Attribute Can be read or written

Return type bool

7.3. SpaceCenter API 365

kRPC, Release 0.2.3

thrust
The current amount of thrust being produced by the engine, in Newtons. Returns zero if the engine is not
active or if it has no fuel.

Attribute Read-only, cannot be set

Return type float

available_thrust
The maximum available amount of thrust that can be produced by the engine, in Newtons. This takes
Engine.thrust_limit into account, and is the amount of thrust produced by the engine when acti-
vated and the main throttle is set to 100%. Returns zero if the engine does not have any fuel.

Attribute Read-only, cannot be set

Return type float

max_thrust
Gets the maximum amount of thrust that can be produced by the engine, in Newtons. This is the amount
of thrust produced by the engine when activated, Engine.thrust_limit is set to 100% and the main
vessel’s throttle is set to 100%.

Attribute Read-only, cannot be set

Return type float

max_vacuum_thrust
The maximum amount of thrust that can be produced by the engine in a vacuum, in Newtons. This is the
amount of thrust produced by the engine when activated, Engine.thrust_limit is set to 100%, the
main vessel’s throttle is set to 100% and the engine is in a vacuum.

Attribute Read-only, cannot be set

Return type float

thrust_limit
The thrust limiter of the engine. A value between 0 and 1. Setting this attribute may have no effect, for
example the thrust limit for a solid rocket booster cannot be changed in flight.

Attribute Can be read or written

Return type float

specific_impulse
The current specific impulse of the engine, in seconds. Returns zero if the engine is not active.

Attribute Read-only, cannot be set

Return type float

vacuum_specific_impulse
The vacuum specific impulse of the engine, in seconds.

Attribute Read-only, cannot be set

Return type float

kerbin_sea_level_specific_impulse
The specific impulse of the engine at sea level on Kerbin, in seconds.

Attribute Read-only, cannot be set

Return type float

propellants
The names of resources that the engine consumes.

366 Chapter 7. Python

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type list of str

propellant_ratios
The ratios of resources that the engine consumes. A dictionary mapping resource names to the ratios at
which they are consumed by the engine.

Attribute Read-only, cannot be set

Return type dict from str to float

has_fuel
Whether the engine has run out of fuel (or flamed out).

Attribute Read-only, cannot be set

Return type bool

throttle
The current throttle setting for the engine. A value between 0 and 1. This is not necessarily the same as
the vessel’s main throttle setting, as some engines take time to adjust their throttle (such as jet engines).

Attribute Read-only, cannot be set

Return type float

throttle_locked
Whether the Control.throttle affects the engine. For example, this is True for liquid fueled rock-
ets, and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type bool

can_restart
Whether the engine can be restarted once shutdown. If the engine cannot be shutdown, returns False.
For example, this is True for liquid fueled rockets and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type bool

can_shutdown
Gets whether the engine can be shutdown once activated. For example, this is True for liquid fueled
rockets and False for solid rocket boosters.

Attribute Read-only, cannot be set

Return type bool

has_modes
Whether the engine has multiple modes of operation.

Attribute Read-only, cannot be set

Return type bool

mode
The name of the current engine mode.

Attribute Can be read or written

Return type str

modes
The available modes for the engine. A dictionary mapping mode names to Engine objects.

7.3. SpaceCenter API 367

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type dict from str to Engine

toggle_mode()
Toggle the current engine mode.

auto_mode_switch
Whether the engine will automatically switch modes.

Attribute Can be read or written

Return type bool

gimballed
Whether the engine nozzle is gimballed, i.e. can provide a turning force.

Attribute Read-only, cannot be set

Return type bool

gimbal_range
The range over which the gimbal can move, in degrees. Returns 0 if the engine is not gimballed.

Attribute Read-only, cannot be set

Return type float

gimbal_locked
Whether the engines gimbal is locked in place. Setting this attribute has no effect if the engine is not
gimballed.

Attribute Can be read or written

Return type bool

gimbal_limit
The gimbal limiter of the engine. A value between 0 and 1. Returns 0 if the gimbal is locked.

Attribute Can be read or written

Return type float

Fairing

class Fairing
Obtained by calling Part.fairing.

part
The part object for this fairing.

Attribute Read-only, cannot be set

Return type Part

jettison()
Jettison the fairing. Has no effect if it has already been jettisoned.

jettisoned
Whether the fairing has been jettisoned.

Attribute Read-only, cannot be set

Return type bool

368 Chapter 7. Python

kRPC, Release 0.2.3

Intake

class Intake
Obtained by calling Part.intake.

part
The part object for this intake.

Attribute Read-only, cannot be set

Return type Part

open
Whether the intake is open.

Attribute Can be read or written

Return type bool

speed
Speed of the flow into the intake, in 𝑚/𝑠.

Attribute Read-only, cannot be set

Return type float

flow
The rate of flow into the intake, in units of resource per second.

Attribute Read-only, cannot be set

Return type float

area
The area of the intake’s opening, in square meters.

Attribute Read-only, cannot be set

Return type float

Landing Gear

class LandingGear
Obtained by calling Part.landing_gear.

part
The part object for this landing gear.

Attribute Read-only, cannot be set

Return type Part

state
Gets the current state of the landing gear.

Attribute Read-only, cannot be set

Return type LandingGearState

Note: Fixed landing gear are always deployed.

7.3. SpaceCenter API 369

kRPC, Release 0.2.3

deployable
Whether the landing gear is deployable.

Attribute Read-only, cannot be set

Return type bool

deployed
Whether the landing gear is deployed.

Attribute Can be read or written

Return type bool

Note: Fixed landing gear are always deployed. Returns an error if you try to deploy fixed landing gear.

class LandingGearState
See LandingGear.state.

deployed
Landing gear is fully deployed.

retracted
Landing gear is fully retracted.

deploying
Landing gear is being deployed.

retracting
Landing gear is being retracted.

Landing Leg

class LandingLeg
Obtained by calling Part.landing_leg.

part
The part object for this landing leg.

Attribute Read-only, cannot be set

Return type Part

state
The current state of the landing leg.

Attribute Read-only, cannot be set

Return type LandingLegState

deployed
Whether the landing leg is deployed.

Attribute Can be read or written

Return type bool

class LandingLegState
See LandingLeg.state.

deployed
Landing leg is fully deployed.

370 Chapter 7. Python

kRPC, Release 0.2.3

retracted
Landing leg is fully retracted.

deploying
Landing leg is being deployed.

retracting
Landing leg is being retracted.

broken
Landing leg is broken.

repairing
Landing leg is being repaired.

Launch Clamp

class LaunchClamp
Obtained by calling Part.launch_clamp.

part
The part object for this launch clamp.

Attribute Read-only, cannot be set

Return type Part

release()
Releases the docking clamp. Has no effect if the clamp has already been released.

Light

class Light
Obtained by calling Part.light.

part
The part object for this light.

Attribute Read-only, cannot be set

Return type Part

active
Whether the light is switched on.

Attribute Can be read or written

Return type bool

power_usage
The current power usage, in units of charge per second.

Attribute Read-only, cannot be set

Return type float

Parachute

class Parachute
Obtained by calling Part.parachute.

7.3. SpaceCenter API 371

kRPC, Release 0.2.3

part
The part object for this parachute.

Attribute Read-only, cannot be set

Return type Part

deploy()
Deploys the parachute. This has no effect if the parachute has already been deployed.

deployed
Whether the parachute has been deployed.

Attribute Read-only, cannot be set

Return type bool

state
The current state of the parachute.

Attribute Read-only, cannot be set

Return type ParachuteState

deploy_altitude
The altitude at which the parachute will full deploy, in meters.

Attribute Can be read or written

Return type float

deploy_min_pressure
The minimum pressure at which the parachute will semi-deploy, in atmospheres.

Attribute Can be read or written

Return type float

class ParachuteState
See Parachute.state.

stowed
The parachute is safely tucked away inside its housing.

active
The parachute is still stowed, but ready to semi-deploy.

semi_deployed
The parachute has been deployed and is providing some drag, but is not fully deployed yet.

deployed
The parachute is fully deployed.

cut
The parachute has been cut.

Radiator

class Radiator
Obtained by calling Part.radiator.

part
The part object for this radiator.

372 Chapter 7. Python

kRPC, Release 0.2.3

Attribute Read-only, cannot be set

Return type Part

deployable
Whether the radiator is deployable.

Attribute Read-only, cannot be set

Return type bool

deployed
For a deployable radiator, True if the radiator is extended. If the radiator is not deployable, this is always
True.

Attribute Can be read or written

Return type bool

state
The current state of the radiator.

Attribute Read-only, cannot be set

Return type RadiatorState

Note: A fixed radiator is always RadiatorState.extended.

class RadiatorState
RadiatorState

extended
Radiator is fully extended.

retracted
Radiator is fully retracted.

extending
Radiator is being extended.

retracting
Radiator is being retracted.

broken
Radiator is being broken.

Resource Converter

class ResourceConverter
Obtained by calling Part.resource_converter.

part
The part object for this converter.

Attribute Read-only, cannot be set

Return type Part

count
The number of converters in the part.

Attribute Read-only, cannot be set

7.3. SpaceCenter API 373

kRPC, Release 0.2.3

Return type int

name(index)
The name of the specified converter.

Parameters index (int) – Index of the converter.

Return type str

active(index)
True if the specified converter is active.

Parameters index (int) – Index of the converter.

Return type bool

start(index)
Start the specified converter.

Parameters index (int) – Index of the converter.

stop(index)
Stop the specified converter.

Parameters index (int) – Index of the converter.

state(index)
The state of the specified converter.

Parameters index (int) – Index of the converter.

Return type ResourceConverterState

status_info(index)
Status information for the specified converter. This is the full status message shown in the in-game UI.

Parameters index (int) – Index of the converter.

Return type str

inputs(index)
List of the names of resources consumed by the specified converter.

Parameters index (int) – Index of the converter.

Return type list of str

outputs(index)
List of the names of resources produced by the specified converter.

Parameters index (int) – Index of the converter.

Return type list of str

class ResourceConverterState
See ResourceConverter.state().

running
Converter is running.

idle
Converter is idle.

missing_resource
Converter is missing a required resource.

374 Chapter 7. Python

kRPC, Release 0.2.3

storage_full
No available storage for output resource.

capacity
At preset resource capacity.

unknown
Unknown state. Possible with modified resource converters. In this case, check
ResourceConverter.status_info() for more information.

Resource Harvester

class ResourceHarvester
Obtained by calling Part.resource_harvester.

part
The part object for this harvester.

Attribute Read-only, cannot be set

Return type Part

state
The state of the harvester.

Attribute Read-only, cannot be set

Return type ResourceHarvesterState

deployed
Whether the harvester is deployed.

Attribute Can be read or written

Return type bool

active
Whether the harvester is actively drilling.

Attribute Can be read or written

Return type bool

extraction_rate
The rate at which the drill is extracting ore, in units per second.

Attribute Read-only, cannot be set

Return type float

thermal_efficiency
The thermal efficiency of the drill, as a percentage of its maximum.

Attribute Read-only, cannot be set

Return type float

core_temperature
The core temperature of the drill, in Kelvin.

Attribute Read-only, cannot be set

Return type float

7.3. SpaceCenter API 375

kRPC, Release 0.2.3

optimum_core_temperature
The core temperature at which the drill will operate with peak efficiency, in Kelvin.

Attribute Read-only, cannot be set

Return type float

class ResourceHarvesterState
See ResourceHarvester.state.

deploying
The drill is deploying.

deployed
The drill is deployed and ready.

retracting
The drill is retracting.

retracted
The drill is retracted.

active
The drill is running.

Reaction Wheel

class ReactionWheel
Obtained by calling Part.reaction_wheel.

part
The part object for this reaction wheel.

Attribute Read-only, cannot be set

Return type Part

active
Whether the reaction wheel is active.

Attribute Can be read or written

Return type bool

broken
Whether the reaction wheel is broken.

Attribute Read-only, cannot be set

Return type bool

pitch_torque
The torque in the pitch axis, in Newton meters.

Attribute Read-only, cannot be set

Return type float

yaw_torque
The torque in the yaw axis, in Newton meters.

Attribute Read-only, cannot be set

Return type float

376 Chapter 7. Python

kRPC, Release 0.2.3

roll_torque
The torque in the roll axis, in Newton meters.

Attribute Read-only, cannot be set

Return type float

Sensor

class Sensor
Obtained by calling Part.sensor.

part
The part object for this sensor.

Attribute Read-only, cannot be set

Return type Part

active
Whether the sensor is active.

Attribute Can be read or written

Return type bool

value
The current value of the sensor.

Attribute Read-only, cannot be set

Return type str

power_usage
The current power usage of the sensor, in units of charge per second.

Attribute Read-only, cannot be set

Return type float

Solar Panel

class SolarPanel
Obtained by calling Part.solar_panel.

part
The part object for this solar panel.

Attribute Read-only, cannot be set

Return type Part

deployed
Whether the solar panel is extended.

Attribute Can be read or written

Return type bool

state
The current state of the solar panel.

Attribute Read-only, cannot be set

7.3. SpaceCenter API 377

kRPC, Release 0.2.3

Return type SolarPanelState

energy_flow
The current amount of energy being generated by the solar panel, in units of charge per second.

Attribute Read-only, cannot be set

Return type float

sun_exposure
The current amount of sunlight that is incident on the solar panel, as a percentage. A value between 0 and
1.

Attribute Read-only, cannot be set

Return type float

class SolarPanelState
See SolarPanel.state.

extended
Solar panel is fully extended.

retracted
Solar panel is fully retracted.

extending
Solar panel is being extended.

retracting
Solar panel is being retracted.

broken
Solar panel is broken.

Trees of Parts

Vessels in KSP are comprised of a number of parts, connected to one another in a
tree structure. An example vessel is shown in Figure 1, and the corresponding tree of
parts in Figure 2. The craft file for this example can also be downloaded here.

Fig. 7.10: Figure 1 – Example parts making up a vessel.

Traversing the Tree

The tree of parts can be traversed using the
attributes SpaceCenter.Parts.root,
SpaceCenter.Part.parent and
SpaceCenter.Part.children.

The root of the tree is the same as the
vessels root part (part number 1 in the
example above) and can be obtained by
calling SpaceCenter.Parts.root.
A parts children can be obtained by call-
ing SpaceCenter.Part.children.
If the part does not have any children,
SpaceCenter.Part.children returns
an empty list. A parts parent can be obtained
by calling SpaceCenter.Part.parent.

378 Chapter 7. Python

kRPC, Release 0.2.3

If the part does not have a parent
(as is the case for the root part),
SpaceCenter.Part.parent returns
None.

The following Python example uses these at-
tributes to perform a depth-first traversal over
all of the parts in a vessel:

root = vessel.parts.root
stack = [(root, 0)]
while len(stack) > 0:

part,depth = stack.pop()
print(' '*depth, part.title)
for child in part.children:

stack.append((child, depth+1))

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1
TR-18A Stack Decoupler
FL-T400 Fuel Tank
LV-909 Liquid Fuel Engine
TR-18A Stack Decoupler
FL-T800 Fuel Tank
LV-909 Liquid Fuel Engine
TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

TT-70 Radial Decoupler
FL-T400 Fuel Tank
TT18-A Launch Stability Enhancer
FTX-2 External Fuel Duct
LV-909 Liquid Fuel Engine
Aerodynamic Nose Cone

LT-1 Landing Struts
LT-1 Landing Struts

Mk16 Parachute

Attachment Modes

Parts can be attached to other parts either ra-
dially (on the side of the parent part) or axially
(on the end of the parent part, to form a stack).

For example, in the vessel pictured above, the
parachute (part 2) is axially connected to its

parent (the command pod – part 1), and the landing leg (part 5) is radially connected to its parent (the fuel tank – part
4).

Fig. 7.11: Figure 2 – Tree of parts for the vessel in Figure 1. Arrows
point from the parent part to the child part.

The root part of a vessel (for example the com-
mand pod – part 1) does not have a parent part,

7.3. SpaceCenter API 379

kRPC, Release 0.2.3

so does not have an attachment mode. How-
ever, the part is consider to be axially attached
to nothing.

The following Python example does a depth-
first traversal as before, but also prints out the
attachment mode used by the part:

root = vessel.parts.root
stack = [(root, 0)]
while len(stack) > 0:

part,depth = stack.pop()
if part.axially_attached:

attach_mode = 'axial'
else: # radially_attached

attach_mode = 'radial'
print(' '*depth, part.title, '-', attach_mode)
for child in part.children:

stack.append((child, depth+1))

When this code is execute using the craft file
for the example vessel pictured above, the fol-
lowing is printed out:

Command Pod Mk1 - axial
TR-18A Stack Decoupler - axial
FL-T400 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TR-18A Stack Decoupler - axial
FL-T800 Fuel Tank - axial
LV-909 Liquid Fuel Engine - axial
TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

TT-70 Radial Decoupler - radial
FL-T400 Fuel Tank - radial
TT18-A Launch Stability Enhancer - radial
FTX-2 External Fuel Duct - radial
LV-909 Liquid Fuel Engine - axial
Aerodynamic Nose Cone - axial

LT-1 Landing Struts - radial
LT-1 Landing Struts - radial

Mk16 Parachute - axial

380 Chapter 7. Python

kRPC, Release 0.2.3

Fuel Lines

Fig. 7.12: Figure 5 – Fuel lines from the example
in Figure 1. Fuel flows from the parts highlighted
in green, into the part highlighted in blue.

Fig. 7.13: Figure 4 – A subset of the parts tree
from Figure 2 above.

Fuel lines are considered parts, and are included in the parts tree
(for example, as pictured in Figure 4). However, the parts tree
does not contain information about which parts fuel lines connect
to. The parent part of a fuel line is the part from which it will take
fuel (as shown in Figure 4) however the part that it will send fuel
to is not represented in the parts tree.

Figure 5 shows the fuel lines from the example vessel pictured
earlier. Fuel line part 15 (in red) takes fuel from a fuel tank (part
11 – in green) and feeds it into another fuel tank (part 9 – in blue).
The fuel line is therefore a child of part 11, but its connection to
part 9 is not represented in the tree.

The attributes SpaceCenter.Part.fuel_lines_from
and SpaceCenter.Part.fuel_lines_to can be used
to discover these connections. In the example in Fig-
ure 5, when SpaceCenter.Part.fuel_lines_to is
called on fuel tank part 11, it will return a list of parts
containing just fuel tank part 9 (the blue part). When
SpaceCenter.Part.fuel_lines_from is called on fuel
tank part 9, it will return a list containing fuel tank parts 11 and
17 (the parts colored green).

Staging

Each part has two staging numbers associated with
it: the stage in which the part is activated and the
stage in which the part is decoupled. These values
can be obtained using SpaceCenter.Part.stage
and SpaceCenter.Part.decouple_stage re-
spectively. For parts that are not activated by staging,
SpaceCenter.Part.stage returns -1. For parts that are
never decoupled, SpaceCenter.Part.decouple_stage
returns a value of -1.

7.3. SpaceCenter API 381

kRPC, Release 0.2.3

Fig. 7.14: Figure 6 – Example vessel from Figure 1 with a staging sequence.

Figure 6 shows an example
staging sequence for a ves-
sel. Figure 7 shows the
stages in which each part
of the vessel will be acti-
vated. Figure 8 shows the
stages in which each part of
the vessel will be decoupled.

Fig. 7.15: Figure 7 – The stage in which each part is activated.

Fig. 7.16: Figure 8 – The stage in which each part is decou-
pled.

7.3.8 Resources

class Resources
Created by calling
Vessel.resources,
Vessel.resources_in_decouple_stage()
or Part.resources.

names
A list of resource names that can be stored.

Attribute Read-only, cannot be set

Return type list of str

382 Chapter 7. Python

kRPC, Release 0.2.3

has_resource(name)
Check whether the named resource can be stored.

Parameters name (str) – The name of the resource.

Return type bool

max(name)
Returns the amount of a resource that can be stored.

Parameters name (str) – The name of the resource.

Return type float

amount(name)
Returns the amount of a resource that is currently
stored.

Parameters name (str) – The name of the resource.

Return type float

static density(name)
Returns the density of a resource, in kg/l.

Parameters name (str) – The name of the resource.

Return type float

static flow_mode(name)
Returns the flow mode of a resource.

Parameters name (str) – The name of the resource.

Return type ResourceFlowMode

class ResourceFlowMode
See Resources.flow_mode().

vessel
The resource flows to any part in the vessel. For
example, electric charge.

stage
The resource flows from parts in the first stage,
followed by the second, and so on. For example,
mono-propellant.

adjacent
The resource flows between adjacent parts within
the vessel. For example, liquid fuel or oxidizer.

none
The resource does not flow. For example, solid fuel.

7.3.9 Node

class Node
Represents a maneuver node. Can be created using
Control.add_node().

7.3. SpaceCenter API 383

kRPC, Release 0.2.3

prograde
The magnitude of the maneuver nodes delta-v in the
prograde direction, in meters per second.

Attribute Can be read or written

Return type float

normal
The magnitude of the maneuver nodes delta-v in the
normal direction, in meters per second.

Attribute Can be read or written

Return type float

radial
The magnitude of the maneuver nodes delta-v in the
radial direction, in meters per second.

Attribute Can be read or written

Return type float

delta_v
The delta-v of the maneuver node, in meters per
second.

Attribute Can be read or written

Return type float

Note: Does not change when executing the maneu-
ver node. See Node.remaining_delta_v .

remaining_delta_v
Gets the remaining delta-v of the maneuver node, in
meters per second. Changes as the node is executed.
This is equivalent to the delta-v reported in-game.

Attribute Read-only, cannot be set

Return type float

burn_vector([reference_frame = None])
Returns a vector whose direction the direction of the
maneuver node burn, and whose magnitude is the
delta-v of the burn in m/s.

Parameters reference_frame
(ReferenceFrame) –

Return type tuple of (float, float, float)

Note: Does not change when ex-
ecuting the maneuver node. See
Node.remaining_burn_vector().

remaining_burn_vector([reference_frame = None])
Returns a vector whose direction the direction of

384 Chapter 7. Python

kRPC, Release 0.2.3

the maneuver node burn, and whose magnitude is
the delta-v of the burn in m/s. The direction and
magnitude change as the burn is executed.

Parameters reference_frame
(ReferenceFrame) –

Return type tuple of (float, float, float)

ut
The universal time at which the maneuver will occur,
in seconds.

Attribute Can be read or written

Return type float

time_to
The time until the maneuver node will be encoun-
tered, in seconds.

Attribute Read-only, cannot be set

Return type float

orbit
The orbit that results from executing the maneuver
node.

Attribute Read-only, cannot be set

Return type Orbit

remove()
Removes the maneuver node.

reference_frame
Gets the reference frame that is fixed relative to the
maneuver node’s burn.

•The origin is at the position of the maneuver node.

•The y-axis points in the direction of the burn.

•The x-axis and z-axis point in arbitrary but fixed di-
rections.

Attribute Read-only, cannot be set

Return type ReferenceFrame

orbital_reference_frame
Gets the reference frame that is fixed relative to
the maneuver node, and orientated with the orbital
prograde/normal/radial directions of the original
orbit at the maneuver node’s position.

•The origin is at the position of the maneuver node.

•The x-axis points in the orbital anti-radial direction
of the original orbit, at the position of the maneuver
node.

7.3. SpaceCenter API 385

kRPC, Release 0.2.3

•The y-axis points in the orbital prograde direction
of the original orbit, at the position of the maneuver
node.

•The z-axis points in the orbital normal direction of
the original orbit, at the position of the maneuver
node.

Attribute Read-only, cannot be set

Return type ReferenceFrame

position(reference_frame)
Returns the position vector of the maneuver node in
the given reference frame.

Parameters reference_frame
(ReferenceFrame) –

Return type tuple of (float, float, float)

direction(reference_frame)
Returns the unit direction vector of the maneuver
nodes burn in the given reference frame.

Parameters reference_frame
(ReferenceFrame) –

Return type tuple of (float, float, float)

7.3.10 Comms

class Comms
Used to interact with RemoteTech. Created using a
call to Vessel.comms.

Note: This class requires RemoteTech to be in-
stalled.

has_local_control
Whether the vessel can be controlled locally.

Attribute Read-only, cannot be set

Return type bool

has_flight_computer
Whether the vessel has a RemoteTech flight com-
puter on board.

Attribute Read-only, cannot be set

Return type bool

has_connection
Whether the vessel can receive commands from the
KSC or a command station.

Attribute Read-only, cannot be set

386 Chapter 7. Python

http://forum.kerbalspaceprogram.com/threads/83305

kRPC, Release 0.2.3

Return type bool

has_connection_to_ground_station
Whether the vessel can transmit science data to a
ground station.

Attribute Read-only, cannot be set

Return type bool

signal_delay
The signal delay when sending commands to the
vessel, in seconds.

Attribute Read-only, cannot be set

Return type float

signal_delay_to_ground_station
The signal delay between the vessel and the closest
ground station, in seconds.

Attribute Read-only, cannot be set

Return type float

signal_delay_to_vessel(other)
Returns the signal delay between the current vessel
and another vessel, in seconds.

Parameters other (Vessel) –

Return type float

7.3.11 ReferenceFrame

class ReferenceFrame
Represents a reference frame for positions, rotations
and velocities. Contains:

•The position of the origin.

•The directions of the x, y and z axes.

•The linear velocity of the frame.

•The angular velocity of the frame.

Note: This class does not contain any properties
or methods. It is only used as a parameter to other
functions.

7.3.12 AutoPilot

class AutoPilot
Provides basic auto-piloting utilities for a vessel.
Created by calling Vessel.auto_pilot.

7.3. SpaceCenter API 387

kRPC, Release 0.2.3

engage()
Engage the auto-pilot.

disengage()
Disengage the auto-pilot.

wait()
Blocks until the vessel is pointing in the target di-
rection (if set) and has the target roll (if set).

error
The error, in degrees, between the direction the
ship has been asked to point in and the direction
it is pointing in. Returns zero if the auto-pilot has
not been engaged, SAS is not enabled, SAS is in
stability assist mode, or no target direction is set.

Attribute Read-only, cannot be set

Return type float

roll_error
The error, in degrees, between the roll the ship has
been asked to be in and the actual roll. Returns zero
if the auto-pilot has not been engaged or no target
roll is set.

Attribute Read-only, cannot be set

Return type float

reference_frame
The reference frame for the target direction
(AutoPilot.target_direction).

Attribute Can be read or written

Return type ReferenceFrame

target_direction
The target direction. None if no target direction is
set.

Attribute Can be read or written

Return type tuple of (float, float, float)

target_pitch_and_heading(pitch, heading)
Set (AutoPilot.target_direction) from a
pitch and heading angle.

Parameters

• pitch (float) – Target pitch angle, in degrees be-
tween -90° and +90°.

• heading (float) – Target heading angle, in de-
grees between 0° and 360°.

target_roll
The target roll, in degrees. NaN if no target roll is
set.

Attribute Can be read or written

388 Chapter 7. Python

kRPC, Release 0.2.3

Return type float

sas
The state of SAS.

Attribute Can be read or written

Return type bool

Note: Equivalent to Control.sas

sas_mode
The current SASMode. These modes are equivalent
to the mode buttons to the left of the navball that
appear when SAS is enabled.

Attribute Can be read or written

Return type SASMode

Note: Equivalent to Control.sas_mode

rotation_speed_multiplier
Target rotation speed multiplier. Defaults to 1.

Attribute Can be read or written

Return type float

max_rotation_speed
Maximum target rotation speed. Defaults to 1.

Attribute Can be read or written

Return type float

roll_speed_multiplier
Target roll speed multiplier. Defaults to 1.

Attribute Can be read or written

Return type float

max_roll_speed
Maximum target roll speed. Defaults to 1.

Attribute Can be read or written

Return type float

set_pid_parameters([kp = 1.0][, ki = 0.0][, kd = 0.0])
Sets the gains for the rotation rate PID controller.

Parameters

• kp (float) – Proportional gain.

• ki (float) – Integral gain.

• kd (float) – Derivative gain.

7.3. SpaceCenter API 389

kRPC, Release 0.2.3

7.3.13 Geometry Types

class Vector3
3-dimensional vectors are represented as a 3-tuple.
For example:

import krpc
conn = krpc.connect()
v = conn.space_center.active_vessel.flight().prograde
print(v[0], v[1], v[2])

class Quaternion
Quaternions (rotations in 3-dimensional space) are
encoded as a 4-tuple containing the x, y, z and w
components. For example:

import krpc
conn = krpc.connect()
q = conn.space_center.active_vessel.flight().rotation
print(q[0], q[1], q[2], q[3])

7.4 InfernalRobotics API

Provides RPCs to interact with the InfernalRobotics
mod. Provides the following classes:

7.4.1 InfernalRobotics

This service provides functionality to interact with
the InfernalRobotics mod.

servo_groups
A list of all the servo groups in the active vessel.

Attribute Read-only, cannot be set

Return type list of ControlGroup

static servo_group_with_name(name)
Returns the servo group with the given name or
None if none exists. If multiple servo groups have
the same name, only one of them is returned.

Parameters name (str) – Name of servo group to find.

Return type ControlGroup

static servo_with_name(name)
Returns the servo with the given name, from all
servo groups, or None if none exists. If multiple
servos have the same name, only one of them is
returned.

Parameters name (str) – Name of the servo to find.

Return type Servo

390 Chapter 7. Python

http://forum.kerbalspaceprogram.com/threads/116064
http://forum.kerbalspaceprogram.com/threads/116064

kRPC, Release 0.2.3

7.4.2 ControlGroup

class ControlGroup
A group of servos, obtained
by calling servo_groups or
servo_group_with_name(). Represents
the “Servo Groups” in the InfernalRobotics UI.

name
The name of the group.

Attribute Can be read or written

Return type str

forward_key
The key assigned to be the “forward” key for the
group.

Attribute Can be read or written

Return type str

reverse_key
The key assigned to be the “reverse” key for the
group.

Attribute Can be read or written

Return type str

speed
The speed multiplier for the group.

Attribute Can be read or written

Return type float

expanded
Whether the group is expanded in the Infernal-
Robotics UI.

Attribute Can be read or written

Return type bool

servos
The servos that are in the group.

Attribute Read-only, cannot be set

Return type list of Servo

servo_with_name(name)
Returns the servo with the given name from this
group, or None if none exists.

Parameters name (str) – Name of servo to find.

Return type Servo

move_right()
Moves all of the servos in the group to the right.

7.4. InfernalRobotics API 391

kRPC, Release 0.2.3

move_left()
Moves all of the servos in the group to the left.

move_center()
Moves all of the servos in the group to the center.

move_next_preset()
Moves all of the servos in the group to the next
preset.

move_prev_preset()
Moves all of the servos in the group to the previous
preset.

stop()
Stops the servos in the group.

7.4.3 Servo

class Servo
Represents a servo. Obtained us-
ing ControlGroup.servos,
ControlGroup.servo_with_name() or
servo_with_name().

name
The name of the servo.

Attribute Can be read or written

Return type str

highlight
Whether the servo should be highlighted in-game.

Attribute Write-only, cannot be read

Return type bool

position
The position of the servo.

Attribute Read-only, cannot be set

Return type float

min_config_position
The minimum position of the servo, specified by the
part configuration.

Attribute Read-only, cannot be set

Return type float

max_config_position
The maximum position of the servo, specified by
the part configuration.

Attribute Read-only, cannot be set

Return type float

392 Chapter 7. Python

kRPC, Release 0.2.3

min_position
The minimum position of the servo, specified by the
in-game tweak menu.

Attribute Can be read or written

Return type float

max_position
The maximum position of the servo, specified by
the in-game tweak menu.

Attribute Can be read or written

Return type float

config_speed
The speed multiplier of the servo, specified by the
part configuration.

Attribute Read-only, cannot be set

Return type float

speed
The speed multiplier of the servo, specified by the
in-game tweak menu.

Attribute Can be read or written

Return type float

current_speed
The current speed at which the servo is moving.

Attribute Can be read or written

Return type float

acceleration
The current speed multiplier set in the UI.

Attribute Can be read or written

Return type float

is_moving
Whether the servo is moving.

Attribute Read-only, cannot be set

Return type bool

is_free_moving
Whether the servo is freely moving.

Attribute Read-only, cannot be set

Return type bool

is_locked
Whether the servo is locked.

Attribute Can be read or written

Return type bool

7.4. InfernalRobotics API 393

kRPC, Release 0.2.3

is_axis_inverted
Whether the servos axis is inverted.

Attribute Can be read or written

Return type bool

move_right()
Moves the servo to the right.

move_left()
Moves the servo to the left.

move_center()
Moves the servo to the center.

move_next_preset()
Moves the servo to the next preset.

move_prev_preset()
Moves the servo to the previous preset.

move_to(position, speed)
Moves the servo to position and sets the speed mul-
tiplier to speed.

Parameters

• position (float) – The position to move the
servo to.

• speed (float) – Speed multiplier for the move-
ment.

stop()
Stops the servo.

7.4.4 Example

The following example gets the control group named
“MyGroup”, prints out the names and positions of
all of the servos in the group, then moves all of the
servos to the right for 1 second.

import krpc, time
conn = krpc.connect(name='InfernalRobotics Example')

group = conn.infernal_robotics.servo_group_with_name('MyGroup')
if group is None:

print('Group not found')
exit(1)

for servo in group.servos:
print servo.name, servo.position

group.move_right()
time.sleep(1)
group.stop()

394 Chapter 7. Python

kRPC, Release 0.2.3

7.5 Kerbal Alarm Clock API

Provides RPCs to interact with the Kerbal Alarm
Clock mod. Provides the following classes:

7.5.1 KerbalAlarmClock

This service provides functionality to interact with
the Kerbal Alarm Clock mod.

alarms
A list of all the alarms.

Attribute Read-only, cannot be set

Return type list of Alarm

static alarm_with_name(name)
Get the alarm with the given name, or None if no
alarms have that name. If more than one alarm has
the name, only returns one of them.

Parameters name (str) – Name of the alarm to search
for.

Return type Alarm

static alarms_with_type(type)
Get a list of alarms of the specified type.

Parameters type (AlarmType) – Type of alarm to re-
turn.

Return type list of Alarm

static create_alarm(type, name, ut)
Create a new alarm and return it.

Parameters

• type (AlarmType) – Type of the new alarm.

• name (str) – Name of the new alarm.

• ut (float) – Time at which the new alarm should
trigger.

Return type Alarm

7.5.2 Alarm

class Alarm
Represents an alarm. Obtained by call-
ing alarms, alarm_with_name() or
alarms_with_type().

action
The action that the alarm triggers.

Attribute Can be read or written

7.5. Kerbal Alarm Clock API 395

http://forum.kerbalspaceprogram.com/threads/24786
http://forum.kerbalspaceprogram.com/threads/24786
http://forum.kerbalspaceprogram.com/threads/24786

kRPC, Release 0.2.3

Return type AlarmAction

margin
The number of seconds before the event that the
alarm will fire.

Attribute Can be read or written

Return type float

time
The time at which the alarm will fire.

Attribute Can be read or written

Return type float

type
The type of the alarm.

Attribute Read-only, cannot be set

Return type AlarmType

id
The unique identifier for the alarm.

Attribute Read-only, cannot be set

Return type str

name
The short name of the alarm.

Attribute Can be read or written

Return type str

notes
The long description of the alarm.

Attribute Can be read or written

Return type str

remaining
The number of seconds until the alarm will fire.

Attribute Read-only, cannot be set

Return type float

repeat
Whether the alarm will be repeated after it has fired.

Attribute Can be read or written

Return type bool

repeat_period
The time delay to automatically create an alarm
after it has fired.

Attribute Can be read or written

Return type float

396 Chapter 7. Python

kRPC, Release 0.2.3

vessel
The vessel that the alarm is attached to.

Attribute Can be read or written

Return type SpaceCenter.Vessel

xfer_origin_body
The celestial body the vessel is departing from.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

xfer_target_body
The celestial body the vessel is arriving at.

Attribute Can be read or written

Return type SpaceCenter.CelestialBody

remove()
Removes the alarm.

7.5.3 AlarmType

class AlarmType
The type of an alarm.

raw
An alarm for a specific date/time or a specific period
in the future.

maneuver
An alarm based on the next maneuver node on the
current ships flight path. This node will be stored
and can be restored when you come back to the ship.

maneuver_auto
See AlarmType.maneuver.

apoapsis
An alarm for furthest part of the orbit from the
planet.

periapsis
An alarm for nearest part of the orbit from the planet.

ascending_node
Ascending node for the targeted object, or equatorial
ascending node.

descending_node
Descending node for the targeted object, or equato-
rial descending node.

closest
An alarm based on the closest approach of this ves-
sel to the targeted vessel, some number of orbits
into the future.

7.5. Kerbal Alarm Clock API 397

kRPC, Release 0.2.3

contract
An alarm based on the expiry or deadline of con-
tracts in career modes.

contract_auto
See AlarmType.contract.

crew
An alarm that is attached to a crew member.

distance
An alarm that is triggered when a selected target
comes within a chosen distance.

earth_time
An alarm based on the time in the “Earth” alternative
Universe (aka the Real World).

launch_rendevous
An alarm that fires as your landed craft passes under
the orbit of your target.

soi_change
An alarm manually based on when the next SOI
point is on the flight path or set to continually
monitor the active flight path and add alarms as it
detects SOI changes.

soi_change_auto
See AlarmType.soi_change.

transfer
An alarm based on Interplanetary Transfer Phase
Angles, i.e. when should I launch to planet X?
Based on Kosmo Not’s post and used in Olex’s
Calculator.

transfer_modelled
See AlarmType.transfer.

7.5.4 AlarmAction

class AlarmAction
The action performed by an alarm when it fires.

do_nothing
Don’t do anything at all...

do_nothing_delete_when_passed
Don’t do anything, and delete the alarm.

kill_warp
Drop out of time warp.

kill_warp_only
Drop out of time warp.

message_only
Display a message.

398 Chapter 7. Python

kRPC, Release 0.2.3

pause_game
Pause the game.

7.5.5 Example

The following example creates a new alarm for the
active vessel. The alarm is set to trigger after 10 sec-
onds have passed, and display a message.

import krpc
conn = krpc.connect(name='Kerbal Alarm Clock Example')

alarm = conn.kerbal_alarm_clock.create_alarm(
conn.kerbal_alarm_clock.AlarmType.raw,
'My New Alarm',
conn.space_center.ut+10)

alarm.notes = '10 seconds have now passed since the alarm was created.'
alarm.action = conn.kerbal_alarm_clock.AlarmAction.message_only

7.5. Kerbal Alarm Clock API 399

kRPC, Release 0.2.3

400 Chapter 7. Python

CHAPTER

EIGHT

OTHER CLIENTS, SERVICES AND SCRIPTS

This page links to clients, services, scripts, tools and other useful things for kRPC that have been made by others. If
you want your own project added to this page, please feel free to ask on the forum.

8.1 Clients

• Ruby client by TeWu

8.2 Services

• krpcmj – remote procedures to interact with MechJeb

8.3 Scripts/Tools/Libraries etc.

• kautopilly – an autopilot primarily intended for planes.

• KNav – a flexible platform for implementing computer-assisted navigation and control of vessels.

• wernher – a toolkit for flight control and orbit analysis.

• A small logging script.

401

http://forum.kerbalspaceprogram.com/index.php?/topic/130742-105-krpc-control-the-game-using-python-c-c-lua-ruby-v021-10th-feb-2016/
http://github.com/TeWu/krpc-rb
http://github.com/TeWu
https://github.com/artwhaley/krpcmj
https://github.com/Cheaterman/kautopilly
https://github.com/Vivero/KNav
https://github.com/theodoregoetz/wernher
https://gist.github.com/fat-lobyte/4326afa551fa04dd028f

kRPC, Release 0.2.3

402 Chapter 8. Other Clients, Services and Scripts

CHAPTER

NINE

COMPILING KRPC

kRPC uses the Bazel build system.

9.1 Install Dependencies

Bazel automatically downloads most of the required dependencies to build kRPC. However the following will need to
be installed on your system:

• Mono C# compiler and runtime

• Python, including virtualenv and pip

• pdflatex for building the documentation

• RSVG for converting SVGs to PNGs

• libxml, libxslt and Python headers, for building the Java documentation

To install the latest C# compiler and runtime on Ubuntu, follow the instructions on Mono’s website The other depen-
dencies can be installed via apt:

$ sudo apt-get install mono-complete \
python-virtualenv python-pip \
texlive-latex-base texlive-latex-recommended \
texlive-fonts-recommended texlive-latex-extra \
librsvg2-bin libxml2-dev libxslt1-dev python-dev

9.2 Setup your Environment

Before building kRPC you need to make lib/ksp point to a directory containing Kerbal Space Program. For example
on Linux, if your KSP directory is at /path/to/ksp and your kRPC source tree at /path/to/krpc you can
create a symlink using ln -s /path/to/ksp /path/to/krpc/lib/ksp

You may also need to modify the symlink at lib/mono-4.5 to point to the correct location of your Mono installa-
tion.

9.3 Building using Bazel

To build the kRPC release archive, run bazel build //:krpc. The resulting archive containing the GameData
directory, client libraries etc will be created at bazel-out/krpc-<version>.zip.

The build scripts also define specific other targets that may be useful. Build them using bazel build <target>:

403

http://bazel.io
http://www.mono-project.com/download/
http://www.mono-project.com/docs/getting-started/install/linux/#debian-ubuntu-and-derivatives

kRPC, Release 0.2.3

• //server builds the server plugin and associated files

• Targets for building individual clients:

– //client/csharp

– //client/cpp

– //client/java

– //client/lua

– //client/python

• Targets for building individual services:

– //service/SpaceCenter

– //service/InfernalRobotics

– //service/KerbalAlarmClock

• Targets for building protobuf definitions for individual languages:

– //protobuf/csharp

– //protobuf/cpp

– //protobuf/java

– //protobuf/lua

– //protobuf/python

• //doc:html builds the HTML documentation

• //doc:pdf builds the PDF documentation

There are also several convenience scripts:

• tools/serve-docs.sh – build the documentation and serve it from http://localhost:8080

• tools/install.sh – build the plugin and the testing tools, and install them into the GameData directory
of the copy of KSP found at lib/ksp.

9.4 Building the C# projects using an IDE

A C# solution file (kRPC.sln) is provided in the root of the project for use with MonoDevelop or a similar C# IDE.

Some of the C# source files it references are generated by the Bazel build scripts. You need to run bazel build
//:csproj to generate these files before the solution can be built.

Alternatively, if you are unable to run Bazel to build these files, you can download them from GitHub. Simply extract
this archive over your copy of the source and you are good to go.

9.4.1 Running the Tests

kRPC contains a suite of tests for the server plugin, services, client libraries and others.

The tests, which do not require KSP to be running, can be executed using: bazel test //:test. Bazel will
automatically download most of the required dependencies to run the tests, however you will also need to install Lua
and LuaRocks on your system. On Ubuntu, these can be installed using: sudo apt-get install lua5.1
luarocks

404 Chapter 9. Compiling kRPC

https://github.com/krpc/krpc/releases/download/v0.2.3/krpc-genfiles-0.2.3.zip

kRPC, Release 0.2.3

Note: You need to install luarocks version 2.2.0 or higher. On older versions of Ubuntu, the version in the apt
repositories is too old and luarocks will need to be installed via other means.

kRPC also includes a suite of tests that require KSP to be running. First run tools/install.sh to build kRPC
and a testing tools DLL, and install them into the GameData directory of the copy of KSP found at lib/ksp. Then
run KSP, load a save game and start the server (with automatically accept client connected enabled). Then install the
krpc python client, and run the scripts found in service/SpaceCenter/test. These tests will automatically
load a save game called test, launch a vessel and run various tests on it.

9.4. Building the C# projects using an IDE 405

kRPC, Release 0.2.3

406 Chapter 9. Compiling kRPC

CHAPTER

TEN

EXTENDING KRPC

10.1 The kRPC Architecture

kRPC consists of two components: a server and a client. The server plugin (provided by KRPC.dll) runs inside KSP.
It provides a collection of procedures that clients can run. These procedures are arranged in groups called services
to keep things organized. It also provides an in-game user interface that can be used to start/stop the server, change
settings and monitor active clients.

Clients run outside of KSP. This gives you the freedom to run scripts in whatever environment you want. A client
communicates with the server to run procedures using a communication protocol. kRPC comes with several client
libraries that implement this communication protocol, making it easier to write programs in these languages.

kRPC comes with a collection of standard functionality for interacting with vessels, contained in a service called
SpaceCenter. This service provides procedures for things like getting flight/orbital data and controlling the active
vessel. This service is provided by KRPC.SpaceCenter.dll.

10.2 Service API

Third party mods can add functionality to kRPC using the Service API. This is done by adding attributes to your own
classes, methods and properties to make them visible through the server. When the kRPC server starts, it scans all the
assemblies loaded by the game, looking for classes, methods and properties with these attributes.

The following example implements a service that can control the throttle and staging of the active vessel. To add this
to the server, compile the code and place the DLL in your GameData directory.

using UnityEngine;
using KRPC.Service;
using KRPC.Service.Attributes;

namespace LaunchControl {

/// <summary>
/// Service for staging vessels and controlling their throttle.
/// </summary>
[KRPCService (GameScene = GameScene.Flight)]
public static class LaunchControl {

/// <summary>
/// The current throttle setting for the active vessel, between 0 and 1.
/// </summary>
[KRPCProperty]
public static float Throttle {

get { return FlightInputHandler.state.mainThrottle; }

407

kRPC, Release 0.2.3

set { FlightInputHandler.state.mainThrottle = value; }
}

/// <summary>
/// Activate the next stage in the vessel.
/// </summary>
[KRPCProcedure]
public static void ActivateStage ()
{

Staging.ActivateNextStage ();
}

}
}

The following example shows how this service can then be used from a python client:

import krpc
conn = krpc.connect()
conn.launch_control.throttle = 1
conn.launch_control.activate_stage()

Some of the client libraries automatically pick up changes to the functionality provided by the server, including the
Python and Lua clients. However, some clients require code to be generated from the service assembly so that they
can interact with new or changed functionality. See clientgen for details on how to generate this code.

10.2.1 Attributes

The following C# attributes can be used to add functionality to the kRPC server.

KRPCService (string Name, KRPC.Service.GameScene GameScene)

Parameters

• Name – Optional name for the service. If omitted, the service name is set to the name of the
class this attribute is applied to.

• GameScene – The game scenes in which the services procedures are available.

This attribute is applied to a static class, to indicate that all methods, properties and classes declared within it
are part of the the same service. The name of the service is set to the name of the class, or – if present – the
Name parameter.

Multiple services with the same name can be declared, as long the classes, procedures and methods they contain
have unique names. The classes will be merged to appear as a single service on the server.

The type to which this attribute is applied must satisfy the following criteria:

•The type must be a class.

•The class must be public static.

•The name of the class, or the Name parameter if specified, must be a valid kRPC identifier.

•The class must not be declared within another class that has the KRPCService attribute. Nesting of
services is not permitted.

Services are configured to be available in specific game scenes via the GameScene parameter. If the
GameScene parameter is not specified, the service is available in any scene. If a procedure is called when
the service is not available, it will throw an exception.

Examples

408 Chapter 10. Extending kRPC

https://msdn.microsoft.com/en-us/library/aa287992.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/aa287992.aspx

kRPC, Release 0.2.3

•Declare a service called EVA:

[KRPCService]
public static class EVA {

...
}

•Declare a service called MyEVAService (different to the name of the class):

[KRPCService (Name = "MyEVAService")]
public static class EVA {

...
}

•Declare a service called FlightTools that is only available during the Flight game scene:

[KRPCService (GameScene = GameScene.Flight)]
public static class FlightTools {

...
}

KRPCProcedure
This attribute is applied to static methods, to add them to the server as procedures.

The method to which this attribute is applied must satisfy the following criteria:

•The method must be public static.

•The name of the method must be a valid kRPC identifier.

•The method must be declared inside a class that is a KRPCService.

•The parameter types and return type must be types that kRPC knows how to serialize.

•Parameters can have default arguments.

Example

The following defines a service called EVA with a PlantFlag procedure that takes a name and an optional
description, and returns a Flag object.

[KRPCService]
public static class EVA {

[KRPCProcedure]
public static Flag PlantFlag (string name, string description = "")
{

...
}

}

This can be called from a python client as follows:

import krpc
conn = krpc.connect()
flag = conn.eva.plant_flag('Landing Site', 'One small step for Kerbal-kind')

KRPCClass (string Service)

Parameters

• Service – Optional name of the service to add this class to. If omitted, the class is added to
the service that contains its definition.

10.2. Service API 409

https://msdn.microsoft.com/en-us/library/aa287992.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx

kRPC, Release 0.2.3

This attribute is applied to non-static classes. It adds the class to the server, so that references to instances of the
class can be passed between client and server.

A KRPCClass must be part of a service, just like a KRPCProcedure. However, it would be restrictive if
the class had to be declared as a nested class inside a class with the KRPCService attribute. Therefore, a
KRPCClass can be declared outside of any service if it has the Service parameter set to the name of the
service that it is part of. Also, the service that the Service parameter refers to does not have to exist. If it does
not exist, a service with the given name is created.

The class to which this attribute is applied must satisfy the following criteria:

•The class must be public and not static.

•The name of the class must be a valid kRPC identifier.

•The class must either be declared inside a class that is a KRPCService, or have its Service parameter
set to the name of the service it is part of.

Examples

•Declare a class called Flag in the EVA service:

[KRPCService]
public static class EVA {

[KRPCClass]
public class Flag {

...
}

}

•Declare a class called Flag, without nesting the class definition in a service class:

[KRPCClass (Service = "EVA")]
public class Flag {

...
}

KRPCMethod
This attribute is applied to methods inside a KRPCClass. This allows a client to call methods on an instance,
or static methods in the class.

The method to which this attribute is applied must satisfy the following criteria:

•The method must be public.

•The name of the method must be a valid kRPC identifier.

•The method must be declared in a KRPCClass.

•The parameter types and return type must be types that kRPC can serialize.

•Parameters can have default arguments.

Example

Declare a Remove method in the Flag class:

[KRPCClass (Service = "EVA")]
public class Flag {

[KRPCMethod]
void Remove()
{

...

410 Chapter 10. Extending kRPC

https://msdn.microsoft.com/en-us/library/aa287992.aspx
https://msdn.microsoft.com/en-us/library/aa287992.aspx

kRPC, Release 0.2.3

}
}

class KRPCProperty
This attribute is applied to class properties, and comes in two flavors:

1.Applied to static properties in a KRPCService. In this case, the property must satisfy the following
criteria:

•Must be public static and have at least one publicly accessible getter or setter.

•The name of the property must be a valid kRPC identifier.

•Must be declared inside a KRPCService.

2.Applied to non-static properties in a KRPCClass. In this case, the property must satisfy the following
criteria:

•Must be public and not static, and have at least one publicly accessible getter or setter.

•The name of the property must be a valid kRPC identifier.

•Must be declared inside a KRPCClass.

Examples

•Applied to a static property in a service:

[KRPCService]
public static class EVA {

[KRPCProperty]
public Flag LastFlag
{

get { ... }
}

}

This property can be accessed from a python client as follows:

import krpc
conn = krpc.connect()
flag = conn.eva.last_flag

•Applied to a non-static property in a class:

[KRPCClass (Service = "EVA")]
public class Flag {

[KRPCProperty]
public void Name { get; set; }

[KRPCProperty]
public void Description { get; set; }

}

KRPCEnum (string Service)

Parameters

• Service – Optional name of the service to add this enum to. If omitted, the enum is added
to the service that contains its definition.

This attribute is applied to enumeration types. It adds the enumeration and its permissible values to the server.
This attribute works similarly to KRPCClass, but is applied to enumeration types.

10.2. Service API 411

https://msdn.microsoft.com/en-us/library/aa287992.aspx
https://msdn.microsoft.com/en-us/library/system.string.aspx
https://msdn.microsoft.com/en-us/library/aa287992.aspx

kRPC, Release 0.2.3

A KRPCEnum must be part of a service, just like a KRPCClass. Similarly, a KRPCEnum can be declared
outside of a service if it has its Service parameter set to the name of the service that it is part of.

The enumeration type to which this attribute is applied must satisfy the following criteria:

•The enumeration must be public.

•The name of the enumeration must be a valid kRPC identifier.

•The enumeration must either be declared inside a KRPCService, or have it’s Service parameter set to
the name of the service it is part of.

•The underlying C# type must be an int.

Examples

•Declare an enumeration type with two values:

[KRPCEnum (Service = "EVA")]
public enum FlagState {

Raised,
Lowered

}

This can be used from a python client as follows:

import krpc
conn = krpc.connect()
state = conn.eva.FlagState.lowered

10.2.2 Identifiers

An identifier must only contain alphanumeric characters and underscores. An identifier must not start with an under-
score. Identifiers should follow CamelCase capitalization conventions.

Note: Although underscores are permitted, they should be avoided as they are used for internal name mangling.

10.2.3 Serializable Types

A type can only be used as a parameter or return type if kRPC knows how to serialize it. The following types are
serializable:

• The C# types double, float, int, long, uint, ulong, bool, string and byte[]

• Any type annotated with KRPCClass

• Any type annotated with KRPCEnum

• Collections of serializable types:

– System.Collections.Generic.IList<T> where T is a serializable type

– System.Collections.Generic.IDictionary<K,V> where K is one of int, long, uint,
ulong, bool or string and V is a serializable type

– System.Collections.HashSet<V> where V is a serializable type

• Return types can be void

• Protocol buffer message types from namespace KRPC.Schema.KRPC

412 Chapter 10. Extending kRPC

https://msdn.microsoft.com/en-gb/library/sbbt4032.aspx
http://en.wikipedia.org/wiki/CamelCase

kRPC, Release 0.2.3

10.2.4 Game Scenes

Each service is configured to be available from a particular game scene, or scenes.

enum KRPC.Service.GameScene

SpaceCenter
The game scene showing the Kerbal Space Center buildings.

Flight
The game scene showing a vessel in flight (or on the launchpad/runway).

TrackingStation
The tracking station.

EditorVAB
The Vehicle Assembly Building.

EditorSPH
The Space Plane Hangar.

Editor
Either the VAB or the SPH.

All
All game scenes.

Examples

• Declare a service that is available in the KRPC.Service.GameScene.Flight game scene:

[KRPCService (GameScene = GameScene.Flight)]
public static class MyService {

...
}

• Declare a service that is available in the KRPC.Service.GameScene.Flight and
KRPC.Service.GameScene.Editor game scenes:

[KRPCService (GameScene = (GameScene.Flight | GameScene.Editor))]
public static class MyService {

...
}

10.3 Documentation

Documentation can be added using C# XML documentation. The documentation will be automatically exported to
clients when they connect.

10.4 Further Examples

See the SpaceCenter service implementation for more extensive examples.

10.3. Documentation 413

https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx
https://github.com/krpc/krpc/tree/latest-version/src/kRPCSpaceCenter/Services

kRPC, Release 0.2.3

10.5 Generating Service Code for Static Clients

Some of the client libraries dynamically construct the code necessary to interact with the server when they connect.
This means that these libraries will automatically pick up changes to service code. Such client libraries include those
for Python and Lua.

Other client libraries required code to be generated and compiled into them statically. They do not automatically pick
up changes to service code. Such client libraries include those for C++ and C#.

Code for these ‘static’ libraries is generated using the krpc-clientgen tool. This is provided as part of the krpctools
python package. It can be installed using pip:

pip install krpctools

You can then run the script from the command line:

$ krpc-clientgen --help

usage: krpc-clientgen [-h] [-v] [-o OUTPUT] [--ksp KSP]
[--output-defs OUTPUT_DEFS]
{cpp,csharp,java} service input [input ...]

Generate client source code for kRPC services.

positional arguments:
{cpp,csharp,java} Language to generate
service Name of service to generate
input Path to service definition JSON file or assembly

DLL(s)

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit
-o OUTPUT, --output OUTPUT

Path to write source code to. If not specified, writes
source code to standard output.

--ksp KSP Path to Kerbal Space Program directory. Required when
reading from an assembly DLL(s)

--output-defs OUTPUT_DEFS
When generting client code from a DLL, output the
service definitions to the given JSON file

Client code can be generated either directly from an assembly DLL containing the service, or from a JSON file that
has previously been generated from an assembly DLL (using the --output-defs flag).

Generating client code from an assembly DLL requires a copy of Kerbal Space Program and a C# runtime to be
available on the machine. In contrast, generating client code from a JSON file does not have these requirements and
so is more portable.

10.5.1 Example

The following demonstrates how to generate code for the C++ and C# clients to interact with the LaunchControl
service, given in an example previously.

krpc-clientgen expects to be passed the location of your copy of Kerbal Space Program, the name of the language to
generate, the name of the service (from the KRPCService attribute), a path to the assembly containing the service
and the path to write the generated code to.

For C++, run the following:

414 Chapter 10. Extending kRPC

https://pypi.python.org/pypi/krpctools
https://pypi.python.org/pypi/krpctools

kRPC, Release 0.2.3

krpc-clientgen --ksp=/path/to/ksp cpp LaunchControl LaunchControl.dll
launch_control.hpp

To then use the LaunchControl service from C++, you need to link your code against the C++ client library, and
include launch_control.hpp.

For C#, run the following:

krpc-clientgen --ksp=/path/to/ksp csharp LaunchControl LaunchControl.dll
LaunchControl.cs

To then use the LaunchControl service from a C# client, you need to reference the KRPC.Client.dll and include
LaunchControl.cs in your project.

10.5. Generating Service Code for Static Clients 415

kRPC, Release 0.2.3

416 Chapter 10. Extending kRPC

CHAPTER

ELEVEN

COMMUNICATION PROTOCOL

Clients invoke Remote Procedure Calls (RPCs) by communicating with the server using Protocol Buffer v3 mes-
sages sent over a TCP/IP connection. The kRPC download comes with a protocol buffer message definitions file
(schema/krpc.proto) that defines the structure of these messages. It also contains versions of this file for C#, C++,
Java, Lua and Python, compiled using Google’s protocol buffers compiler.

The following sections describe how to communicate with kRPC using snippets of Python code. A complete example
script made from these snippets can be downloaded here.

11.1 Establishing a Connection

kRPC consists of two servers: an RPC server (over which clients send and receive RPCs) and a stream server (over
which clients receive Streams). A client first connects to the RPC Server, then (optionally) to the Stream Server.

11.1.1 Connecting to the RPC Server

To establish a connection to the RPC server, a client must do the following:

1. Open a TCP socket to the server on its RPC port (which defaults to 50000).

2. Send this 12 byte hello message: 0x48 0x45 0x4C 0x4C 0x4F 0x2D 0x52 0x50 0x43 0x00
0x00 0x00

3. Send a 32 byte message containing a name for the connection, that will be displayed on the in-game server
window. This should be a UTF-8 encoded string, up to a maximum of 32 bytes in length. If the string is shorter
than 32 bytes, it should be padded with zeros.

4. Receive a 16 byte unique client identifier. This is sent to the client when the connection is granted, for example
after the user has clicked accept on the in-game UI.

For example, this python code will connect to the RPC server at address 127.0.0.1:50000 using the identifier
Jeb:

import socket
rpc_conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
rpc_conn.connect(('127.0.0.1', 50000))
Send the 12 byte hello message
rpc_conn.sendall(b'\x48\x45\x4C\x4C\x4F\x2D\x52\x50\x43\x00\x00\x00')
Send the 32 byte client name 'Jeb' padded with zeroes
name = 'Jeb'.encode('utf-8')
name += (b'\x00' * (32-len(name)))
rpc_conn.sendall(name)
Receive the 16 byte client identifier

417

https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/krpc/krpc/releases/latest
https://github.com/krpc/krpc/blob/latest-version/protobuf/krpc.proto
https://github.com/google/protobuf

kRPC, Release 0.2.3

identifier = b''
while len(identifier) < 16:

identifier += rpc_conn.recv(16 - len(identifier))
Connection successful. Print out a message along with the client identifier.
import binascii
printable_identifier = binascii.hexlify(bytearray(identifier))
print('Connected to RPC server, client idenfitier = %s' % printable_identifier)

11.1.2 Connecting to the Stream Server

To establish a connection to the stream server, a client must first connect to the RPC Server then do the following:

1. Open a TCP socket to the server on its stream port (which defaults to 50001).

2. Send this 12 byte hello message: 0x48 0x45 0x4C 0x4C 0x4F 0x2D 0x53 0x54 0x52 0x45
0x41 0x4D

3. Send a 16 byte message containing the client’s unique identifier. This identifier is given to the client after it
successfully connects to the RPC server.

4. Receive a 2 byte OK message: 0x4F 0x4B This indicates a successful connection.

Note: Connecting to the Stream Server is optional. If the client doesn’t require stream functionality, there is no need
to connect.

For example, this python code will connect to the stream server at address 127.0.0.1:50001. Note that
identifier is the unique client identifier received when connecting to the RPC server.

stream_conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
stream_conn.connect(('127.0.0.1', 50001))
Send the 12 byte hello message
stream_conn.sendall(b'\x48\x45\x4C\x4C\x4F\x2D\x53\x54\x52\x45\x41\x4D')
Send the 16 byte client identifier
stream_conn.sendall(identifier)
Receive the 2 byte OK message
ok_message = b''
while len(ok_message) < 2:

ok_message += stream_conn.recv(2 - len(ok_message))
Connection successful
print('Connected to stream server')

11.2 Remote Procedures

Remote procedures are arranged into groups called services. These act as a single-level namespacing to keep things
organized. Each service has a unique name used to identify it, and within a service each procedure has a unique name.

11.2.1 Invoking Remote Procedures

Remote procedures are invoked by sending a request message to the RPC server, and waiting for a response message.
These messages are encoded as Protocol Buffer messages.

The request message contains the name of the procedure to invoke, and the values of any arguments to pass it. The
response message contains the value returned by the procedure (if any) and any errors that were encountered.

418 Chapter 11. Communication Protocol

kRPC, Release 0.2.3

Requests are processed in order of receipt. The next request from a client will not be processed until the previous one
completes execution and it’s response has been received by the client. When there are multiple client connections,
requests are processed in round-robin order.

11.2.2 Anatomy of a Request

A request is sent to the server using a Request Protocol Buffer message with the following format:

message Request {
string service = 1;
string procedure = 2;
repeated Argument arguments = 3;

}

message Argument {
uint32 position = 1;
bytes value = 2;

}

The fields are:

• service - The name of the service in which the remote procedure is defined.

• procedure - The name of the remote procedure to invoke.

• arguments - A sequence of Argument messages containing the values of the procedure’s arguments. The
fields are:

– position - The zero-indexed position of the of the argument in the procedure’s signature.

– value - The value of the argument, encoded in Protocol Buffer format.

The Argument messages have a position field to allow values for default arguments to be omitted. See Protocol
Buffer Encoding for details on how to serialize the argument values.

11.2.3 Anatomy of a Response

A response is sent to the client using a Response Protocol Buffer message with the following format:

message Response {
double time = 1;
bool has_error = 2;
string error = 3;
bool has_return_value = 4;
bytes return_value = 5;

}

The fields are:

• time - The universal time (in seconds) when the request completed processing.

• has_error - True if there was an error executing the remote procedure.

• error - If has_error is true, contains a description of the error.

• has_return_value - True if the remote procedure returned a value.

• return_value - If has_return_value is true and has_error is false, contains the value returned by
the remote procedure, encoded in protocol buffer format.

See Protocol Buffer Encoding for details on how to unserialize the return value.

11.2. Remote Procedures 419

kRPC, Release 0.2.3

11.2.4 Encoding and Sending Requests and Responses

To send a request:

1. Encode a Request message using the Protocol Buffer Encoding.

2. Send the size in bytes of the encoded Request message, encoded as a Protocol Buffer varint.

3. Send the message data.

To receive a response:

1. Read a Protocol Buffer varint, which contains the length of the Response message data in bytes.

2. Receive and decode the Response message.

11.2.5 Example RPC invocation

The following Python script invokes the GetStatus procedure from the KRPC service using an already established
connection to the server (the rpc_conn variable).

The krpc.schema.KRPC package contains the Protocol Buffer message formats Request, Response and
Status compiled to python code using the Protocol Buffer compiler. The EncodeVarint and DecodeVarint
functions are used to encode/decode integers to/from the Protocol Buffer varint format.

import the krpc.proto schema
import krpc.schema

Utility functions to encode and decode integers to protobuf format
import google.protobuf

def EncodeVarint(value):
data = []
def write(x):

data.append(x)
google.protobuf.internal.encoder._SignedVarintEncoder()(write, value)
return b''.join(data)

def DecodeVarint(data):
return google.protobuf.internal.decoder._DecodeSignedVarint(data, 0)[0]

Create Request message
request = krpc.schema.KRPC.Request()
request.service = 'KRPC'
request.procedure = 'GetStatus'

Encode and send the request
data = request.SerializeToString()
header = EncodeVarint(len(data))
rpc_conn.sendall(header + data)

Receive the size of the response data
data = b''
while True:

data += rpc_conn.recv(1)
try:

size = DecodeVarint(data)
break

except IndexError:
pass

420 Chapter 11. Communication Protocol

kRPC, Release 0.2.3

Receive the response data
data = b''
while len(data) < size:

data += rpc_conn.recv(size - len(data))

Decode the response message
response = krpc.schema.KRPC.Response()
response.ParseFromString(data)

Check for an error response
if response.has_error:

print('ERROR:', response.error)

Decode the return value as a Status message
else:

status = krpc.schema.KRPC.Status()
assert response.has_return_value
status.ParseFromString(response.return_value)

Print out the version string from the Status message
print(status.version)

11.3 Protocol Buffer Encoding

Values passed as arguments or received as return values are encoded using the Protocol Buffer version 3 serialization
format:

• Documentation for this encoding can be found here: https://developers.google.com/protocol-
buffers/docs/encoding

• Protocol Buffer libraries in many languages are available here: https://github.com/google/protobuf/releases

11.4 Streams

Streams allow the client to repeatedly execute an RPC on the server and receive its results, without needing to repeat-
edly call the RPC directly, avoiding the communication overhead that this would involve.

A client can create a stream on the server by calling AddStream. Once the client is finished with the stream, it can
remove it from the server by calling RemoveStream. Streams are automatically removed when the client that created
it disconnects from the server. Streams are local to each client and there is no way to share a stream between clients.

The RPC for each stream is invoked every fixed update and the return values for all of these RPCs are collected
together into a stream message. This is then sent to the client over the stream server’s TCP/IP connection. If the value
returned by a stream’s RPC does not change since the last update that was sent, its value is omitted from the update
message in order to minimize network traffic.

11.4.1 Anatomy of a Stream Message

A stream message is sent to the client using a StreamMessage Protocol Buffer message with the following format:

message StreamMessage {
repeated StreamResponse responses = 1;

}

11.3. Protocol Buffer Encoding 421

https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding
https://github.com/google/protobuf/releases
http://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html

kRPC, Release 0.2.3

This contains a list of StreamResponse messages, one for each stream that exists on the server for that client, and
whose return value changed since the last update was sent. It has the following format:

message StreamResponse {
uint32 id = 1;
Response response = 2;

}

The fields are:

• id - The identifier of the stream. This is the value returned by AddStream when the stream is created.

• response - A Response message containing the result of the stream’s RPC. This is identical to the
Response message returned when calling the RPC directly. See Anatomy of a Response for details on the
format and contents of this message.

11.5 KRPC Service

The server provides a service called KRPC containing procedures that are used to retrieve information about the server
and to manage streams.

11.5.1 GetStatus

The GetStatus procedure returns status information about the server. It returns a Protocol Buffer message with the
format:

message Status {
string version = 1;
uint64 bytes_read = 2;
uint64 bytes_written = 3;
float bytes_read_rate = 4;
float bytes_written_rate = 5;
uint64 rpcs_executed = 6;
float rpc_rate = 7;
bool one_rpc_per_update = 8;
uint32 max_time_per_update = 9;
bool adaptive_rate_control = 10;
bool blocking_recv = 11;
uint32 recv_timeout = 12;
float time_per_rpc_update = 13;
float poll_time_per_rpc_update = 14;
float exec_time_per_rpc_update = 15;
uint32 stream_rpcs = 16;
uint64 stream_rpcs_executed = 17;
float stream_rpc_rate = 18;
float time_per_stream_update = 19;

}

The version field contains the version string of the server. The remaining fields contain performance information
about the server.

11.5.2 GetServices

The GetServices procedure returns a Protocol Buffer message containing information about all of the services and
procedures provided by the server. It also provides type information about each procedure, in the form of attributes.

422 Chapter 11. Communication Protocol

kRPC, Release 0.2.3

The format of the message is:

message Services {
repeated Service services = 1;

}

This contains a single field, which is a list of Service messages with information about each service provided by
the server. The content of these Service messages are documented below.

11.5.3 AddStream

The AddStream procedure adds a new stream to the server. It takes a single argument containing the RPC to invoke,
encoded as a Request object. See Anatomy of a Request for the format and contents of this object. See Streams for
more information on working with streams.

11.5.4 RemoveStream

The RemoveStream procedure removes a stream from the server. It takes a single argument – the identifier of the
stream to be removed. This is the identifier returned when the stream was added by calling AddStream. See Streams
for more information on working with streams.

11.6 Service Description Message

The GetServices procedure returns information about all of the services provided by the server. Details about a service
are given by a Service message, with the format:

message Service {
string name = 1;
repeated Procedure procedures = 2;
repeated Class classes = 3;
repeated Enumeration enumerations = 4;
string documentation = 5;

}

The fields are:

• name - The name of the service.

• procedures - A list of Procedure messages, one for each procedure defined by the service.

• classes - A list of Class messages, one for each KRPCClass defined by the service.

• enumerations - A list of Enumeration messages, one for each KRPCEnum defined by the service.

• documentation - Documentation for the service, as C# XML documentation.

Note: See the Extending kRPC documentation for more details about KRPCClass and KRPCEnum.

11.6.1 Procedures

Details about a procedure are given by a Procedure message, with the format:

11.6. Service Description Message 423

https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx

kRPC, Release 0.2.3

message Procedure {
string name = 1;
repeated Parameter parameters = 2;
bool has_return_type = 3;
string return_type = 4;
repeated string attributes = 5;
string documentation = 6;

}

message Parameter {
string name = 1;
string type = 2;
bool has_default_argument = 3;
bytes default_argument = 4;

}

The fields are:

• name - The name of the procedure.

• parameters - A list of Parameter messages containing details of the procedure’s parameters, with the
following fields:

– name - The name of the parameter, to allow parameter passing by name.

– type - The type of the parameter.

– has_default_argument - True if the parameter has a default value.

– default_argument - If has_default_argument is true, contains the value of the default value
of the parameter, encoded using Protocol Buffer format.

• has_return_type - True if the procedure returns a value.

• return_type - If has_return_type is true, contains the return type of the procedure.

• attributes - The procedure’s attributes.

• documentation - Documentation for the procedure, as C# XML documentation.

11.6.2 Classes

Details about each KRPCClass are specified in a Class message, with the format:

message Class {
string name = 1;
string documentation = 2;

}

The fields are:

• name - The name of the class.

• documentation - Documentation for the class, as C# XML documentation.

11.6.3 Enumerations

Details about each KRPCEnum are specified in an Enumeration message, with the format:

424 Chapter 11. Communication Protocol

https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx

kRPC, Release 0.2.3

message Enumeration {
string name = 1;
repeated EnumerationValue values = 2;
string documentation = 3;

}

message EnumerationValue {
string name = 1;
int32 value = 2;
string documentation = 3;

}

The fields are:

• name - The name of the enumeration.

• values - A list of EnumerationValue messages, indicating the values that the enumeration can be as-
signed. The fields are:

– name - The name associated with the value for the enumeration.

– value - The possible value for the enumeration as a 32-bit integer.

– documentation - Documentation for the enumeration value, as C# XML documentation.

• documentation - Documentation for the enumeration, as C# XML documentation.

11.6.4 Attributes

Additional type information about a procedure is encoded as a list of attributes, and included in the Procedure
message. For example, if the procedure implements a method for a class (see proxy objects) this fact will be specified
in the attributes.

The following attributes specify what the procedure implements:

• Property.Get(property-name)

Indicates that the procedure is a property getter (for the service) with the given property-name.

• Property.Set(property-name)

Indicates that the procedure is a property setter (for the service) with the given property-name.

• Class.Method(class-name,method-name)

Indicates that the procedure is a method for a class with the given class-name and method-name.

• Class.StaticMethod(class-name,method-name)

Indicates that the procedure is a static method for a class with the given class-name and method-name.

• Class.Property.Get(class-name,property-name)

Indicates that the procedure is a property getter for a class with the given class-name and property-name.

• Class.Property.Set(class-name,property-name)

Indicates that the procedure is a property setter for a class with the given class-name and property-name.

The following attributes specify more details about the return and parameter types of the procedure.

• ReturnType.type-name

Specifies the actual return type of the procedure, if it differs to the type specified in the Procedure message.
For example, this is used with proxy objects.

11.6. Service Description Message 425

https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa288481%28v=vs.71%29.aspx

kRPC, Release 0.2.3

• ParameterType(parameter-position).type-name

Specifies the actual parameter type of the procedure, if it differs to the type of the corresponding parameter
specified in the Parameter message. For example, this is used with proxy objects.

11.6.5 Type Names

The GetServices procedure returns type information about parameters and return values as strings. Type names
can be any of the following:

• A Protocol Buffer value type. One of float, double, int32, int64, uint32, uint64, bool, string
or bytes.

• A KRPCClass in the format Class(ClassName)

• A KRPCEnum in the format Enum(ClassName)

• A Protocol Buffer message type, in the format KRPC.MessageType. Only message types defined in
krpc.proto are permitted.

11.6.6 Proxy Objects

kRPC allows procedures to create objects on the server, and pass a unique identifier for them to the client. This allows
the client to create a proxy object for the actual object, whose methods and properties make remote procedure calls to
the server. Object identifiers have type uint64.

When a procedure returns a proxy object, the procedure will have the attribute ReturnType.Class(ClassName)
where ClassName is the name of the class.

When a procedure takes a proxy object as a parameter, the procedure will have the attribute
ParameterType(n).Class(ClassName) where n is the position of the parameter and ClassName is
the name of the class.

426 Chapter 11. Communication Protocol

CHAPTER

TWELVE

INTERNALS OF KRPC

12.1 Server Performance Settings

Fig. 12.1: Server window showing the advanced settings.

kRPC processes its queue of remote procedures when its FixedUpdate method is invoked. This is called every fixed
framerate frame, typically about 60 times a second. If kRPC were to only execute one RPC per FixedUpdate, it would
only be able to execute at most 60 RPCs per second. In order to achieve a higher RPC throughput, it can execute
multiple RPCs per FixedUpdate. However, if it is allowed to process too many RPCs per FixedUpdate, the game’s
framerate would be adversely affected. The following settings control this behavior, and the resulting tradeoff between
RPC throughput and game FPS:

1. One RPC per update. When this is enabled, the server will execute at most one RPC per client per update.
This will have minimal impact on the games framerate, while still allowing kRPC to execute RPCs. If you don’t
need a high RPC throughput, this is a good option to use.

2. Maximum time per update. When one RPC per update is not enabled, this setting controls the maximum
amount of time (in nanoseconds) that kRPC will spend executing RPCs per FixedUpdate. Setting this to a high

427

kRPC, Release 0.2.3

value, for example 20000 ns, will allow the server to process many RPCs at the expense of the game’s framerate.
A low value, for example 1000 ns, won’t allow the server to execute many RPCs per update, but will allow the
game to run at a much higher framerate.

3. Adaptive rate control. When enabled, kRPC will automatically adjust the maximum time per update parameter,
so that the game has a minimum framerate of 60 FPS. Enabling this setting provides a good tradeoff between
RPC throughput and the game framerate.

Another consideration is the responsiveness of the server. Clients must execute RPCs in sequence, one after another,
and there is usually a (short) delay between them. This means that when the server finishes executing an RPC, if it
were to immediately check for a new RPC it will not find any and will return from the FixedUpdate. This means that
any new RPCs will have to wait until the next FixedUpdate, and results in the server only executing a single RPC per
FixedUpdate regardless of the maximum time per update setting.

Instead, higher RPC throughput can be obtained if the server waits briefly after finishing an RPC to see if any new
RPCs are received. This is done in such a way that the maximum time per update setting (above) is still observed.

This behavior is enabled by the blocking receives option. Receive timeout sets the maximum amount of time the
server will wait for a new RPC from a client.

428 Chapter 12. Internals of kRPC

PYTHON MODULE INDEX

i
InfernalRobotics, 390

k
KerbalAlarmClock, 395
krpc, 316
KRPC, 318
krpc.client, 317
krpc.stream, 318

s
SpaceCenter, 319

429

kRPC, Release 0.2.3

430 Python Module Index

LUA MODULE INDEX

i
InfernalRobotics, 305

k
KerbalAlarmClock, 310
KRPC, 233
krpc, 232

s
SpaceCenter, 234

431

kRPC, Release 0.2.3

432 Lua Module Index

INDEX

Symbols
__call__() (Stream method), 318

A
abort (Control attribute), 260, 345
acceleration (Servo attribute), 308, 393
action (Alarm attribute), 311, 395
actions (Module attribute), 275, 360
activate_next_stage() (Control method), 262, 347
activateNextStage() (Java method), 186
active (Engine attribute), 280, 365
ACTIVE (Java field), 204, 207
active (Light attribute), 286, 371
active (ReactionWheel attribute), 291, 376
active (ResourceHarvester attribute), 290, 375
active (Sensor attribute), 292, 377
active() (ResourceConverter method), 289, 374
active(int) (Java method), 206
active_vessel (in module SpaceCenter), 234, 319
add_node() (Control method), 262, 347
add_stream() (Client method), 317
add_stream() (in module KRPC), 233, 318
addNode(double, float, float, float) (Java method), 187
addStream(Class, String, Object) (Java method), 164
addStream(krpc.schema.KRPC.Request) (Java method),

164
addStream(RemoteObject, String, Object) (Java method),

164
ADJACENT (Java field), 215
aerodynamic_force (Flight attribute), 254, 339
Alarm (class in KerbalAlarmClock), 311, 395
Alarm (Java class), 226
alarm_with_name() (in module KerbalAlarmClock), 310,

395
AlarmAction (class in KerbalAlarmClock), 314, 398
AlarmAction (Java enum), 229
AlarmAction.do_nothing (in module KerbalAlarmClock),

314, 398
AlarmAction.do_nothing_delete_when_passed (in mod-

ule KerbalAlarmClock), 314, 398
AlarmAction.kill_warp (in module KerbalAlarmClock),

314, 398

AlarmAction.kill_warp_only (in module KerbalAlarm-
Clock), 314, 398

AlarmAction.message_only (in module KerbalAlarm-
Clock), 314, 398

AlarmAction.pause_game (in module KerbalAlarm-
Clock), 314, 398

alarms (in module KerbalAlarmClock), 310, 395
alarms_with_type() (in module KerbalAlarmClock), 310,

395
alarmsWithType(AlarmType) (Java method), 226
AlarmType (class in KerbalAlarmClock), 312, 397
AlarmType (Java enum), 227
AlarmType.apoapsis (in module KerbalAlarmClock),

313, 397
AlarmType.ascending_node (in module KerbalAlarm-

Clock), 313, 397
AlarmType.closest (in module KerbalAlarmClock), 313,

397
AlarmType.contract (in module KerbalAlarmClock), 313,

397
AlarmType.contract_auto (in module KerbalAlarm-

Clock), 313, 398
AlarmType.crew (in module KerbalAlarmClock), 313,

398
AlarmType.descending_node (in module KerbalAlarm-

Clock), 313, 397
AlarmType.distance (in module KerbalAlarmClock), 313,

398
AlarmType.earth_time (in module KerbalAlarmClock),

313, 398
AlarmType.launch_rendevous (in module KerbalAlarm-

Clock), 313, 398
AlarmType.maneuver (in module KerbalAlarmClock),

313, 397
AlarmType.maneuver_auto (in module KerbalAlarm-

Clock), 313, 397
AlarmType.periapsis (in module KerbalAlarmClock),

313, 397
AlarmType.raw (in module KerbalAlarmClock), 312, 397
AlarmType.soi_change (in module KerbalAlarmClock),

313, 398
AlarmType.soi_change_auto (in module KerbalAlarm-

433

kRPC, Release 0.2.3

Clock), 313, 398
AlarmType.transfer (in module KerbalAlarmClock), 314,

398
AlarmType.transfer_modelled (in module KerbalAlarm-

Clock), 314, 398
alarmWithName(String) (Java method), 226
all (Parts attribute), 264, 349
amount() (Resources method), 298, 383
amount(String) (Java method), 214
angle_of_attack (Flight attribute), 255, 340
angular_velocity() (CelestialBody method), 250, 335
angular_velocity() (Vessel method), 245, 330
angularVelocity(ReferenceFrame) (Java method), 175,

179
anti_normal (Flight attribute), 253, 338
ANTI_NORMAL (Java field), 187
anti_radial (Flight attribute), 253, 338
ANTI_RADIAL (Java field), 187
ANTI_TARGET (Java field), 187
APOAPSIS (Java field), 228
apoapsis (Orbit attribute), 257, 342
apoapsis_altitude (Orbit attribute), 257, 342
area (Intake attribute), 284, 369
argument_of_periapsis (Orbit attribute), 258, 343
ASCENDING_NODE (Java field), 228
atmosphere_density (Flight attribute), 253, 338
atmosphere_depth (CelestialBody attribute), 248, 333
auto_mode_switch (Engine attribute), 283, 368
auto_pilot (Vessel attribute), 239, 324
AutoPilot (class in SpaceCenter), 303, 387
AutoPilot (Java class), 219
available_thrust (Engine attribute), 281, 366
available_thrust (Vessel attribute), 240, 325
axially_attached (Part attribute), 268, 353

B
ballistic_coefficient (Flight attribute), 256, 341
BASE (Java field), 175
bedrock_altitude (Flight attribute), 251, 336
bedrock_height() (CelestialBody method), 247, 332
bedrock_position() (CelestialBody method), 248, 333
bedrockHeight(double, double) (Java method), 177
bedrockPosition(double, double, ReferenceFrame) (Java

method), 177
bodies (in module SpaceCenter), 234, 319
body (Orbit attribute), 256, 341
brakes (Control attribute), 260, 345
BROKEN (Java field), 203, 205, 209
broken (ReactionWheel attribute), 291, 376
burn_vector() (Node method), 299, 384
burnVector(ReferenceFrame) (Java method), 216

C
can_rails_warp_at() (in module SpaceCenter), 235, 320

can_restart (Engine attribute), 282, 367
can_shutdown (Engine attribute), 282, 367
canRailsWarpAt(int) (Java method), 166
CAPACITY (Java field), 207
cargo_bay (Part attribute), 271, 356
cargo_bays (Parts attribute), 265, 350
CargoBay (class in SpaceCenter), 276, 361
CargoBay (Java class), 196
CargoBayState (class in SpaceCenter), 276, 361
CargoBayState (Java enum), 197
CargoBayState.closed (in module SpaceCenter), 277, 362
CargoBayState.closing (in module SpaceCenter), 277,

362
CargoBayState.open (in module SpaceCenter), 277, 362
CargoBayState.opening (in module SpaceCenter), 277,

362
CelestialBody (class in SpaceCenter), 246, 331
CelestialBody (Java class), 176
center_of_mass (Flight attribute), 252, 337
children (Part attribute), 268, 353
clear_drawing() (in module SpaceCenter), 237, 323
clear_target() (in module SpaceCenter), 234, 319
clearDrawing() (Java method), 168
clearTarget() (Java method), 165
Client (class in krpc), 232
Client (class in krpc.client), 317
close() (Client method), 232, 317
close() (Java method), 164
CLOSED (Java field), 197
CLOSEST (Java field), 228
CLOSING (Java field), 197
Comms (class in SpaceCenter), 301, 386
Comms (Java class), 217
comms (Vessel attribute), 240, 324
config_speed (Servo attribute), 308, 393
connect() (in module krpc), 232, 316
Connection (Java class), 163
CONTRACT (Java field), 228
CONTRACT_AUTO (Java field), 228
Control (class in SpaceCenter), 259, 344
Control (Java class), 185
control (Vessel attribute), 239, 324
ControlGroup (class in InfernalRobotics), 306, 391
ControlGroup (Java class), 222
controlling (Parts attribute), 264, 349
core_temperature (ResourceHarvester attribute), 290, 375
cost (Part attribute), 267, 352
count (ResourceConverter attribute), 289, 373
create_alarm() (in module KerbalAlarmClock), 311, 395
createAlarm(AlarmType, String, double) (Java method),

226
CREW (Java field), 228
crossfeed (Part attribute), 271, 356
current_game_scene (in module KRPC), 233, 318

434 Index

kRPC, Release 0.2.3

current_speed (Servo attribute), 308, 393
current_stage (Control attribute), 261, 346
CUT (Java field), 205

D
DEBRIS (Java field), 175
decouple() (Decoupler method), 277, 362
decouple() (Java method), 197
decouple_stage (Part attribute), 269, 354
decoupled (Decoupler attribute), 277, 362
Decoupler (class in SpaceCenter), 277, 362
Decoupler (Java class), 197
decoupler (Part attribute), 271, 356
decouplers (Parts attribute), 265, 350
delta_v (Node attribute), 299, 384
density() (Resources static method), 298, 383
density(String) (Java method), 215
deploy() (Java method), 204
deploy() (Parachute method), 287, 372
deploy_altitude (Parachute attribute), 287, 372
deploy_min_pressure (Parachute attribute), 287, 372
deployable (LandingGear attribute), 285, 369
deployable (Radiator attribute), 288, 373
DEPLOYED (Java field), 203, 204, 207
deployed (LandingGear attribute), 285, 370
deployed (LandingLeg attribute), 285, 370
deployed (Parachute attribute), 287, 372
deployed (Radiator attribute), 288, 373
deployed (ResourceHarvester attribute), 290, 375
deployed (SolarPanel attribute), 292, 377
DEPLOYING (Java field), 203, 207
DESCENDING_NODE (Java field), 228
direction (Flight attribute), 252, 337
direction() (CelestialBody method), 250, 335
direction() (DockingPort method), 278, 363
direction() (Node method), 301, 386
direction() (Part method), 273, 358
direction() (Vessel method), 245, 330
direction(ReferenceFrame) (Java method), 175, 179, 194,

198, 217
disengage() (AutoPilot method), 303, 388
disengage() (Java method), 219
DISTANCE (Java field), 228
DO_NOTHING (Java field), 229
DO_NOTHING_DELETE_WHEN_PASSED (Java

field), 229
DOCKED (Java field), 175, 198
docked_part (DockingPort attribute), 278, 363
DOCKING (Java field), 198
docking_port (Part attribute), 272, 357
docking_port_with_name() (Parts method), 266, 351
docking_ports (Parts attribute), 265, 350
DockingPort (class in SpaceCenter), 277, 362
DockingPort (Java class), 197

DockingPortState (class in SpaceCenter), 279, 364
DockingPortState (Java enum), 198
DockingPortState.docked (in module SpaceCenter), 279,

364
DockingPortState.docking (in module SpaceCenter), 279,

364
DockingPortState.moving (in module SpaceCenter), 280,

365
DockingPortState.ready (in module SpaceCenter), 279,

364
DockingPortState.shielded (in module SpaceCenter), 280,

365
DockingPortState.undocking (in module SpaceCenter),

280, 365
dockingPortWithName(String) (Java method), 190
drag (Flight attribute), 254, 339
drag_coefficient (Flight attribute), 256, 341
draw_direction() (in module SpaceCenter), 237, 322
draw_line() (in module SpaceCenter), 237, 322
drawDirection(org.javatuples.Triplet, ReferenceFrame,

org.javatuples.Triplet, float) (Java method), 168
drawLine(org.javatuples.Triplet, org.javatuples.Triplet,

ReferenceFrame, org.javatuples.Triplet) (Java
method), 168

dry_mass (Part attribute), 269, 354
dry_mass (Vessel attribute), 240, 325
dynamic_pressure (Flight attribute), 253, 338

E
EARTH_TIME (Java field), 228
eccentric_anomaly (Orbit attribute), 259, 344
eccentricity (Orbit attribute), 258, 343
EDITOR_SPH (Java field), 165
EDITOR_VAB (Java field), 165
elevation (Flight attribute), 251, 336
energy_flow (SolarPanel attribute), 293, 378
engage() (AutoPilot method), 303, 387
engage() (Java method), 219
Engine (class in SpaceCenter), 280, 365
Engine (Java class), 200
engine (Part attribute), 272, 357
engines (Parts attribute), 266, 351
epoch (Orbit attribute), 259, 344
equatorial_radius (CelestialBody attribute), 247, 332
equivalent_air_speed (Flight attribute), 255, 340
error (AutoPilot attribute), 303, 388
ESCAPING (Java field), 176
events (Module attribute), 275, 360
expanded (ControlGroup attribute), 306, 391
EXTENDED (Java field), 205, 209
EXTENDING (Java field), 205, 209
extraction_rate (ResourceHarvester attribute), 290, 375

Index 435

kRPC, Release 0.2.3

F
Fairing (class in SpaceCenter), 283, 368
Fairing (Java class), 202
fairing (Part attribute), 272, 357
fairings (Parts attribute), 266, 351
far_available (in module SpaceCenter), 237, 322
fields (Module attribute), 275, 360
Flight (class in SpaceCenter), 251, 336
Flight (Java class), 179
FLIGHT (Java field), 165
flight() (Vessel method), 238, 323
flight(ReferenceFrame) (Java method), 169
flow (Intake attribute), 284, 369
flow_mode() (Resources static method), 298, 383
flowMode(String) (Java method), 215
FLYING (Java field), 176
forward (Control attribute), 261, 346
forward_key (ControlGroup attribute), 306, 391
fuel_lines_from (Part attribute), 271, 356
fuel_lines_to (Part attribute), 271, 356

G
g (in module SpaceCenter), 235, 320
g_force (Flight attribute), 251, 336
GameScene (class in KRPC), 233, 318
GameScene (Java enum), 165
GameScene.editor_sph (in module KRPC), 233, 319
GameScene.editor_vab (in module KRPC), 233, 319
GameScene.flight (in module KRPC), 233, 318
GameScene.space_center (in module KRPC), 233, 318
GameScene.tracking_station (in module KRPC), 233,

319
gear (Control attribute), 260, 345
get() (Java method), 164
get_action_group() (Control method), 262, 347
get_field() (Module method), 275, 360
get_services() (in module KRPC), 233, 318
get_status() (in module KRPC), 233, 318
get_status() (KRPC method), 232, 317
getAbort() (Java method), 185
getAcceleration() (Java method), 224
getAction() (Java method), 226
getActionGroup(int) (Java method), 186
getActions() (Java method), 195
getActive() (Java method), 200, 204, 207, 208
getActiveVessel() (Java method), 165
getAerodynamicForce() (Java method), 181
getAlarms() (Java method), 226
getAll() (Java method), 188
getAngleOfAttack() (Java method), 182
getAntiNormal() (Java method), 180
getAntiRadial() (Java method), 180
getApoapsis() (Java method), 183
getApoapsisAltitude() (Java method), 183

getArea() (Java method), 202
getArgumentOfPeriapsis() (Java method), 184
getAtmosphereDensity() (Java method), 180
getAtmosphereDepth() (Java method), 177
getAutoModeSwitch() (Java method), 201
getAutoPilot() (Java method), 170
getAvailableThrust() (Java method), 170, 200
getAxiallyAttached() (Java method), 191
getBallisticCoefficient() (Java method), 182
getBedrockAltitude() (Java method), 179
getBodies() (Java method), 165
getBody() (Java method), 183
getBrakes() (Java method), 185
getBroken() (Java method), 208
getCanRestart() (Java method), 201
getCanShutdown() (Java method), 201
getCargoBay() (Java method), 193
getCargoBays() (Java method), 189
getCenterOfMass() (Java method), 180
getChildren() (Java method), 191
getComms() (Java method), 170
getConfigSpeed() (Java method), 224
getControl() (Java method), 169
getControlling() (Java method), 189
getCoreTemperature() (Java method), 207
getCost() (Java method), 191
getCount() (Java method), 205
getCrossfeed() (Java method), 192
getCurrentGameScene() (Java method), 164
getCurrentSpeed() (Java method), 224
getCurrentStage() (Java method), 186
getDecoupled() (Java method), 197
getDecoupler() (Java method), 193
getDecouplers() (Java method), 189
getDecoupleStage() (Java method), 191
getDeltaV() (Java method), 216
getDeployable() (Java method), 202, 205
getDeployAltitude() (Java method), 204
getDeployed() (Java method), 202–205, 207, 208
getDeployMinPressure() (Java method), 204
getDirection() (Java method), 180
getDockedPart() (Java method), 197
getDockingPort() (Java method), 193
getDockingPorts() (Java method), 189
getDrag() (Java method), 181
getDragCoefficient() (Java method), 182
getDryMass() (Java method), 170, 191
getDynamicPressure() (Java method), 180
getEccentricAnomaly() (Java method), 184
getEccentricity() (Java method), 184
getElevation() (Java method), 179
getEnergyFlow() (Java method), 208
getEngine() (Java method), 193
getEngines() (Java method), 190

436 Index

kRPC, Release 0.2.3

getEpoch() (Java method), 184
getEquatorialRadius() (Java method), 176
getEquivalentAirSpeed() (Java method), 181
getError() (Java method), 219
getEvents() (Java method), 195
getExpanded() (Java method), 222
getExtractionRate() (Java method), 207
getFairing() (Java method), 193
getFairings() (Java method), 190
getFARAvailable() (Java method), 168
getField(String) (Java method), 195
getFields() (Java method), 194
getFlow() (Java method), 202
getForward() (Java method), 186
getForwardKey() (Java method), 222
getFuelLinesFrom() (Java method), 193
getFuelLinesTo() (Java method), 193
getG() (Java method), 166
getGear() (Java method), 185
getGForce() (Java method), 179
getGimballed() (Java method), 201
getGimbalLimit() (Java method), 201
getGimbalLocked() (Java method), 201
getGimbalRange() (Java method), 201
getGravitationalParameter() (Java method), 176
getHasAtmosphere() (Java method), 177
getHasAtmosphericOxygen() (Java method), 177
getHasConnection() (Java method), 218
getHasConnectionToGroundStation() (Java method), 218
getHasFlightComputer() (Java method), 218
getHasFuel() (Java method), 201
getHasLocalControl() (Java method), 218
getHasModes() (Java method), 201
getHasShield() (Java method), 198
getHeading() (Java method), 180
getHorizontalSpeed() (Java method), 180
getID() (Java method), 227
getImpactTolerance() (Java method), 192
getImpulse() (Java method), 197
getInclination() (Java method), 184
getIntake() (Java method), 193
getIntakes() (Java method), 190
getIsAxisInverted() (Java method), 224
getIsFreeMoving() (Java method), 224
getIsFuelLine() (Java method), 192
getIsLocked() (Java method), 224
getIsMoving() (Java method), 224
getJettisoned() (Java method), 202
getKerbinSeaLevelSpecificImpulse() (Java method), 171,

200
getLandingGear() (Java method), 190, 193
getLandingLeg() (Java method), 193
getLandingLegs() (Java method), 190
getLatitude() (Java method), 180

getLaunchClamp() (Java method), 193
getLaunchClamps() (Java method), 190
getLift() (Java method), 181
getLiftCoefficient() (Java method), 182
getLight() (Java method), 193
getLights() (Java method), 185, 190
getLongitude() (Java method), 180
getLongitudeOfAscendingNode() (Java method), 184
getMach() (Java method), 181
getMargin() (Java method), 226
getMass() (Java method), 170, 176, 191
getMassless() (Java method), 191
getMaxConfigPosition() (Java method), 223
getMaximumRailsWarpFactor() (Java method), 166
getMaxPosition() (Java method), 224
getMaxRollSpeed() (Java method), 220
getMaxRotationSpeed() (Java method), 220
getMaxSkinTemperature() (Java method), 192
getMaxTemperature() (Java method), 192
getMaxThrust() (Java method), 170, 200
getMaxVacuumThrust() (Java method), 170, 200
getMeanAltitude() (Java method), 179
getMeanAnomaly() (Java method), 184
getMeanAnomalyAtEpoch() (Java method), 184
getMET() (Java method), 169
getMinConfigPosition() (Java method), 223
getMinPosition() (Java method), 223
getMode() (Java method), 201
getModes() (Java method), 201
getModules() (Java method), 193
getName() (Java method), 169, 176, 190, 194, 197, 222,

223, 227
getNames() (Java method), 214
getNextOrbit() (Java method), 184
getNodes() (Java method), 187
getNonRotatingReferenceFrame() (Java method), 178
getNormal() (Java method), 180, 215
getNotes() (Java method), 227
getOpen() (Java method), 196, 202
getOptimumCoreTemperature() (Java method), 207
getOrbit() (Java method), 169, 176, 216
getOrbitalReferenceFrame() (Java method), 171, 178, 217
getParachute() (Java method), 193
getParachutes() (Java method), 190
getParent() (Java method), 191
getPart() (Java method), 194, 196, 197, 200, 202–205,

207, 208
getParts() (Java method), 170
getPeriapsis() (Java method), 183
getPeriapsisAltitude() (Java method), 183
getPeriod() (Java method), 184
getPhysicsWarpFactor() (Java method), 166
getPitch() (Java method), 180, 186
getPitchTorque() (Java method), 208

Index 437

kRPC, Release 0.2.3

getPosition() (Java method), 223
getPowerUsage() (Java method), 204, 208
getPrograde() (Java method), 180, 215
getPropellantRatios() (Java method), 201
getPropellants() (Java method), 201
getRadial() (Java method), 180, 215
getRadiallyAttached() (Java method), 191
getRadiator() (Java method), 193
getRadiators() (Java method), 190
getRadius() (Java method), 183
getRailsWarpFactor() (Java method), 166
getRCS() (Java method), 185
getReactionWheel() (Java method), 193
getReactionWheels() (Java method), 190
getReengageDistance() (Java method), 198
getReferenceFrame() (Java method), 171, 177, 194, 198,

217, 219
getRemaining() (Java method), 227
getRemainingDeltaV() (Java method), 216
getRemoteTechAvailable() (Java method), 168
getRepeat() (Java method), 227
getRepeatPeriod() (Java method), 227
getResourceConverter() (Java method), 193
getResourceConverters() (Java method), 190
getResourceHarvester() (Java method), 193
getResourceHarvesters() (Java method), 190
getResources() (Java method), 170, 192
getRetrograde() (Java method), 180
getReverseKey() (Java method), 222
getRight() (Java method), 186
getRoll() (Java method), 180, 186
getRollError() (Java method), 219
getRollSpeedMultiplier() (Java method), 220
getRollTorque() (Java method), 208
getRoot() (Java method), 188
getRotation() (Java method), 180
getRotationalPeriod() (Java method), 176
getRotationalSpeed() (Java method), 176
getRotationSpeedMultiplier() (Java method), 220
getSAS() (Java method), 185, 219
getSASMode() (Java method), 185, 220
getSatellites() (Java method), 176
getSemiMajorAxis() (Java method), 183
getSemiMinorAxis() (Java method), 183
getSensor() (Java method), 193
getSensors() (Java method), 190
getServices() (Java method), 164
getServoGroups() (Java method), 221
getServos() (Java method), 222
getShielded() (Java method), 198
getSideslipAngle() (Java method), 182
getSignalDelay() (Java method), 218
getSignalDelayToGroundStation() (Java method), 218
getSituation() (Java method), 169

getSkinTemperature() (Java method), 192
getSolarPanel() (Java method), 194
getSolarPanels() (Java method), 190
getSpecificImpulse() (Java method), 170, 200
getSpeed() (Java method), 180, 183, 202, 222, 224
getSpeedMode() (Java method), 185
getSpeedOfSound() (Java method), 181
getSphereOfInfluence() (Java method), 177
getStage() (Java method), 191
getStallFraction() (Java method), 182
getState() (Java method), 196, 197, 202–205, 207, 208
getStaticAirTemperature() (Java method), 182
getStaticPressure() (Java method), 181
getStatus() (Java method), 164
getSunExposure() (Java method), 209
getSurfaceAltitude() (Java method), 179
getSurfaceGravity() (Java method), 176
getSurfaceReferenceFrame() (Java method), 171
getSurfaceVelocityReferenceFrame() (Java method), 173
getTarget() (Java method), 169
getTargetBody() (Java method), 165
getTargetDirection() (Java method), 219
getTargetDockingPort() (Java method), 165
getTargetRoll() (Java method), 219
getTargetVessel() (Java method), 165
getTemperature() (Java method), 192
getTerminalVelocity() (Java method), 182
getThermalConductionFlux() (Java method), 192
getThermalConvectionFlux() (Java method), 192
getThermalEfficiency() (Java method), 207
getThermalInternalFlux() (Java method), 192
getThermalMass() (Java method), 192
getThermalRadiationFlux() (Java method), 192
getThermalResourceMass() (Java method), 192
getThermalSkinMass() (Java method), 192
getThermalSkinToInternalFlux() (Java method), 192
getThrottle() (Java method), 185, 201
getThrottleLocked() (Java method), 201
getThrust() (Java method), 170, 200
getThrustLimit() (Java method), 200
getThrustSpecificFuelConsumption() (Java method), 182
getTime() (Java method), 226
getTimeTo() (Java method), 216
getTimeToApoapsis() (Java method), 184
getTimeToPeriapsis() (Java method), 184
getTimeToSOIChange() (Java method), 184
getTitle() (Java method), 190
getTotalAirTemperature() (Java method), 182
getType() (Java method), 169, 226
getUp() (Java method), 186
getUT() (Java method), 166, 216
getVacuumSpecificImpulse() (Java method), 170, 200
getValue() (Java method), 208
getVelocity() (Java method), 180

438 Index

kRPC, Release 0.2.3

getVerticalSpeed() (Java method), 180
getVessel() (Java method), 191, 227
getVessels() (Java method), 165
getWarpFactor() (Java method), 166
getWarpMode() (Java method), 166
getWarpRate() (Java method), 166
getWheelSteering() (Java method), 186
getWheelThrottle() (Java method), 186
getXferOriginBody() (Java method), 227
getXferTargetBody() (Java method), 227
getYaw() (Java method), 186
getYawTorque() (Java method), 208
gimbal_limit (Engine attribute), 283, 368
gimbal_locked (Engine attribute), 283, 368
gimbal_range (Engine attribute), 283, 368
gimballed (Engine attribute), 283, 368
gravitational_parameter (CelestialBody attribute), 247,

332

H
has_action() (Module method), 275, 360
has_atmosphere (CelestialBody attribute), 248, 333
has_atmospheric_oxygen (CelestialBody attribute), 249,

334
has_connection (Comms attribute), 302, 386
has_connection_to_ground_station (Comms attribute),

302, 387
has_event() (Module method), 275, 360
has_field() (Module method), 275, 360
has_flight_computer (Comms attribute), 301, 386
has_fuel (Engine attribute), 282, 367
has_local_control (Comms attribute), 301, 386
has_modes (Engine attribute), 282, 367
has_resource() (Resources method), 297, 382
has_shield (DockingPort attribute), 278, 363
hasAction(String) (Java method), 196
hasEvent(String) (Java method), 195
hasField(String) (Java method), 195
hasResource(String) (Java method), 214
heading (Flight attribute), 252, 337
highlight (Servo attribute), 307, 392
horizontal_speed (Flight attribute), 252, 337

I
id (Alarm attribute), 311, 396
IDLE (Java field), 206
impact_tolerance (Part attribute), 269, 354
impulse (Decoupler attribute), 277, 362
in_decouple_stage() (Parts method), 265, 350
in_stage() (Parts method), 265, 350
inclination (Orbit attribute), 258, 343
inDecoupleStage(int) (Java method), 189
InfernalRobotics (Java class), 221
InfernalRobotics (module), 305, 390

inputs() (ResourceConverter method), 289, 374
inputs(int) (Java method), 206
inStage(int) (Java method), 189
Intake (class in SpaceCenter), 284, 369
Intake (Java class), 202
intake (Part attribute), 272, 357
intakes (Parts attribute), 266, 351
is_axis_inverted (Servo attribute), 309, 393
is_free_moving (Servo attribute), 309, 393
is_fuel_line (Part attribute), 271, 356
is_locked (Servo attribute), 309, 393
is_moving (Servo attribute), 309, 393

J
jettison() (Fairing method), 283, 368
jettison() (Java method), 202
jettisoned (Fairing attribute), 283, 368

K
KerbalAlarmClock (Java class), 226
KerbalAlarmClock (module), 310, 395
kerbin_sea_level_specific_impulse (Engine attribute),

281, 366
kerbin_sea_level_specific_impulse (Vessel attribute),

241, 326
KILL_WARP (Java field), 229
KILL_WARP_ONLY (Java field), 229
KRPC (class in krpc), 232
KRPC (class in krpc.client), 317
krpc (Client attribute), 232, 317
KRPC (Java class), 164
KRPC (module), 233, 318
krpc (module), 232, 316
krpc.client (module), 317
krpc.client (package), 163
krpc.stream (module), 318
krpc::Client (C++ class), 94
krpc::connect (C++ function), 94
krpc::services::InfernalRobotics (C++ class), 152
krpc::services::InfernalRobotics::ControlGroup (C++

class), 152
krpc::services::InfernalRobotics::ControlGroup::expanded

(C++ function), 153
krpc::services::InfernalRobotics::ControlGroup::forward_key

(C++ function), 152
krpc::services::InfernalRobotics::ControlGroup::move_center

(C++ function), 153
krpc::services::InfernalRobotics::ControlGroup::move_left

(C++ function), 153
krpc::services::InfernalRobotics::ControlGroup::move_next_preset

(C++ function), 153
krpc::services::InfernalRobotics::ControlGroup::move_prev_preset

(C++ function), 153

Index 439

kRPC, Release 0.2.3

krpc::services::InfernalRobotics::ControlGroup::move_right
(C++ function), 153

krpc::services::InfernalRobotics::ControlGroup::name
(C++ function), 152

krpc::services::InfernalRobotics::ControlGroup::reverse_key
(C++ function), 152

krpc::services::InfernalRobotics::ControlGroup::servo_with_name
(C++ function), 153

krpc::services::InfernalRobotics::ControlGroup::servos
(C++ function), 153

krpc::services::InfernalRobotics::ControlGroup::set_expanded
(C++ function), 153

krpc::services::InfernalRobotics::ControlGroup::set_forward_key
(C++ function), 152

krpc::services::InfernalRobotics::ControlGroup::set_name
(C++ function), 152

krpc::services::InfernalRobotics::ControlGroup::set_reverse_key
(C++ function), 152

krpc::services::InfernalRobotics::ControlGroup::set_speed
(C++ function), 153

krpc::services::InfernalRobotics::ControlGroup::speed
(C++ function), 152

krpc::services::InfernalRobotics::ControlGroup::stop
(C++ function), 153

krpc::services::InfernalRobotics::InfernalRobotics (C++
function), 152

krpc::services::InfernalRobotics::Servo (C++ class), 153
krpc::services::InfernalRobotics::Servo::acceleration

(C++ function), 154
krpc::services::InfernalRobotics::Servo::config_speed

(C++ function), 154
krpc::services::InfernalRobotics::Servo::current_speed

(C++ function), 154
krpc::services::InfernalRobotics::Servo::is_axis_inverted

(C++ function), 154
krpc::services::InfernalRobotics::Servo::is_free_moving

(C++ function), 154
krpc::services::InfernalRobotics::Servo::is_locked (C++

function), 154
krpc::services::InfernalRobotics::Servo::is_moving (C++

function), 154
krpc::services::InfernalRobotics::Servo::max_config_position

(C++ function), 154
krpc::services::InfernalRobotics::Servo::max_position

(C++ function), 154
krpc::services::InfernalRobotics::Servo::min_config_position

(C++ function), 154
krpc::services::InfernalRobotics::Servo::min_position

(C++ function), 154
krpc::services::InfernalRobotics::Servo::move_center

(C++ function), 155
krpc::services::InfernalRobotics::Servo::move_left (C++

function), 155
krpc::services::InfernalRobotics::Servo::move_next_preset

(C++ function), 155
krpc::services::InfernalRobotics::Servo::move_prev_preset

(C++ function), 155
krpc::services::InfernalRobotics::Servo::move_right

(C++ function), 155
krpc::services::InfernalRobotics::Servo::move_to (C++

function), 155
krpc::services::InfernalRobotics::Servo::name (C++

function), 153
krpc::services::InfernalRobotics::Servo::position (C++

function), 153
krpc::services::InfernalRobotics::Servo::set_acceleration

(C++ function), 154
krpc::services::InfernalRobotics::Servo::set_current_speed

(C++ function), 154
krpc::services::InfernalRobotics::Servo::set_highlight

(C++ function), 153
krpc::services::InfernalRobotics::Servo::set_is_axis_inverted

(C++ function), 154
krpc::services::InfernalRobotics::Servo::set_is_locked

(C++ function), 154
krpc::services::InfernalRobotics::Servo::set_max_position

(C++ function), 154
krpc::services::InfernalRobotics::Servo::set_min_position

(C++ function), 154
krpc::services::InfernalRobotics::Servo::set_name (C++

function), 153
krpc::services::InfernalRobotics::Servo::set_speed (C++

function), 154
krpc::services::InfernalRobotics::Servo::speed (C++

function), 154
krpc::services::InfernalRobotics::Servo::stop (C++ func-

tion), 155
krpc::services::InfernalRobotics::servo_group_with_name

(C++ function), 152
krpc::services::InfernalRobotics::servo_groups (C++

function), 152
krpc::services::InfernalRobotics::servo_with_name (C++

function), 152
krpc::services::KerbalAlarmClock (C++ class), 156
krpc::services::KerbalAlarmClock::Alarm (C++ class),

156
krpc::services::KerbalAlarmClock::Alarm::action (C++

function), 156
krpc::services::KerbalAlarmClock::Alarm::id (C++ func-

tion), 157
krpc::services::KerbalAlarmClock::Alarm::margin (C++

function), 157
krpc::services::KerbalAlarmClock::Alarm::name (C++

function), 157
krpc::services::KerbalAlarmClock::Alarm::notes (C++

function), 157
krpc::services::KerbalAlarmClock::Alarm::remaining

(C++ function), 157

440 Index

kRPC, Release 0.2.3

krpc::services::KerbalAlarmClock::Alarm::remove (C++
function), 158

krpc::services::KerbalAlarmClock::Alarm::repeat (C++
function), 157

krpc::services::KerbalAlarmClock::Alarm::repeat_period
(C++ function), 157

krpc::services::KerbalAlarmClock::Alarm::set_action
(C++ function), 157

krpc::services::KerbalAlarmClock::Alarm::set_margin
(C++ function), 157

krpc::services::KerbalAlarmClock::Alarm::set_name
(C++ function), 157

krpc::services::KerbalAlarmClock::Alarm::set_notes
(C++ function), 157

krpc::services::KerbalAlarmClock::Alarm::set_repeat
(C++ function), 157

krpc::services::KerbalAlarmClock::Alarm::set_repeat_period
(C++ function), 157

krpc::services::KerbalAlarmClock::Alarm::set_time
(C++ function), 157

krpc::services::KerbalAlarmClock::Alarm::set_vessel
(C++ function), 157

krpc::services::KerbalAlarmClock::Alarm::set_xfer_origin_body
(C++ function), 157

krpc::services::KerbalAlarmClock::Alarm::set_xfer_target_body
(C++ function), 158

krpc::services::KerbalAlarmClock::Alarm::time (C++
function), 157

krpc::services::KerbalAlarmClock::Alarm::type (C++
function), 157

krpc::services::KerbalAlarmClock::Alarm::vessel (C++
function), 157

krpc::services::KerbalAlarmClock::Alarm::xfer_origin_body
(C++ function), 157

krpc::services::KerbalAlarmClock::Alarm::xfer_target_body
(C++ function), 157

krpc::services::KerbalAlarmClock::alarm_with_name
(C++ function), 156

krpc::services::KerbalAlarmClock::AlarmAction (C++
enum), 159

krpc::services::KerbalAlarmClock::AlarmAction::do_nothing
(C++ enumerator), 159

krpc::services::KerbalAlarmClock::AlarmAction::do_nothing_delete_when_passed
(C++ enumerator), 159

krpc::services::KerbalAlarmClock::AlarmAction::kill_warp
(C++ enumerator), 159

krpc::services::KerbalAlarmClock::AlarmAction::kill_warp_only
(C++ enumerator), 159

krpc::services::KerbalAlarmClock::AlarmAction::message_only
(C++ enumerator), 159

krpc::services::KerbalAlarmClock::AlarmAction::pause_game
(C++ enumerator), 159

krpc::services::KerbalAlarmClock::alarms (C++ func-
tion), 156

krpc::services::KerbalAlarmClock::alarms_with_type
(C++ function), 156

krpc::services::KerbalAlarmClock::AlarmType (C++
enum), 158

krpc::services::KerbalAlarmClock::AlarmType::apoapsis
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::ascending_node
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::closest
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::contract
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::contract_auto
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::crew
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::descending_node
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::distance
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::earth_time
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::launch_rendevous
(C++ enumerator), 159

krpc::services::KerbalAlarmClock::AlarmType::maneuver
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::maneuver_auto
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::periapsis
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::raw
(C++ enumerator), 158

krpc::services::KerbalAlarmClock::AlarmType::soi_change
(C++ enumerator), 159

krpc::services::KerbalAlarmClock::AlarmType::soi_change_auto
(C++ enumerator), 159

krpc::services::KerbalAlarmClock::AlarmType::transfer
(C++ enumerator), 159

krpc::services::KerbalAlarmClock::AlarmType::transfer_modelled
(C++ enumerator), 159

krpc::services::KerbalAlarmClock::create_alarm (C++
function), 156

krpc::services::KerbalAlarmClock::KerbalAlarmClock
(C++ function), 156

krpc::services::KRPC (C++ class), 94, 95
krpc::services::KRPC::add_stream (C++ function), 95
krpc::services::KRPC::current_game_scene (C++ func-

tion), 95
krpc::services::KRPC::GameScene (C++ enum), 96
krpc::services::KRPC::GameScene::editor_sph (C++

enumerator), 96
krpc::services::KRPC::GameScene::editor_vab (C++

enumerator), 96
krpc::services::KRPC::GameScene::flight (C++ enumer-

Index 441

kRPC, Release 0.2.3

ator), 96
krpc::services::KRPC::GameScene::space_center (C++

enumerator), 96
krpc::services::KRPC::GameScene::tracking_station

(C++ enumerator), 96
krpc::services::KRPC::get_services (C++ function), 95
krpc::services::KRPC::get_status (C++ function), 94, 95
krpc::services::KRPC::KRPC (C++ function), 94, 95
krpc::services::KRPC::remove_stream (C++ function),

96
krpc::services::SpaceCenter (C++ class), 96
krpc::services::SpaceCenter::active_vessel (C++ func-

tion), 96
krpc::services::SpaceCenter::AutoPilot (C++ class), 149
krpc::services::SpaceCenter::AutoPilot::disengage (C++

function), 149
krpc::services::SpaceCenter::AutoPilot::engage (C++

function), 149
krpc::services::SpaceCenter::AutoPilot::error (C++ func-

tion), 149
krpc::services::SpaceCenter::AutoPilot::max_roll_speed

(C++ function), 150
krpc::services::SpaceCenter::AutoPilot::max_rotation_speed

(C++ function), 150
krpc::services::SpaceCenter::AutoPilot::reference_frame

(C++ function), 149
krpc::services::SpaceCenter::AutoPilot::roll_error (C++

function), 149
krpc::services::SpaceCenter::AutoPilot::roll_speed_multiplier

(C++ function), 150
krpc::services::SpaceCenter::AutoPilot::rotation_speed_multiplier

(C++ function), 150
krpc::services::SpaceCenter::AutoPilot::sas (C++ func-

tion), 150
krpc::services::SpaceCenter::AutoPilot::sas_mode (C++

function), 150
krpc::services::SpaceCenter::AutoPilot::set_max_roll_speed

(C++ function), 150
krpc::services::SpaceCenter::AutoPilot::set_max_rotation_speed

(C++ function), 150
krpc::services::SpaceCenter::AutoPilot::set_pid_parameters

(C++ function), 150
krpc::services::SpaceCenter::AutoPilot::set_reference_frame

(C++ function), 149
krpc::services::SpaceCenter::AutoPilot::set_roll_speed_multiplier

(C++ function), 150
krpc::services::SpaceCenter::AutoPilot::set_rotation_speed_multiplier

(C++ function), 150
krpc::services::SpaceCenter::AutoPilot::set_sas (C++

function), 150
krpc::services::SpaceCenter::AutoPilot::set_sas_mode

(C++ function), 150
krpc::services::SpaceCenter::AutoPilot::set_target_direction

(C++ function), 149

krpc::services::SpaceCenter::AutoPilot::set_target_roll
(C++ function), 150

krpc::services::SpaceCenter::AutoPilot::target_direction
(C++ function), 149

krpc::services::SpaceCenter::AutoPilot::target_pitch_and_heading
(C++ function), 149

krpc::services::SpaceCenter::AutoPilot::target_roll (C++
function), 150

krpc::services::SpaceCenter::AutoPilot::wait (C++ func-
tion), 149

krpc::services::SpaceCenter::bodies (C++ function), 96
krpc::services::SpaceCenter::can_rails_warp_at (C++

function), 97
krpc::services::SpaceCenter::CargoBay (C++ class), 127
krpc::services::SpaceCenter::CargoBay::open (C++ func-

tion), 127
krpc::services::SpaceCenter::CargoBay::part (C++ func-

tion), 127
krpc::services::SpaceCenter::CargoBay::set_open (C++

function), 127
krpc::services::SpaceCenter::CargoBay::state (C++ func-

tion), 127
krpc::services::SpaceCenter::CargoBayState (C++

enum), 127
krpc::services::SpaceCenter::CargoBayState::closed

(C++ enumerator), 127
krpc::services::SpaceCenter::CargoBayState::closing

(C++ enumerator), 127
krpc::services::SpaceCenter::CargoBayState::open (C++

enumerator), 127
krpc::services::SpaceCenter::CargoBayState::opening

(C++ enumerator), 127
krpc::services::SpaceCenter::CelestialBody (C++ class),

107
krpc::services::SpaceCenter::CelestialBody::angular_velocity

(C++ function), 110
krpc::services::SpaceCenter::CelestialBody::atmosphere_depth

(C++ function), 108
krpc::services::SpaceCenter::CelestialBody::bedrock_height

(C++ function), 107
krpc::services::SpaceCenter::CelestialBody::bedrock_position

(C++ function), 108
krpc::services::SpaceCenter::CelestialBody::direction

(C++ function), 110
krpc::services::SpaceCenter::CelestialBody::equatorial_radius

(C++ function), 107
krpc::services::SpaceCenter::CelestialBody::gravitational_parameter

(C++ function), 107
krpc::services::SpaceCenter::CelestialBody::has_atmosphere

(C++ function), 108
krpc::services::SpaceCenter::CelestialBody::has_atmospheric_oxygen

(C++ function), 108
krpc::services::SpaceCenter::CelestialBody::mass (C++

function), 107

442 Index

kRPC, Release 0.2.3

krpc::services::SpaceCenter::CelestialBody::msl_position
(C++ function), 108

krpc::services::SpaceCenter::CelestialBody::name (C++
function), 107

krpc::services::SpaceCenter::CelestialBody::non_rotating_reference_frame
(C++ function), 108

krpc::services::SpaceCenter::CelestialBody::orbit (C++
function), 107

krpc::services::SpaceCenter::CelestialBody::orbital_reference_frame
(C++ function), 109

krpc::services::SpaceCenter::CelestialBody::position
(C++ function), 109

krpc::services::SpaceCenter::CelestialBody::reference_frame
(C++ function), 108

krpc::services::SpaceCenter::CelestialBody::rotation
(C++ function), 109

krpc::services::SpaceCenter::CelestialBody::rotational_period
(C++ function), 107

krpc::services::SpaceCenter::CelestialBody::rotational_speed
(C++ function), 107

krpc::services::SpaceCenter::CelestialBody::satellites
(C++ function), 107

krpc::services::SpaceCenter::CelestialBody::sphere_of_influence
(C++ function), 108

krpc::services::SpaceCenter::CelestialBody::surface_gravity
(C++ function), 107

krpc::services::SpaceCenter::CelestialBody::surface_height
(C++ function), 107

krpc::services::SpaceCenter::CelestialBody::surface_position
(C++ function), 108

krpc::services::SpaceCenter::CelestialBody::velocity
(C++ function), 109

krpc::services::SpaceCenter::clear_drawing (C++ func-
tion), 99

krpc::services::SpaceCenter::clear_target (C++ function),
97

krpc::services::SpaceCenter::Comms (C++ class), 148
krpc::services::SpaceCenter::Comms::has_connection

(C++ function), 148
krpc::services::SpaceCenter::Comms::has_connection_to_ground_station

(C++ function), 148
krpc::services::SpaceCenter::Comms::has_flight_computer

(C++ function), 148
krpc::services::SpaceCenter::Comms::has_local_control

(C++ function), 148
krpc::services::SpaceCenter::Comms::signal_delay (C++

function), 148
krpc::services::SpaceCenter::Comms::signal_delay_to_ground_station

(C++ function), 148
krpc::services::SpaceCenter::Comms::signal_delay_to_vessel

(C++ function), 148
krpc::services::SpaceCenter::Control (C++ class), 115
krpc::services::SpaceCenter::Control::abort (C++ func-

tion), 116

krpc::services::SpaceCenter::Control::activate_next_stage
(C++ function), 117

krpc::services::SpaceCenter::Control::add_node (C++
function), 117

krpc::services::SpaceCenter::Control::brakes (C++ func-
tion), 116

krpc::services::SpaceCenter::Control::current_stage
(C++ function), 117

krpc::services::SpaceCenter::Control::forward (C++
function), 116

krpc::services::SpaceCenter::Control::gear (C++ func-
tion), 116

krpc::services::SpaceCenter::Control::get_action_group
(C++ function), 117

krpc::services::SpaceCenter::Control::lights (C++ func-
tion), 116

krpc::services::SpaceCenter::Control::nodes (C++ func-
tion), 118

krpc::services::SpaceCenter::Control::pitch (C++ func-
tion), 116

krpc::services::SpaceCenter::Control::rcs (C++ function),
116

krpc::services::SpaceCenter::Control::remove_nodes
(C++ function), 118

krpc::services::SpaceCenter::Control::right (C++ func-
tion), 117

krpc::services::SpaceCenter::Control::roll (C++ func-
tion), 116

krpc::services::SpaceCenter::Control::sas (C++ function),
115

krpc::services::SpaceCenter::Control::sas_mode (C++
function), 116

krpc::services::SpaceCenter::Control::set_abort (C++
function), 116

krpc::services::SpaceCenter::Control::set_action_group
(C++ function), 117

krpc::services::SpaceCenter::Control::set_brakes (C++
function), 116

krpc::services::SpaceCenter::Control::set_forward (C++
function), 116

krpc::services::SpaceCenter::Control::set_gear (C++
function), 116

krpc::services::SpaceCenter::Control::set_lights (C++
function), 116

krpc::services::SpaceCenter::Control::set_pitch (C++
function), 116

krpc::services::SpaceCenter::Control::set_rcs (C++ func-
tion), 116

krpc::services::SpaceCenter::Control::set_right (C++
function), 117

krpc::services::SpaceCenter::Control::set_roll (C++ func-
tion), 116

krpc::services::SpaceCenter::Control::set_sas (C++ func-
tion), 115

Index 443

kRPC, Release 0.2.3

krpc::services::SpaceCenter::Control::set_sas_mode
(C++ function), 116

krpc::services::SpaceCenter::Control::set_speed_mode
(C++ function), 116

krpc::services::SpaceCenter::Control::set_throttle (C++
function), 116

krpc::services::SpaceCenter::Control::set_up (C++ func-
tion), 117

krpc::services::SpaceCenter::Control::set_wheel_steering
(C++ function), 117

krpc::services::SpaceCenter::Control::set_wheel_throttle
(C++ function), 117

krpc::services::SpaceCenter::Control::set_yaw (C++
function), 116

krpc::services::SpaceCenter::Control::speed_mode (C++
function), 116

krpc::services::SpaceCenter::Control::throttle (C++ func-
tion), 116

krpc::services::SpaceCenter::Control::toggle_action_group
(C++ function), 117

krpc::services::SpaceCenter::Control::up (C++ function),
117

krpc::services::SpaceCenter::Control::wheel_steering
(C++ function), 117

krpc::services::SpaceCenter::Control::wheel_throttle
(C++ function), 117

krpc::services::SpaceCenter::Control::yaw (C++ func-
tion), 116

krpc::services::SpaceCenter::Decoupler (C++ class), 127
krpc::services::SpaceCenter::Decoupler::decouple (C++

function), 127
krpc::services::SpaceCenter::Decoupler::decoupled (C++

function), 127
krpc::services::SpaceCenter::Decoupler::impulse (C++

function), 127
krpc::services::SpaceCenter::Decoupler::part (C++ func-

tion), 127
krpc::services::SpaceCenter::DockingPort (C++ class),

127
krpc::services::SpaceCenter::DockingPort::direction

(C++ function), 128
krpc::services::SpaceCenter::DockingPort::docked_part

(C++ function), 128
krpc::services::SpaceCenter::DockingPort::has_shield

(C++ function), 128
krpc::services::SpaceCenter::DockingPort::name (C++

function), 127
krpc::services::SpaceCenter::DockingPort::part (C++

function), 127
krpc::services::SpaceCenter::DockingPort::position (C++

function), 128
krpc::services::SpaceCenter::DockingPort::reengage_distance

(C++ function), 128
krpc::services::SpaceCenter::DockingPort::reference_frame

(C++ function), 128
krpc::services::SpaceCenter::DockingPort::rotation (C++

function), 128
krpc::services::SpaceCenter::DockingPort::set_name

(C++ function), 127
krpc::services::SpaceCenter::DockingPort::set_shielded

(C++ function), 128
krpc::services::SpaceCenter::DockingPort::shielded

(C++ function), 128
krpc::services::SpaceCenter::DockingPort::state (C++

function), 128
krpc::services::SpaceCenter::DockingPort::undock (C++

function), 128
krpc::services::SpaceCenter::DockingPortState (C++

enum), 128
krpc::services::SpaceCenter::DockingPortState::docked

(C++ enumerator), 130
krpc::services::SpaceCenter::DockingPortState::docking

(C++ enumerator), 130
krpc::services::SpaceCenter::DockingPortState::moving

(C++ enumerator), 130
krpc::services::SpaceCenter::DockingPortState::ready

(C++ enumerator), 130
krpc::services::SpaceCenter::DockingPortState::shielded

(C++ enumerator), 130
krpc::services::SpaceCenter::DockingPortState::undocking

(C++ enumerator), 130
krpc::services::SpaceCenter::draw_direction (C++ func-

tion), 99
krpc::services::SpaceCenter::draw_line (C++ function),

99
krpc::services::SpaceCenter::Engine (C++ class), 130
krpc::services::SpaceCenter::Engine::active (C++ func-

tion), 130
krpc::services::SpaceCenter::Engine::auto_mode_switch

(C++ function), 131
krpc::services::SpaceCenter::Engine::available_thrust

(C++ function), 130
krpc::services::SpaceCenter::Engine::can_restart (C++

function), 131
krpc::services::SpaceCenter::Engine::can_shutdown

(C++ function), 131
krpc::services::SpaceCenter::Engine::gimbal_limit (C++

function), 132
krpc::services::SpaceCenter::Engine::gimbal_locked

(C++ function), 132
krpc::services::SpaceCenter::Engine::gimbal_range (C++

function), 131
krpc::services::SpaceCenter::Engine::gimballed (C++

function), 131
krpc::services::SpaceCenter::Engine::has_fuel (C++

function), 131
krpc::services::SpaceCenter::Engine::has_modes (C++

function), 131

444 Index

kRPC, Release 0.2.3

krpc::services::SpaceCenter::Engine::kerbin_sea_level_specific_impulse
(C++ function), 131

krpc::services::SpaceCenter::Engine::max_thrust (C++
function), 130

krpc::services::SpaceCenter::Engine::max_vacuum_thrust
(C++ function), 130

krpc::services::SpaceCenter::Engine::mode (C++ func-
tion), 131

krpc::services::SpaceCenter::Engine::modes (C++ func-
tion), 131

krpc::services::SpaceCenter::Engine::part (C++ func-
tion), 130

krpc::services::SpaceCenter::Engine::propellant_ratios
(C++ function), 131

krpc::services::SpaceCenter::Engine::propellants (C++
function), 131

krpc::services::SpaceCenter::Engine::set_active (C++
function), 130

krpc::services::SpaceCenter::Engine::set_auto_mode_switch
(C++ function), 131

krpc::services::SpaceCenter::Engine::set_gimbal_limit
(C++ function), 132

krpc::services::SpaceCenter::Engine::set_gimbal_locked
(C++ function), 132

krpc::services::SpaceCenter::Engine::set_mode (C++
function), 131

krpc::services::SpaceCenter::Engine::set_thrust_limit
(C++ function), 130

krpc::services::SpaceCenter::Engine::specific_impulse
(C++ function), 131

krpc::services::SpaceCenter::Engine::throttle (C++ func-
tion), 131

krpc::services::SpaceCenter::Engine::throttle_locked
(C++ function), 131

krpc::services::SpaceCenter::Engine::thrust (C++ func-
tion), 130

krpc::services::SpaceCenter::Engine::thrust_limit (C++
function), 130

krpc::services::SpaceCenter::Engine::toggle_mode (C++
function), 131

krpc::services::SpaceCenter::Engine::vacuum_specific_impulse
(C++ function), 131

krpc::services::SpaceCenter::Fairing (C++ class), 132
krpc::services::SpaceCenter::Fairing::jettison (C++ func-

tion), 132
krpc::services::SpaceCenter::Fairing::jettisoned (C++

function), 132
krpc::services::SpaceCenter::Fairing::part (C++ func-

tion), 132
krpc::services::SpaceCenter::far_available (C++ func-

tion), 99
krpc::services::SpaceCenter::Flight (C++ class), 110
krpc::services::SpaceCenter::Flight::aerodynamic_force

(C++ function), 111

krpc::services::SpaceCenter::Flight::angle_of_attack
(C++ function), 112

krpc::services::SpaceCenter::Flight::anti_normal (C++
function), 111

krpc::services::SpaceCenter::Flight::anti_radial (C++
function), 111

krpc::services::SpaceCenter::Flight::atmosphere_density
(C++ function), 111

krpc::services::SpaceCenter::Flight::ballistic_coefficient
(C++ function), 113

krpc::services::SpaceCenter::Flight::bedrock_altitude
(C++ function), 110

krpc::services::SpaceCenter::Flight::center_of_mass
(C++ function), 111

krpc::services::SpaceCenter::Flight::direction (C++ func-
tion), 111

krpc::services::SpaceCenter::Flight::drag (C++ function),
112

krpc::services::SpaceCenter::Flight::drag_coefficient
(C++ function), 113

krpc::services::SpaceCenter::Flight::dynamic_pressure
(C++ function), 111

krpc::services::SpaceCenter::Flight::elevation (C++ func-
tion), 110

krpc::services::SpaceCenter::Flight::equivalent_air_speed
(C++ function), 112

krpc::services::SpaceCenter::Flight::g_force (C++ func-
tion), 110

krpc::services::SpaceCenter::Flight::heading (C++ func-
tion), 111

krpc::services::SpaceCenter::Flight::horizontal_speed
(C++ function), 110

krpc::services::SpaceCenter::Flight::latitude (C++ func-
tion), 110

krpc::services::SpaceCenter::Flight::lift (C++ function),
112

krpc::services::SpaceCenter::Flight::lift_coefficient (C++
function), 113

krpc::services::SpaceCenter::Flight::longitude (C++
function), 110

krpc::services::SpaceCenter::Flight::mach (C++ func-
tion), 112

krpc::services::SpaceCenter::Flight::mean_altitude (C++
function), 110

krpc::services::SpaceCenter::Flight::normal (C++ func-
tion), 111

krpc::services::SpaceCenter::Flight::pitch (C++ func-
tion), 111

krpc::services::SpaceCenter::Flight::prograde (C++ func-
tion), 111

krpc::services::SpaceCenter::Flight::radial (C++ func-
tion), 111

krpc::services::SpaceCenter::Flight::retrograde (C++
function), 111

Index 445

kRPC, Release 0.2.3

krpc::services::SpaceCenter::Flight::roll (C++ function),
111

krpc::services::SpaceCenter::Flight::rotation (C++ func-
tion), 111

krpc::services::SpaceCenter::Flight::sideslip_angle (C++
function), 112

krpc::services::SpaceCenter::Flight::speed (C++ func-
tion), 110

krpc::services::SpaceCenter::Flight::speed_of_sound
(C++ function), 112

krpc::services::SpaceCenter::Flight::stall_fraction (C++
function), 113

krpc::services::SpaceCenter::Flight::static_air_temperature
(C++ function), 113

krpc::services::SpaceCenter::Flight::static_pressure (C++
function), 111

krpc::services::SpaceCenter::Flight::surface_altitude
(C++ function), 110

krpc::services::SpaceCenter::Flight::terminal_velocity
(C++ function), 112

krpc::services::SpaceCenter::Flight::thrust_specific_fuel_consumption
(C++ function), 113

krpc::services::SpaceCenter::Flight::total_air_temperature
(C++ function), 112

krpc::services::SpaceCenter::Flight::velocity (C++ func-
tion), 110

krpc::services::SpaceCenter::Flight::vertical_speed (C++
function), 111

krpc::services::SpaceCenter::g (C++ function), 97
krpc::services::SpaceCenter::Intake (C++ class), 132
krpc::services::SpaceCenter::Intake::area (C++ function),

132
krpc::services::SpaceCenter::Intake::flow (C++ function),

132
krpc::services::SpaceCenter::Intake::open (C++ func-

tion), 132
krpc::services::SpaceCenter::Intake::part (C++ function),

132
krpc::services::SpaceCenter::Intake::set_open (C++ func-

tion), 132
krpc::services::SpaceCenter::Intake::speed (C++ func-

tion), 132
krpc::services::SpaceCenter::LandingGear (C++ class),

132
krpc::services::SpaceCenter::LandingGear::deployable

(C++ function), 133
krpc::services::SpaceCenter::LandingGear::deployed

(C++ function), 133
krpc::services::SpaceCenter::LandingGear::part (C++

function), 132
krpc::services::SpaceCenter::LandingGear::set_deployed

(C++ function), 133
krpc::services::SpaceCenter::LandingGear::state (C++

function), 132

krpc::services::SpaceCenter::LandingGearState (C++
enum), 133

krpc::services::SpaceCenter::LandingGearState::deployed
(C++ enumerator), 133

krpc::services::SpaceCenter::LandingGearState::deploying
(C++ enumerator), 133

krpc::services::SpaceCenter::LandingGearState::retracted
(C++ enumerator), 133

krpc::services::SpaceCenter::LandingGearState::retracting
(C++ enumerator), 133

krpc::services::SpaceCenter::LandingLeg (C++ class),
133

krpc::services::SpaceCenter::LandingLeg::deployed
(C++ function), 133

krpc::services::SpaceCenter::LandingLeg::part (C++
function), 133

krpc::services::SpaceCenter::LandingLeg::set_deployed
(C++ function), 133

krpc::services::SpaceCenter::LandingLeg::state (C++
function), 133

krpc::services::SpaceCenter::LandingLegState (C++
enum), 133

krpc::services::SpaceCenter::LandingLegState::broken
(C++ enumerator), 134

krpc::services::SpaceCenter::LandingLegState::deployed
(C++ enumerator), 133

krpc::services::SpaceCenter::LandingLegState::deploying
(C++ enumerator), 133

krpc::services::SpaceCenter::LandingLegState::repairing
(C++ enumerator), 134

krpc::services::SpaceCenter::LandingLegState::retracted
(C++ enumerator), 133

krpc::services::SpaceCenter::LandingLegState::retracting
(C++ enumerator), 133

krpc::services::SpaceCenter::launch_vessel_from_sph
(C++ function), 97

krpc::services::SpaceCenter::launch_vessel_from_vab
(C++ function), 97

krpc::services::SpaceCenter::LaunchClamp (C++ class),
134

krpc::services::SpaceCenter::LaunchClamp::part (C++
function), 134

krpc::services::SpaceCenter::LaunchClamp::release
(C++ function), 134

krpc::services::SpaceCenter::Light (C++ class), 134
krpc::services::SpaceCenter::Light::active (C++ func-

tion), 134
krpc::services::SpaceCenter::Light::part (C++ function),

134
krpc::services::SpaceCenter::Light::power_usage (C++

function), 134
krpc::services::SpaceCenter::Light::set_active (C++

function), 134
krpc::services::SpaceCenter::maximum_rails_warp_factor

446 Index

kRPC, Release 0.2.3

(C++ function), 98
krpc::services::SpaceCenter::Module (C++ class), 125
krpc::services::SpaceCenter::Module::actions (C++ func-

tion), 126
krpc::services::SpaceCenter::Module::events (C++ func-

tion), 126
krpc::services::SpaceCenter::Module::fields (C++ func-

tion), 125
krpc::services::SpaceCenter::Module::get_field (C++

function), 125
krpc::services::SpaceCenter::Module::has_action (C++

function), 126
krpc::services::SpaceCenter::Module::has_event (C++

function), 126
krpc::services::SpaceCenter::Module::has_field (C++

function), 125
krpc::services::SpaceCenter::Module::name (C++ func-

tion), 125
krpc::services::SpaceCenter::Module::part (C++ func-

tion), 125
krpc::services::SpaceCenter::Module::set_action (C++

function), 126
krpc::services::SpaceCenter::Module::trigger_event

(C++ function), 126
krpc::services::SpaceCenter::Node (C++ class), 145
krpc::services::SpaceCenter::Node::burn_vector (C++

function), 146
krpc::services::SpaceCenter::Node::delta_v (C++ func-

tion), 146
krpc::services::SpaceCenter::Node::direction (C++ func-

tion), 147
krpc::services::SpaceCenter::Node::normal (C++ func-

tion), 146
krpc::services::SpaceCenter::Node::orbit (C++ function),

147
krpc::services::SpaceCenter::Node::orbital_reference_frame

(C++ function), 147
krpc::services::SpaceCenter::Node::position (C++ func-

tion), 147
krpc::services::SpaceCenter::Node::prograde (C++ func-

tion), 145
krpc::services::SpaceCenter::Node::radial (C++ func-

tion), 146
krpc::services::SpaceCenter::Node::reference_frame

(C++ function), 147
krpc::services::SpaceCenter::Node::remaining_burn_vector

(C++ function), 146
krpc::services::SpaceCenter::Node::remaining_delta_v

(C++ function), 146
krpc::services::SpaceCenter::Node::remove (C++ func-

tion), 147
krpc::services::SpaceCenter::Node::set_delta_v (C++

function), 146
krpc::services::SpaceCenter::Node::set_normal (C++

function), 146
krpc::services::SpaceCenter::Node::set_prograde (C++

function), 146
krpc::services::SpaceCenter::Node::set_radial (C++ func-

tion), 146
krpc::services::SpaceCenter::Node::set_ut (C++ func-

tion), 147
krpc::services::SpaceCenter::Node::time_to (C++ func-

tion), 147
krpc::services::SpaceCenter::Node::ut (C++ function),

147
krpc::services::SpaceCenter::Orbit (C++ class), 113
krpc::services::SpaceCenter::Orbit::apoapsis (C++ func-

tion), 113
krpc::services::SpaceCenter::Orbit::apoapsis_altitude

(C++ function), 114
krpc::services::SpaceCenter::Orbit::argument_of_periapsis

(C++ function), 115
krpc::services::SpaceCenter::Orbit::body (C++ function),

113
krpc::services::SpaceCenter::Orbit::eccentric_anomaly

(C++ function), 115
krpc::services::SpaceCenter::Orbit::eccentricity (C++

function), 114
krpc::services::SpaceCenter::Orbit::epoch (C++ func-

tion), 115
krpc::services::SpaceCenter::Orbit::inclination (C++

function), 114
krpc::services::SpaceCenter::Orbit::longitude_of_ascending_node

(C++ function), 115
krpc::services::SpaceCenter::Orbit::mean_anomaly (C++

function), 115
krpc::services::SpaceCenter::Orbit::mean_anomaly_at_epoch

(C++ function), 115
krpc::services::SpaceCenter::Orbit::next_orbit (C++

function), 115
krpc::services::SpaceCenter::Orbit::periapsis (C++ func-

tion), 114
krpc::services::SpaceCenter::Orbit::periapsis_altitude

(C++ function), 114
krpc::services::SpaceCenter::Orbit::period (C++ func-

tion), 114
krpc::services::SpaceCenter::Orbit::radius (C++ func-

tion), 114
krpc::services::SpaceCenter::Orbit::reference_plane_direction

(C++ function), 115
krpc::services::SpaceCenter::Orbit::reference_plane_normal

(C++ function), 115
krpc::services::SpaceCenter::Orbit::semi_major_axis

(C++ function), 114
krpc::services::SpaceCenter::Orbit::semi_minor_axis

(C++ function), 114
krpc::services::SpaceCenter::Orbit::speed (C++ func-

tion), 114

Index 447

kRPC, Release 0.2.3

krpc::services::SpaceCenter::Orbit::time_to_apoapsis
(C++ function), 114

krpc::services::SpaceCenter::Orbit::time_to_periapsis
(C++ function), 114

krpc::services::SpaceCenter::Orbit::time_to_soi_change
(C++ function), 115

krpc::services::SpaceCenter::Parachute (C++ class), 134
krpc::services::SpaceCenter::Parachute::deploy (C++

function), 134
krpc::services::SpaceCenter::Parachute::deploy_altitude

(C++ function), 134
krpc::services::SpaceCenter::Parachute::deploy_min_pressure

(C++ function), 134
krpc::services::SpaceCenter::Parachute::deployed (C++

function), 134
krpc::services::SpaceCenter::Parachute::part (C++ func-

tion), 134
krpc::services::SpaceCenter::Parachute::set_deploy_altitude

(C++ function), 134
krpc::services::SpaceCenter::Parachute::set_deploy_min_pressure

(C++ function), 134
krpc::services::SpaceCenter::Parachute::state (C++ func-

tion), 134
krpc::services::SpaceCenter::ParachuteState (C++ enum),

135
krpc::services::SpaceCenter::ParachuteState::active (C++

enumerator), 135
krpc::services::SpaceCenter::ParachuteState::cut (C++

enumerator), 135
krpc::services::SpaceCenter::ParachuteState::deployed

(C++ enumerator), 135
krpc::services::SpaceCenter::ParachuteState::semi_deployed

(C++ enumerator), 135
krpc::services::SpaceCenter::ParachuteState::stowed

(C++ enumerator), 135
krpc::services::SpaceCenter::Part (C++ class), 121
krpc::services::SpaceCenter::Part::axially_attached (C++

function), 121
krpc::services::SpaceCenter::Part::cargo_bay (C++ func-

tion), 123
krpc::services::SpaceCenter::Part::children (C++ func-

tion), 121
krpc::services::SpaceCenter::Part::cost (C++ function),

121
krpc::services::SpaceCenter::Part::crossfeed (C++ func-

tion), 123
krpc::services::SpaceCenter::Part::decouple_stage (C++

function), 122
krpc::services::SpaceCenter::Part::decoupler (C++ func-

tion), 123
krpc::services::SpaceCenter::Part::direction (C++ func-

tion), 124
krpc::services::SpaceCenter::Part::docking_port (C++

function), 123

krpc::services::SpaceCenter::Part::dry_mass (C++ func-
tion), 122

krpc::services::SpaceCenter::Part::engine (C++ function),
123

krpc::services::SpaceCenter::Part::fairing (C++ function),
123

krpc::services::SpaceCenter::Part::fuel_lines_from (C++
function), 123

krpc::services::SpaceCenter::Part::fuel_lines_to (C++
function), 123

krpc::services::SpaceCenter::Part::impact_tolerance
(C++ function), 122

krpc::services::SpaceCenter::Part::intake (C++ function),
124

krpc::services::SpaceCenter::Part::is_fuel_line (C++
function), 123

krpc::services::SpaceCenter::Part::landing_gear (C++
function), 124

krpc::services::SpaceCenter::Part::landing_leg (C++
function), 124

krpc::services::SpaceCenter::Part::launch_clamp (C++
function), 124

krpc::services::SpaceCenter::Part::light (C++ function),
124

krpc::services::SpaceCenter::Part::mass (C++ function),
122

krpc::services::SpaceCenter::Part::massless (C++ func-
tion), 122

krpc::services::SpaceCenter::Part::max_skin_temperature
(C++ function), 122

krpc::services::SpaceCenter::Part::max_temperature
(C++ function), 122

krpc::services::SpaceCenter::Part::modules (C++ func-
tion), 123

krpc::services::SpaceCenter::Part::name (C++ function),
121

krpc::services::SpaceCenter::Part::parachute (C++ func-
tion), 124

krpc::services::SpaceCenter::Part::parent (C++ function),
121

krpc::services::SpaceCenter::Part::position (C++ func-
tion), 124

krpc::services::SpaceCenter::Part::radially_attached
(C++ function), 122

krpc::services::SpaceCenter::Part::radiator (C++ func-
tion), 124

krpc::services::SpaceCenter::Part::reaction_wheel (C++
function), 124

krpc::services::SpaceCenter::Part::reference_frame (C++
function), 124

krpc::services::SpaceCenter::Part::resource_converter
(C++ function), 124

krpc::services::SpaceCenter::Part::resource_harvester
(C++ function), 124

448 Index

kRPC, Release 0.2.3

krpc::services::SpaceCenter::Part::resources (C++ func-
tion), 123

krpc::services::SpaceCenter::Part::rotation (C++ func-
tion), 124

krpc::services::SpaceCenter::Part::sensor (C++ function),
124

krpc::services::SpaceCenter::Part::skin_temperature
(C++ function), 122

krpc::services::SpaceCenter::Part::solar_panel (C++
function), 124

krpc::services::SpaceCenter::Part::stage (C++ function),
122

krpc::services::SpaceCenter::Part::temperature (C++
function), 122

krpc::services::SpaceCenter::Part::thermal_conduction_flux
(C++ function), 122

krpc::services::SpaceCenter::Part::thermal_convection_flux
(C++ function), 123

krpc::services::SpaceCenter::Part::thermal_internal_flux
(C++ function), 123

krpc::services::SpaceCenter::Part::thermal_mass (C++
function), 122

krpc::services::SpaceCenter::Part::thermal_radiation_flux
(C++ function), 123

krpc::services::SpaceCenter::Part::thermal_resource_mass
(C++ function), 122

krpc::services::SpaceCenter::Part::thermal_skin_mass
(C++ function), 122

krpc::services::SpaceCenter::Part::thermal_skin_to_internal_flux
(C++ function), 123

krpc::services::SpaceCenter::Part::title (C++ function),
121

krpc::services::SpaceCenter::Part::velocity (C++ func-
tion), 124

krpc::services::SpaceCenter::Part::vessel (C++ function),
121

krpc::services::SpaceCenter::Parts (C++ class), 119
krpc::services::SpaceCenter::Parts::all (C++ function),

119
krpc::services::SpaceCenter::Parts::cargo_bays (C++

function), 120
krpc::services::SpaceCenter::Parts::controlling (C++

function), 119
krpc::services::SpaceCenter::Parts::decouplers (C++

function), 120
krpc::services::SpaceCenter::Parts::docking_port_with_name

(C++ function), 120
krpc::services::SpaceCenter::Parts::docking_ports (C++

function), 120
krpc::services::SpaceCenter::Parts::engines (C++ func-

tion), 120
krpc::services::SpaceCenter::Parts::fairings (C++ func-

tion), 120
krpc::services::SpaceCenter::Parts::in_decouple_stage

(C++ function), 120
krpc::services::SpaceCenter::Parts::in_stage (C++ func-

tion), 120
krpc::services::SpaceCenter::Parts::intakes (C++ func-

tion), 120
krpc::services::SpaceCenter::Parts::landing_gear (C++

function), 120
krpc::services::SpaceCenter::Parts::landing_legs (C++

function), 120
krpc::services::SpaceCenter::Parts::launch_clamps (C++

function), 120
krpc::services::SpaceCenter::Parts::lights (C++ function),

120
krpc::services::SpaceCenter::Parts::modules_with_name

(C++ function), 120
krpc::services::SpaceCenter::Parts::parachutes (C++

function), 121
krpc::services::SpaceCenter::Parts::radiators (C++ func-

tion), 121
krpc::services::SpaceCenter::Parts::reaction_wheels

(C++ function), 121
krpc::services::SpaceCenter::Parts::resource_converters

(C++ function), 121
krpc::services::SpaceCenter::Parts::resource_harvesters

(C++ function), 121
krpc::services::SpaceCenter::Parts::root (C++ function),

119
krpc::services::SpaceCenter::Parts::sensors (C++ func-

tion), 121
krpc::services::SpaceCenter::Parts::set_controlling (C++

function), 119
krpc::services::SpaceCenter::Parts::solar_panels (C++

function), 121
krpc::services::SpaceCenter::Parts::with_module (C++

function), 120
krpc::services::SpaceCenter::Parts::with_name (C++

function), 119
krpc::services::SpaceCenter::Parts::with_title (C++ func-

tion), 119
krpc::services::SpaceCenter::physics_warp_factor (C++

function), 97
krpc::services::SpaceCenter::Radiator (C++ class), 135
krpc::services::SpaceCenter::Radiator::deployable (C++

function), 135
krpc::services::SpaceCenter::Radiator::deployed (C++

function), 135
krpc::services::SpaceCenter::Radiator::part (C++ func-

tion), 135
krpc::services::SpaceCenter::Radiator::set_deployed

(C++ function), 135
krpc::services::SpaceCenter::Radiator::state (C++ func-

tion), 135
krpc::services::SpaceCenter::RadiatorState (C++ enum),

135

Index 449

kRPC, Release 0.2.3

krpc::services::SpaceCenter::RadiatorState::broken (C++
enumerator), 135

krpc::services::SpaceCenter::RadiatorState::extended
(C++ enumerator), 135

krpc::services::SpaceCenter::RadiatorState::extending
(C++ enumerator), 135

krpc::services::SpaceCenter::RadiatorState::retracted
(C++ enumerator), 135

krpc::services::SpaceCenter::RadiatorState::retracting
(C++ enumerator), 135

krpc::services::SpaceCenter::rails_warp_factor (C++
function), 97

krpc::services::SpaceCenter::ReactionWheel (C++ class),
138

krpc::services::SpaceCenter::ReactionWheel::active
(C++ function), 138

krpc::services::SpaceCenter::ReactionWheel::broken
(C++ function), 138

krpc::services::SpaceCenter::ReactionWheel::part (C++
function), 138

krpc::services::SpaceCenter::ReactionWheel::pitch_torque
(C++ function), 138

krpc::services::SpaceCenter::ReactionWheel::roll_torque
(C++ function), 138

krpc::services::SpaceCenter::ReactionWheel::set_active
(C++ function), 138

krpc::services::SpaceCenter::ReactionWheel::yaw_torque
(C++ function), 138

krpc::services::SpaceCenter::ReferenceFrame (C++
class), 148

krpc::services::SpaceCenter::remote_tech_available
(C++ function), 99

krpc::services::SpaceCenter::ResourceConverter (C++
class), 136

krpc::services::SpaceCenter::ResourceConverter::active
(C++ function), 136

krpc::services::SpaceCenter::ResourceConverter::count
(C++ function), 136

krpc::services::SpaceCenter::ResourceConverter::inputs
(C++ function), 136

krpc::services::SpaceCenter::ResourceConverter::name
(C++ function), 136

krpc::services::SpaceCenter::ResourceConverter::outputs
(C++ function), 136

krpc::services::SpaceCenter::ResourceConverter::part
(C++ function), 136

krpc::services::SpaceCenter::ResourceConverter::start
(C++ function), 136

krpc::services::SpaceCenter::ResourceConverter::state
(C++ function), 136

krpc::services::SpaceCenter::ResourceConverter::status_info
(C++ function), 136

krpc::services::SpaceCenter::ResourceConverter::stop
(C++ function), 136

krpc::services::SpaceCenter::ResourceConverterState
(C++ enum), 136

krpc::services::SpaceCenter::ResourceConverterState::capacity
(C++ enumerator), 137

krpc::services::SpaceCenter::ResourceConverterState::idle
(C++ enumerator), 137

krpc::services::SpaceCenter::ResourceConverterState::missing_resource
(C++ enumerator), 137

krpc::services::SpaceCenter::ResourceConverterState::running
(C++ enumerator), 137

krpc::services::SpaceCenter::ResourceConverterState::storage_full
(C++ enumerator), 137

krpc::services::SpaceCenter::ResourceConverterState::unknown
(C++ enumerator), 137

krpc::services::SpaceCenter::ResourceFlowMode (C++
enum), 145

krpc::services::SpaceCenter::ResourceFlowMode::adjacent
(C++ enumerator), 145

krpc::services::SpaceCenter::ResourceFlowMode::none
(C++ enumerator), 145

krpc::services::SpaceCenter::ResourceFlowMode::stage
(C++ enumerator), 145

krpc::services::SpaceCenter::ResourceFlowMode::vessel
(C++ enumerator), 145

krpc::services::SpaceCenter::ResourceHarvester (C++
class), 137

krpc::services::SpaceCenter::ResourceHarvester::active
(C++ function), 137

krpc::services::SpaceCenter::ResourceHarvester::core_temperature
(C++ function), 137

krpc::services::SpaceCenter::ResourceHarvester::deployed
(C++ function), 137

krpc::services::SpaceCenter::ResourceHarvester::extraction_rate
(C++ function), 137

krpc::services::SpaceCenter::ResourceHarvester::optimum_core_temperature
(C++ function), 137

krpc::services::SpaceCenter::ResourceHarvester::part
(C++ function), 137

krpc::services::SpaceCenter::ResourceHarvester::set_active
(C++ function), 137

krpc::services::SpaceCenter::ResourceHarvester::set_deployed
(C++ function), 137

krpc::services::SpaceCenter::ResourceHarvester::state
(C++ function), 137

krpc::services::SpaceCenter::ResourceHarvester::thermal_efficiency
(C++ function), 137

krpc::services::SpaceCenter::ResourceHarvesterState
(C++ enum), 137

krpc::services::SpaceCenter::ResourceHarvesterState::active
(C++ enumerator), 138

krpc::services::SpaceCenter::ResourceHarvesterState::deployed
(C++ enumerator), 137

krpc::services::SpaceCenter::ResourceHarvesterState::deploying
(C++ enumerator), 137

450 Index

kRPC, Release 0.2.3

krpc::services::SpaceCenter::ResourceHarvesterState::retracted
(C++ enumerator), 138

krpc::services::SpaceCenter::ResourceHarvesterState::retracting
(C++ enumerator), 138

krpc::services::SpaceCenter::Resources (C++ class), 144
krpc::services::SpaceCenter::Resources::amount (C++

function), 145
krpc::services::SpaceCenter::Resources::density (C++

function), 145
krpc::services::SpaceCenter::Resources::flow_mode

(C++ function), 145
krpc::services::SpaceCenter::Resources::has_resource

(C++ function), 144
krpc::services::SpaceCenter::Resources::max (C++ func-

tion), 145
krpc::services::SpaceCenter::Resources::names (C++

function), 144
krpc::services::SpaceCenter::SASMode (C++ enum), 118
krpc::services::SpaceCenter::SASMode::anti_normal

(C++ enumerator), 118
krpc::services::SpaceCenter::SASMode::anti_radial

(C++ enumerator), 118
krpc::services::SpaceCenter::SASMode::anti_target

(C++ enumerator), 118
krpc::services::SpaceCenter::SASMode::maneuver (C++

enumerator), 118
krpc::services::SpaceCenter::SASMode::normal (C++

enumerator), 118
krpc::services::SpaceCenter::SASMode::prograde (C++

enumerator), 118
krpc::services::SpaceCenter::SASMode::radial (C++

enumerator), 118
krpc::services::SpaceCenter::SASMode::retrograde (C++

enumerator), 118
krpc::services::SpaceCenter::SASMode::stability_assist

(C++ enumerator), 118
krpc::services::SpaceCenter::SASMode::target (C++ enu-

merator), 118
krpc::services::SpaceCenter::Sensor (C++ class), 138
krpc::services::SpaceCenter::Sensor::active (C++ func-

tion), 138
krpc::services::SpaceCenter::Sensor::part (C++ function),

138
krpc::services::SpaceCenter::Sensor::power_usage (C++

function), 138
krpc::services::SpaceCenter::Sensor::set_active (C++

function), 138
krpc::services::SpaceCenter::Sensor::value (C++ func-

tion), 138
krpc::services::SpaceCenter::set_active_vessel (C++

function), 96
krpc::services::SpaceCenter::set_physics_warp_factor

(C++ function), 97
krpc::services::SpaceCenter::set_rails_warp_factor (C++

function), 97
krpc::services::SpaceCenter::set_target_body (C++ func-

tion), 96
krpc::services::SpaceCenter::set_target_docking_port

(C++ function), 97
krpc::services::SpaceCenter::set_target_vessel (C++

function), 96
krpc::services::SpaceCenter::SolarPanel (C++ class), 139
krpc::services::SpaceCenter::SolarPanel::deployed (C++

function), 139
krpc::services::SpaceCenter::SolarPanel::energy_flow

(C++ function), 139
krpc::services::SpaceCenter::SolarPanel::part (C++ func-

tion), 139
krpc::services::SpaceCenter::SolarPanel::set_deployed

(C++ function), 139
krpc::services::SpaceCenter::SolarPanel::state (C++

function), 139
krpc::services::SpaceCenter::SolarPanel::sun_exposure

(C++ function), 139
krpc::services::SpaceCenter::SolarPanelState (C++

enum), 139
krpc::services::SpaceCenter::SolarPanelState::broken

(C++ enumerator), 139
krpc::services::SpaceCenter::SolarPanelState::extended

(C++ enumerator), 139
krpc::services::SpaceCenter::SolarPanelState::extending

(C++ enumerator), 139
krpc::services::SpaceCenter::SolarPanelState::retracted

(C++ enumerator), 139
krpc::services::SpaceCenter::SolarPanelState::retracting

(C++ enumerator), 139
krpc::services::SpaceCenter::SpaceCenter (C++ func-

tion), 96
krpc::services::SpaceCenter::SpeedMode (C++ enum),

118
krpc::services::SpaceCenter::SpeedMode::orbit (C++

enumerator), 118
krpc::services::SpaceCenter::SpeedMode::surface (C++

enumerator), 118
krpc::services::SpaceCenter::SpeedMode::target (C++

enumerator), 118
krpc::services::SpaceCenter::target_body (C++ function),

96
krpc::services::SpaceCenter::target_docking_port (C++

function), 97
krpc::services::SpaceCenter::target_vessel (C++ func-

tion), 96
krpc::services::SpaceCenter::transform_direction (C++

function), 98
krpc::services::SpaceCenter::transform_position (C++

function), 98
krpc::services::SpaceCenter::transform_rotation (C++

function), 98

Index 451

kRPC, Release 0.2.3

krpc::services::SpaceCenter::transform_velocity (C++
function), 99

krpc::services::SpaceCenter::ut (C++ function), 97
krpc::services::SpaceCenter::Vessel (C++ class), 100
krpc::services::SpaceCenter::Vessel::angular_velocity

(C++ function), 106
krpc::services::SpaceCenter::Vessel::auto_pilot (C++

function), 100
krpc::services::SpaceCenter::Vessel::available_thrust

(C++ function), 101
krpc::services::SpaceCenter::Vessel::comms (C++ func-

tion), 101
krpc::services::SpaceCenter::Vessel::control (C++ func-

tion), 100
krpc::services::SpaceCenter::Vessel::direction (C++

function), 106
krpc::services::SpaceCenter::Vessel::dry_mass (C++

function), 101
krpc::services::SpaceCenter::Vessel::flight (C++ func-

tion), 100
krpc::services::SpaceCenter::Vessel::kerbin_sea_level_specific_impulse

(C++ function), 102
krpc::services::SpaceCenter::Vessel::mass (C++ func-

tion), 101
krpc::services::SpaceCenter::Vessel::max_thrust (C++

function), 101
krpc::services::SpaceCenter::Vessel::max_vacuum_thrust

(C++ function), 101
krpc::services::SpaceCenter::Vessel::met (C++ function),

100
krpc::services::SpaceCenter::Vessel::name (C++ func-

tion), 100
krpc::services::SpaceCenter::Vessel::orbit (C++ func-

tion), 100
krpc::services::SpaceCenter::Vessel::orbital_reference_frame

(C++ function), 102
krpc::services::SpaceCenter::Vessel::parts (C++ func-

tion), 101
krpc::services::SpaceCenter::Vessel::position (C++ func-

tion), 104
krpc::services::SpaceCenter::Vessel::reference_frame

(C++ function), 102
krpc::services::SpaceCenter::Vessel::resources (C++

function), 101
krpc::services::SpaceCenter::Vessel::resources_in_decouple_stage

(C++ function), 101
krpc::services::SpaceCenter::Vessel::rotation (C++ func-

tion), 106
krpc::services::SpaceCenter::Vessel::set_name (C++

function), 100
krpc::services::SpaceCenter::Vessel::set_target (C++

function), 100
krpc::services::SpaceCenter::Vessel::set_type (C++ func-

tion), 100

krpc::services::SpaceCenter::Vessel::situation (C++ func-
tion), 100

krpc::services::SpaceCenter::Vessel::specific_impulse
(C++ function), 101

krpc::services::SpaceCenter::Vessel::surface_reference_frame
(C++ function), 102

krpc::services::SpaceCenter::Vessel::surface_velocity_reference_frame
(C++ function), 104

krpc::services::SpaceCenter::Vessel::target (C++ func-
tion), 100

krpc::services::SpaceCenter::Vessel::thrust (C++ func-
tion), 101

krpc::services::SpaceCenter::Vessel::type (C++ function),
100

krpc::services::SpaceCenter::Vessel::vacuum_specific_impulse
(C++ function), 101

krpc::services::SpaceCenter::Vessel::velocity (C++ func-
tion), 106

krpc::services::SpaceCenter::vessels (C++ function), 96
krpc::services::SpaceCenter::VesselSituation (C++

enum), 106
krpc::services::SpaceCenter::VesselSituation::docked

(C++ enumerator), 106
krpc::services::SpaceCenter::VesselSituation::escaping

(C++ enumerator), 106
krpc::services::SpaceCenter::VesselSituation::flying

(C++ enumerator), 106
krpc::services::SpaceCenter::VesselSituation::landed

(C++ enumerator), 106
krpc::services::SpaceCenter::VesselSituation::orbiting

(C++ enumerator), 107
krpc::services::SpaceCenter::VesselSituation::pre_launch

(C++ enumerator), 107
krpc::services::SpaceCenter::VesselSituation::splashed

(C++ enumerator), 107
krpc::services::SpaceCenter::VesselSituation::sub_orbital

(C++ enumerator), 107
krpc::services::SpaceCenter::VesselType (C++ enum),

106
krpc::services::SpaceCenter::VesselType::base (C++ enu-

merator), 106
krpc::services::SpaceCenter::VesselType::debris (C++

enumerator), 106
krpc::services::SpaceCenter::VesselType::lander (C++

enumerator), 106
krpc::services::SpaceCenter::VesselType::probe (C++

enumerator), 106
krpc::services::SpaceCenter::VesselType::rover (C++

enumerator), 106
krpc::services::SpaceCenter::VesselType::ship (C++ enu-

merator), 106
krpc::services::SpaceCenter::VesselType::station (C++

enumerator), 106
krpc::services::SpaceCenter::warp_factor (C++ function),

452 Index

kRPC, Release 0.2.3

97
krpc::services::SpaceCenter::warp_mode (C++ function),

97
krpc::services::SpaceCenter::warp_rate (C++ function),

97
krpc::services::SpaceCenter::warp_to (C++ function), 98
krpc::services::SpaceCenter::WarpMode (C++ enum), 99
krpc::services::SpaceCenter::WarpMode::none (C++ enu-

merator), 100
krpc::services::SpaceCenter::WarpMode::physics (C++

enumerator), 100
krpc::services::SpaceCenter::WarpMode::rails (C++ enu-

merator), 100
krpc::Stream<T> (C++ class), 95
krpc::Stream<T>::operator() (C++ function), 95
krpc::Stream<T>::remove (C++ function), 95

L
LANDED (Java field), 176
LANDER (Java field), 175
landing_gear (Part attribute), 272, 357
landing_gear (Parts attribute), 266, 351
landing_leg (Part attribute), 272, 357
landing_legs (Parts attribute), 266, 351
LandingGear (class in SpaceCenter), 284, 369
LandingGear (Java class), 202
LandingGearState (class in SpaceCenter), 285, 370
LandingGearState (Java enum), 203
LandingGearState.deployed (in module SpaceCenter),

285, 370
LandingGearState.deploying (in module SpaceCenter),

285, 370
LandingGearState.retracted (in module SpaceCenter),

285, 370
LandingGearState.retracting (in module SpaceCenter),

285, 370
LandingLeg (class in SpaceCenter), 285, 370
LandingLeg (Java class), 203
LandingLegState (class in SpaceCenter), 285, 370
LandingLegState (Java enum), 203
LandingLegState.broken (in module SpaceCenter), 286,

371
LandingLegState.deployed (in module SpaceCenter),

286, 370
LandingLegState.deploying (in module SpaceCenter),

286, 371
LandingLegState.repairing (in module SpaceCenter),

286, 371
LandingLegState.retracted (in module SpaceCenter), 286,

370
LandingLegState.retracting (in module SpaceCenter),

286, 371
latitude (Flight attribute), 251, 336
launch_clamp (Part attribute), 272, 357

launch_clamps (Parts attribute), 266, 351
LAUNCH_RENDEVOUS (Java field), 228
launch_vessel_from_sph() (in module SpaceCenter), 234,

320
launch_vessel_from_vab() (in module SpaceCenter), 234,

319
LaunchClamp (class in SpaceCenter), 286, 371
LaunchClamp (Java class), 203
launchVesselFromSPH(String) (Java method), 166
launchVesselFromVAB(String) (Java method), 165
lift (Flight attribute), 254, 339
lift_coefficient (Flight attribute), 256, 341
Light (class in SpaceCenter), 286, 371
Light (Java class), 204
light (Part attribute), 272, 357
lights (Control attribute), 260, 345
lights (Parts attribute), 266, 351
longitude (Flight attribute), 251, 336
longitude_of_ascending_node (Orbit attribute), 258, 343

M
mach (Flight attribute), 254, 339
MANEUVER (Java field), 187, 228
MANEUVER_AUTO (Java field), 228
margin (Alarm attribute), 311, 396
mass (CelestialBody attribute), 247, 332
mass (Part attribute), 269, 354
mass (Vessel attribute), 240, 325
massless (Part attribute), 269, 354
max() (Resources method), 298, 383
max(String) (Java method), 214
max_config_position (Servo attribute), 308, 392
max_position (Servo attribute), 308, 393
max_roll_speed (AutoPilot attribute), 305, 389
max_rotation_speed (AutoPilot attribute), 304, 389
max_skin_temperature (Part attribute), 269, 354
max_temperature (Part attribute), 269, 354
max_thrust (Engine attribute), 281, 366
max_thrust (Vessel attribute), 240, 325
max_vacuum_thrust (Engine attribute), 281, 366
max_vacuum_thrust (Vessel attribute), 240, 325
maximum_rails_warp_factor (in module SpaceCenter),

235, 321
mean_altitude (Flight attribute), 251, 336
mean_anomaly (Orbit attribute), 259, 344
mean_anomaly_at_epoch (Orbit attribute), 258, 343
MESSAGE_ONLY (Java field), 229
met (Vessel attribute), 238, 323
min_config_position (Servo attribute), 308, 392
min_position (Servo attribute), 308, 392
MISSING_RESOURCE (Java field), 206
mode (Engine attribute), 282, 367
modes (Engine attribute), 282, 367
Module (class in SpaceCenter), 274, 359

Index 453

kRPC, Release 0.2.3

Module (Java class), 194
modules (Part attribute), 271, 356
modules_with_name() (Parts method), 265, 350
modulesWithName(String) (Java method), 189
move_center() (ControlGroup method), 307, 392
move_center() (Servo method), 309, 394
move_left() (ControlGroup method), 307, 391
move_left() (Servo method), 309, 394
move_next_preset() (ControlGroup method), 307, 392
move_next_preset() (Servo method), 309, 394
move_prev_preset() (ControlGroup method), 307, 392
move_prev_preset() (Servo method), 309, 394
move_right() (ControlGroup method), 307, 391
move_right() (Servo method), 309, 394
move_to() (Servo method), 309, 394
moveCenter() (Java method), 223, 224
moveLeft() (Java method), 223, 224
moveNextPreset() (Java method), 223, 224
movePrevPreset() (Java method), 223, 224
moveRight() (Java method), 223, 224
moveTo(float, float) (Java method), 225
MOVING (Java field), 200
msl_position() (CelestialBody method), 248, 333
mSLPosition(double, double, ReferenceFrame) (Java

method), 177

N
name (Alarm attribute), 312, 396
name (CelestialBody attribute), 246, 331
name (ControlGroup attribute), 306, 391
name (DockingPort attribute), 277, 362
name (Module attribute), 274, 359
name (Part attribute), 267, 352
name (Servo attribute), 307, 392
name (Vessel attribute), 238, 323
name() (ResourceConverter method), 289, 374
name(int) (Java method), 205
names (Resources attribute), 297, 382
newInstance() (Java method), 163
newInstance(String) (Java method), 163
newInstance(String, java.net.InetAddress) (Java method),

163
newInstance(String, java.net.InetAddress, int, int) (Java

method), 163
newInstance(String, String) (Java method), 163
newInstance(String, String, int, int) (Java method), 163
next_orbit (Orbit attribute), 259, 344
Node (class in SpaceCenter), 299, 383
Node (Java class), 215
nodes (Control attribute), 262, 347
non_rotating_reference_frame (CelestialBody attribute),

249, 334
NONE (Java field), 169, 215
normal (Flight attribute), 253, 338

NORMAL (Java field), 187
normal (Node attribute), 299, 384
notes (Alarm attribute), 312, 396

O
open (CargoBay attribute), 276, 361
open (Intake attribute), 284, 369
OPEN (Java field), 197
OPENING (Java field), 197
optimum_core_temperature (ResourceHarvester at-

tribute), 291, 375
orbit (CelestialBody attribute), 247, 332
Orbit (class in SpaceCenter), 256, 341
Orbit (Java class), 183
ORBIT (Java field), 187
orbit (Node attribute), 300, 385
orbit (Vessel attribute), 239, 324
orbital_reference_frame (CelestialBody attribute), 250,

335
orbital_reference_frame (Node attribute), 300, 385
orbital_reference_frame (Vessel attribute), 241, 326
ORBITING (Java field), 176
outputs() (ResourceConverter method), 289, 374
outputs(int) (Java method), 206

P
Parachute (class in SpaceCenter), 287, 371
Parachute (Java class), 204
parachute (Part attribute), 272, 357
parachutes (Parts attribute), 266, 351
ParachuteState (class in SpaceCenter), 287, 372
ParachuteState (Java enum), 204
ParachuteState.active (in module SpaceCenter), 287, 372
ParachuteState.cut (in module SpaceCenter), 287, 372
ParachuteState.deployed (in module SpaceCenter), 287,

372
ParachuteState.semi_deployed (in module SpaceCenter),

287, 372
ParachuteState.stowed (in module SpaceCenter), 287, 372
parent (Part attribute), 268, 353
part (CargoBay attribute), 276, 361
Part (class in SpaceCenter), 267, 352
part (Decoupler attribute), 277, 362
part (DockingPort attribute), 277, 362
part (Engine attribute), 280, 365
part (Fairing attribute), 283, 368
part (Intake attribute), 284, 369
Part (Java class), 190
part (LandingGear attribute), 284, 369
part (LandingLeg attribute), 285, 370
part (LaunchClamp attribute), 286, 371
part (Light attribute), 286, 371
part (Module attribute), 275, 360
part (Parachute attribute), 287, 371

454 Index

kRPC, Release 0.2.3

part (Radiator attribute), 288, 372
part (ReactionWheel attribute), 291, 376
part (ResourceConverter attribute), 288, 373
part (ResourceHarvester attribute), 290, 375
part (Sensor attribute), 292, 377
part (SolarPanel attribute), 292, 377
Parts (class in SpaceCenter), 264, 349
Parts (Java class), 188
parts (Vessel attribute), 239, 324
PAUSE_GAME (Java field), 229
PERIAPSIS (Java field), 228
periapsis (Orbit attribute), 257, 342
periapsis_altitude (Orbit attribute), 257, 342
period (Orbit attribute), 258, 343
PHYSICS (Java field), 169
physics_warp_factor (in module SpaceCenter), 235, 320
pitch (Control attribute), 261, 346
pitch (Flight attribute), 252, 337
pitch_torque (ReactionWheel attribute), 291, 376
position (Servo attribute), 308, 392
position() (CelestialBody method), 250, 335
position() (DockingPort method), 278, 363
position() (Node method), 301, 386
position() (Part method), 273, 358
position() (Vessel method), 244, 329
position(ReferenceFrame) (Java method), 173, 179, 194,

198, 217
power_usage (Light attribute), 286, 371
power_usage (Sensor attribute), 292, 377
PRE_LAUNCH (Java field), 176
PROBE (Java field), 175
prograde (Flight attribute), 252, 337
PROGRADE (Java field), 187
prograde (Node attribute), 299, 383
propellant_ratios (Engine attribute), 282, 367
propellants (Engine attribute), 281, 366

Q
Quaternion (C++ class), 151
Quaternion (class in SpaceCenter), 305, 390

R
radial (Flight attribute), 253, 338
RADIAL (Java field), 187
radial (Node attribute), 299, 384
radially_attached (Part attribute), 268, 353
Radiator (class in SpaceCenter), 288, 372
Radiator (Java class), 205
radiator (Part attribute), 273, 358
radiators (Parts attribute), 267, 351
RadiatorState (class in SpaceCenter), 288, 373
RadiatorState (Java enum), 205
RadiatorState.broken (in module SpaceCenter), 288, 373

RadiatorState.extended (in module SpaceCenter), 288,
373

RadiatorState.extending (in module SpaceCenter), 288,
373

RadiatorState.retracted (in module SpaceCenter), 288,
373

RadiatorState.retracting (in module SpaceCenter), 288,
373

radius (Orbit attribute), 257, 342
RAILS (Java field), 169
rails_warp_factor (in module SpaceCenter), 235, 320
RAW (Java field), 227
rcs (Control attribute), 260, 345
reaction_wheel (Part attribute), 273, 358
reaction_wheels (Parts attribute), 267, 352
ReactionWheel (class in SpaceCenter), 291, 376
ReactionWheel (Java class), 208
READY (Java field), 198
reengage_distance (DockingPort attribute), 278, 363
reference_frame (AutoPilot attribute), 303, 388
reference_frame (CelestialBody attribute), 249, 334
reference_frame (DockingPort attribute), 279, 363
reference_frame (Node attribute), 300, 385
reference_frame (Part attribute), 274, 359
reference_frame (Vessel attribute), 241, 326
reference_plane_direction() (Orbit static method), 259,

344
reference_plane_normal() (Orbit static method), 259, 344
ReferenceFrame (class in SpaceCenter), 302, 387
ReferenceFrame (Java class), 218
referencePlaneDirection(ReferenceFrame) (Java

method), 184
referencePlaneNormal(ReferenceFrame) (Java method),

184
release() (Java method), 204
release() (LaunchClamp method), 286, 371
remaining (Alarm attribute), 312, 396
remaining_burn_vector() (Node method), 300, 384
remaining_delta_v (Node attribute), 299, 384
remainingBurnVector(ReferenceFrame) (Java method),

216
remote_tech_available (in module SpaceCenter), 237, 322
RemoteObject (Java class), 164
remove() (Alarm method), 312, 397
remove() (Java method), 164, 217, 227
remove() (Node method), 300, 385
remove() (Stream method), 318
remove_nodes() (Control method), 262, 347
remove_stream() (in module KRPC), 233, 318
removeNodes() (Java method), 187
removeStream(int) (Java method), 164
REPAIRING (Java field), 203
repeat (Alarm attribute), 312, 396
repeat_period (Alarm attribute), 312, 396

Index 455

kRPC, Release 0.2.3

resource_converter (Part attribute), 273, 358
resource_converters (Parts attribute), 267, 352
resource_harvester (Part attribute), 273, 358
resource_harvesters (Parts attribute), 267, 352
ResourceConverter (class in SpaceCenter), 288, 373
ResourceConverter (Java class), 205
ResourceConverterState (class in SpaceCenter), 289, 374
ResourceConverterState (Java enum), 206
ResourceConverterState.capacity (in module SpaceCen-

ter), 290, 375
ResourceConverterState.idle (in module SpaceCenter),

289, 374
ResourceConverterState.missing_resource (in module

SpaceCenter), 290, 374
ResourceConverterState.running (in module SpaceCen-

ter), 289, 374
ResourceConverterState.storage_full (in module Space-

Center), 290, 374
ResourceConverterState.unknown (in module SpaceCen-

ter), 290, 375
ResourceFlowMode (class in SpaceCenter), 298, 383
ResourceFlowMode (Java enum), 215
ResourceFlowMode.adjacent (in module SpaceCenter),

298, 383
ResourceFlowMode.none (in module SpaceCenter), 298,

383
ResourceFlowMode.stage (in module SpaceCenter), 298,

383
ResourceFlowMode.vessel (in module SpaceCenter),

298, 383
ResourceHarvester (class in SpaceCenter), 290, 375
ResourceHarvester (Java class), 207
ResourceHarvesterState (class in SpaceCenter), 291, 376
ResourceHarvesterState (Java enum), 207
ResourceHarvesterState.active (in module SpaceCenter),

291, 376
ResourceHarvesterState.deployed (in module SpaceCen-

ter), 291, 376
ResourceHarvesterState.deploying (in module SpaceCen-

ter), 291, 376
ResourceHarvesterState.retracted (in module SpaceCen-

ter), 291, 376
ResourceHarvesterState.retracting (in module SpaceCen-

ter), 291, 376
Resources (class in SpaceCenter), 297, 382
Resources (Java class), 214
resources (Part attribute), 271, 356
resources (Vessel attribute), 239, 324
resources_in_decouple_stage() (Vessel method), 239, 324
resourcesInDecoupleStage(int, boolean) (Java method),

170
RETRACTED (Java field), 203, 205, 207, 209
RETRACTING (Java field), 203, 205, 207, 209
retrograde (Flight attribute), 253, 338

RETROGRADE (Java field), 187
reverse_key (ControlGroup attribute), 306, 391
right (Control attribute), 261, 346
roll (Control attribute), 261, 346
roll (Flight attribute), 252, 337
roll_error (AutoPilot attribute), 303, 388
roll_speed_multiplier (AutoPilot attribute), 304, 389
roll_torque (ReactionWheel attribute), 292, 376
root (Parts attribute), 264, 349
rotation (Flight attribute), 252, 337
rotation() (CelestialBody method), 250, 335
rotation() (DockingPort method), 278, 363
rotation() (Part method), 273, 358
rotation() (Vessel method), 245, 330
rotation(ReferenceFrame) (Java method), 175, 179, 194,

198
rotation_speed_multiplier (AutoPilot attribute), 304, 389
rotational_period (CelestialBody attribute), 247, 332
rotational_speed (CelestialBody attribute), 247, 332
ROVER (Java field), 175
RUNNING (Java field), 206

S
sas (AutoPilot attribute), 304, 389
sas (Control attribute), 260, 345
sas_mode (AutoPilot attribute), 304, 389
sas_mode (Control attribute), 260, 345
SASMode (class in SpaceCenter), 262, 347
SASMode (Java enum), 187
SASMode.anti_normal (in module SpaceCenter), 263,

348
SASMode.anti_radial (in module SpaceCenter), 263, 348
SASMode.anti_target (in module SpaceCenter), 263, 348
SASMode.maneuver (in module SpaceCenter), 262, 347
SASMode.normal (in module SpaceCenter), 263, 348
SASMode.prograde (in module SpaceCenter), 263, 348
SASMode.radial (in module SpaceCenter), 263, 348
SASMode.retrograde (in module SpaceCenter), 263, 348
SASMode.stability_assist (in module SpaceCenter), 262,

347
SASMode.target (in module SpaceCenter), 263, 348
satellites (CelestialBody attribute), 246, 331
SEMI_DEPLOYED (Java field), 204
semi_major_axis (Orbit attribute), 257, 342
semi_minor_axis (Orbit attribute), 257, 342
Sensor (class in SpaceCenter), 292, 377
Sensor (Java class), 208
sensor (Part attribute), 273, 358
sensors (Parts attribute), 267, 352
Servo (class in InfernalRobotics), 307, 392
Servo (Java class), 223
servo_group_with_name() (in module InfernalRobotics),

305, 390
servo_groups (in module InfernalRobotics), 305, 390

456 Index

kRPC, Release 0.2.3

servo_with_name() (ControlGroup method), 307, 391
servo_with_name() (in module InfernalRobotics), 306,

390
servoGroupWithName(String) (Java method), 221
servos (ControlGroup attribute), 307, 391
servoWithName(String) (Java method), 222
set_action() (Module method), 275, 360
set_action_group() (Control method), 262, 347
set_pid_parameters() (AutoPilot method), 305, 389
setAbort(boolean) (Java method), 185
setAcceleration(float) (Java method), 224
setAction(AlarmAction) (Java method), 226
setAction(String, boolean) (Java method), 196
setActionGroup(int, boolean) (Java method), 186
setActive(boolean) (Java method), 200, 204, 207, 208
setActiveVessel(Vessel) (Java method), 165
setAutoModeSwitch(boolean) (Java method), 201
setBrakes(boolean) (Java method), 185
setControlling(Part) (Java method), 189
setCurrentSpeed(float) (Java method), 224
setDeltaV(float) (Java method), 216
setDeployAltitude(float) (Java method), 204
setDeployed(boolean) (Java method), 202, 203, 205, 207,

208
setDeployMinPressure(float) (Java method), 204
setExpanded(boolean) (Java method), 222
setForward(float) (Java method), 186
setForwardKey(String) (Java method), 222
setGear(boolean) (Java method), 185
setGimbalLimit(float) (Java method), 201
setGimbalLocked(boolean) (Java method), 201
setHighlight(boolean) (Java method), 223
setIsAxisInverted(boolean) (Java method), 224
setIsLocked(boolean) (Java method), 224
setLights(boolean) (Java method), 185
setMargin(double) (Java method), 226
setMaxPosition(float) (Java method), 224
setMaxRollSpeed(float) (Java method), 220
setMaxRotationSpeed(float) (Java method), 220
setMinPosition(float) (Java method), 223
setMode(String) (Java method), 201
setName(String) (Java method), 169, 197, 222, 223, 227
setNormal(float) (Java method), 215
setNotes(String) (Java method), 227
setOpen(boolean) (Java method), 196, 202
setPhysicsWarpFactor(int) (Java method), 166
setPIDParameters(float, float, float) (Java method), 220
setPitch(float) (Java method), 186
setPrograde(float) (Java method), 215
setRadial(float) (Java method), 216
setRailsWarpFactor(int) (Java method), 166
setRCS(boolean) (Java method), 185
setReferenceFrame(ReferenceFrame) (Java method), 219
setRepeat(boolean) (Java method), 227

setRepeatPeriod(double) (Java method), 227
setReverseKey(String) (Java method), 222
setRight(float) (Java method), 186
setRoll(float) (Java method), 186
setRollSpeedMultiplier(float) (Java method), 220
setRotationSpeedMultiplier(float) (Java method), 220
setSAS(boolean) (Java method), 185, 220
setSASMode(SASMode) (Java method), 185, 220
setShielded(boolean) (Java method), 198
setSpeed(float) (Java method), 222, 224
setSpeedMode(SpeedMode) (Java method), 185
setTarget(Vessel) (Java method), 169
setTargetBody(CelestialBody) (Java method), 165
setTargetDirection(org.javatuples.Triplet) (Java method),

219
setTargetDockingPort(DockingPort) (Java method), 165
setTargetRoll(float) (Java method), 219
setTargetVessel(Vessel) (Java method), 165
setThrottle(float) (Java method), 185
setThrustLimit(float) (Java method), 200
setTime(double) (Java method), 226
setType(VesselType) (Java method), 169
setUp(float) (Java method), 186
setUT(double) (Java method), 216
setVessel(Vessel) (Java method), 227
setWheelSteering(float) (Java method), 186
setWheelThrottle(float) (Java method), 186
setXferOriginBody(CelestialBody) (Java method), 227
setXferTargetBody(CelestialBody) (Java method), 227
setYaw(float) (Java method), 186
shielded (DockingPort attribute), 278, 363
SHIELDED (Java field), 200
SHIP (Java field), 175
sideslip_angle (Flight attribute), 255, 340
signal_delay (Comms attribute), 302, 387
signal_delay_to_ground_station (Comms attribute), 302,

387
signal_delay_to_vessel() (Comms method), 302, 387
signalDelayToVessel(Vessel) (Java method), 218
situation (Vessel attribute), 238, 323
skin_temperature (Part attribute), 269, 354
SOI_CHANGE (Java field), 228
SOI_CHANGE_AUTO (Java field), 228
solar_panel (Part attribute), 273, 358
solar_panels (Parts attribute), 267, 352
SolarPanel (class in SpaceCenter), 292, 377
SolarPanel (Java class), 208
SolarPanelState (class in SpaceCenter), 293, 378
SolarPanelState (Java enum), 209
SolarPanelState.broken (in module SpaceCenter), 293,

378
SolarPanelState.extended (in module SpaceCenter), 293,

378

Index 457

kRPC, Release 0.2.3

SolarPanelState.extending (in module SpaceCenter), 293,
378

SolarPanelState.retracted (in module SpaceCenter), 293,
378

SolarPanelState.retracting (in module SpaceCenter), 293,
378

SPACE_CENTER (Java field), 165
SpaceCenter (Java class), 165
SpaceCenter (module), 234, 319
specific_impulse (Engine attribute), 281, 366
specific_impulse (Vessel attribute), 240, 325
speed (ControlGroup attribute), 306, 391
speed (Flight attribute), 252, 337
speed (Intake attribute), 284, 369
speed (Orbit attribute), 258, 343
speed (Servo attribute), 308, 393
speed_mode (Control attribute), 260, 345
speed_of_sound (Flight attribute), 254, 339
SpeedMode (class in SpaceCenter), 263, 348
SpeedMode (Java enum), 187
SpeedMode.orbit (in module SpaceCenter), 263, 348
SpeedMode.surface (in module SpaceCenter), 263, 348
SpeedMode.target (in module SpaceCenter), 263, 348
sphere_of_influence (CelestialBody attribute), 248, 333
SPLASHED (Java field), 176
STABILITY_ASSIST (Java field), 187
STAGE (Java field), 215
stage (Part attribute), 268, 353
stall_fraction (Flight attribute), 255, 340
start() (ResourceConverter method), 289, 374
start(int) (Java method), 206
state (CargoBay attribute), 276, 361
state (DockingPort attribute), 278, 363
state (LandingGear attribute), 284, 369
state (LandingLeg attribute), 285, 370
state (Parachute attribute), 287, 372
state (Radiator attribute), 288, 373
state (ResourceHarvester attribute), 290, 375
state (SolarPanel attribute), 293, 377
state() (ResourceConverter method), 289, 374
state(int) (Java method), 206
static_air_temperature (Flight attribute), 255, 340
static_pressure (Flight attribute), 253, 338
STATION (Java field), 175
status_info() (ResourceConverter method), 289, 374
statusInfo(int) (Java method), 206
stop() (ControlGroup method), 307, 392
stop() (Java method), 223, 225
stop() (ResourceConverter method), 289, 374
stop() (Servo method), 309, 394
stop(int) (Java method), 206
STORAGE_FULL (Java field), 206
STOWED (Java field), 204
Stream (class in krpc.stream), 318

Stream (Java class), 164
stream() (Client method), 317
SUB_ORBITAL (Java field), 176
sun_exposure (SolarPanel attribute), 293, 378
SURFACE (Java field), 188
surface_altitude (Flight attribute), 251, 336
surface_gravity (CelestialBody attribute), 247, 332
surface_height() (CelestialBody method), 247, 332
surface_position() (CelestialBody method), 248, 333
surface_reference_frame (Vessel attribute), 243, 328
surface_velocity_reference_frame (Vessel attribute), 244,

329
surfaceHeight(double, double) (Java method), 176
surfacePosition(double, double, ReferenceFrame) (Java

method), 177

T
TARGET (Java field), 187, 188
target (Vessel attribute), 239, 324
target_body (in module SpaceCenter), 234, 319
target_direction (AutoPilot attribute), 303, 388
target_docking_port (in module SpaceCenter), 234, 319
target_pitch_and_heading() (AutoPilot method), 303, 388
target_roll (AutoPilot attribute), 304, 388
target_vessel (in module SpaceCenter), 234, 319
targetPitchAndHeading(float, float) (Java method), 219
temperature (Part attribute), 269, 354
terminal_velocity (Flight attribute), 255, 340
thermal_conduction_flux (Part attribute), 270, 355
thermal_convection_flux (Part attribute), 270, 355
thermal_efficiency (ResourceHarvester attribute), 290,

375
thermal_internal_flux (Part attribute), 270, 355
thermal_mass (Part attribute), 270, 355
thermal_radiation_flux (Part attribute), 270, 355
thermal_resource_mass (Part attribute), 270, 355
thermal_skin_mass (Part attribute), 270, 355
thermal_skin_to_internal_flux (Part attribute), 270, 355
throttle (Control attribute), 261, 346
throttle (Engine attribute), 282, 367
throttle_locked (Engine attribute), 282, 367
thrust (Engine attribute), 280, 365
thrust (Vessel attribute), 240, 325
thrust_limit (Engine attribute), 281, 366
thrust_specific_fuel_consumption (Flight attribute), 256,

341
time (Alarm attribute), 311, 396
time_to (Node attribute), 300, 385
time_to_apoapsis (Orbit attribute), 258, 343
time_to_periapsis (Orbit attribute), 258, 343
time_to_soi_change (Orbit attribute), 259, 344
title (Part attribute), 267, 352
toggle_action_group() (Control method), 262, 347
toggle_mode() (Engine method), 283, 368

458 Index

kRPC, Release 0.2.3

toggleActionGroup(int) (Java method), 187
toggleMode() (Java method), 201
total_air_temperature (Flight attribute), 255, 340
TRACKING_STATION (Java field), 165
TRANSFER (Java field), 229
TRANSFER_MODELLED (Java field), 229
transform_direction() (in module SpaceCenter), 236, 321
transform_position() (in module SpaceCenter), 236, 321
transform_rotation() (in module SpaceCenter), 236, 321
transform_velocity() (in module SpaceCenter), 237, 322
transformDirection(org.javatuples.Triplet, Reference-

Frame, ReferenceFrame) (Java method),
167

transformPosition(org.javatuples.Triplet, Reference-
Frame, ReferenceFrame) (Java method),
167

transformRotation(org.javatuples.Quartet, Reference-
Frame, ReferenceFrame) (Java method),
167

transformVelocity(org.javatuples.Triplet,
org.javatuples.Triplet, ReferenceFrame,
ReferenceFrame) (Java method), 167

trigger_event() (Module method), 275, 360
triggerEvent(String) (Java method), 195
type (Alarm attribute), 311, 396
type (Vessel attribute), 238, 323

U
undock() (DockingPort method), 278, 363
undock() (Java method), 197
UNDOCKING (Java field), 200
UNKNOWN (Java field), 207
up (Control attribute), 261, 346
ut (in module SpaceCenter), 234, 320
ut (Node attribute), 300, 385

V
vacuum_specific_impulse (Engine attribute), 281, 366
vacuum_specific_impulse (Vessel attribute), 241, 325
value (Sensor attribute), 292, 377
Vector3 (C++ class), 151
Vector3 (class in SpaceCenter), 305, 390
velocity (Flight attribute), 251, 336
velocity() (CelestialBody method), 250, 335
velocity() (Part method), 273, 358
velocity() (Vessel method), 245, 330
velocity(ReferenceFrame) (Java method), 175, 179, 194
vertical_speed (Flight attribute), 252, 337
vessel (Alarm attribute), 312, 396
Vessel (class in SpaceCenter), 238, 323
Vessel (Java class), 169
VESSEL (Java field), 215
vessel (Part attribute), 268, 353
vessels (in module SpaceCenter), 234, 319

VesselSituation (class in SpaceCenter), 246, 331
VesselSituation (Java enum), 175
VesselSituation.docked (in module SpaceCenter), 246,

331
VesselSituation.escaping (in module SpaceCenter), 246,

331
VesselSituation.flying (in module SpaceCenter), 246, 331
VesselSituation.landed (in module SpaceCenter), 246,

331
VesselSituation.orbiting (in module SpaceCenter), 246,

331
VesselSituation.pre_launch (in module SpaceCenter),

246, 331
VesselSituation.splashed (in module SpaceCenter), 246,

331
VesselSituation.sub_orbital (in module SpaceCenter),

246, 331
VesselType (class in SpaceCenter), 245, 330
VesselType (Java enum), 175
VesselType.base (in module SpaceCenter), 246, 331
VesselType.debris (in module SpaceCenter), 246, 331
VesselType.lander (in module SpaceCenter), 246, 331
VesselType.probe (in module SpaceCenter), 246, 331
VesselType.rover (in module SpaceCenter), 246, 331
VesselType.ship (in module SpaceCenter), 245, 330
VesselType.station (in module SpaceCenter), 246, 331

W
wait() (AutoPilot method), 303, 388
wait() (Java method), 219
warp_factor (in module SpaceCenter), 235, 320
warp_mode (in module SpaceCenter), 235, 320
warp_rate (in module SpaceCenter), 235, 320
warp_to() (in module SpaceCenter), 236, 321
WarpMode (class in SpaceCenter), 238, 323
WarpMode (Java enum), 169
WarpMode.none (in module SpaceCenter), 238, 323
WarpMode.physics (in module SpaceCenter), 238, 323
WarpMode.rails (in module SpaceCenter), 238, 323
warpTo(double, float, float) (Java method), 166
wheel_steering (Control attribute), 261, 346
wheel_throttle (Control attribute), 261, 346
with_module() (Parts method), 265, 350
with_name() (Parts method), 264, 349
with_title() (Parts method), 265, 350
withModule(String) (Java method), 189
withName(String) (Java method), 189
withTitle(String) (Java method), 189

X
xfer_origin_body (Alarm attribute), 312, 397
xfer_target_body (Alarm attribute), 312, 397

Index 459

kRPC, Release 0.2.3

Y
yaw (Control attribute), 261, 346
yaw_torque (ReactionWheel attribute), 291, 376

460 Index

	Getting Started
	The Server Plugin
	The Python Client
	`Hello World' Script
	Going further...

	Tutorials and Examples
	Sub-Orbital Flight
	Reference Frames
	Launch into Orbit
	Pitch, Heading and Roll
	Interacting with Parts
	Docking Guidance

	C#
	C# Client
	KRPC API
	SpaceCenter API
	InfernalRobotics API
	Kerbal Alarm Clock API

	C++
	C++ Client
	KRPC API
	SpaceCenter API
	InfernalRobotics API
	Kerbal Alarm Clock API

	Java
	Java Client
	KRPC API
	SpaceCenter API
	InfernalRobotics API
	Kerbal Alarm Clock API

	Lua
	Lua Client
	KRPC API
	SpaceCenter API
	InfernalRobotics API
	Kerbal Alarm Clock API

	Python
	Python Client
	KRPC API
	SpaceCenter API
	InfernalRobotics API
	Kerbal Alarm Clock API

	Other Clients, Services and Scripts
	Clients
	Services
	Scripts/Tools/Libraries etc.

	Compiling kRPC
	Install Dependencies
	Setup your Environment
	Building using Bazel
	Building the C# projects using an IDE

	Extending kRPC
	The kRPC Architecture
	Service API
	Documentation
	Further Examples
	Generating Service Code for Static Clients

	Communication Protocol
	Establishing a Connection
	Remote Procedures
	Protocol Buffer Encoding
	Streams
	KRPC Service
	Service Description Message

	Internals of kRPC
	Server Performance Settings

	Python Module Index
	Lua Module Index
	Index

